CN112759400A - 多孔碳化硅陶瓷及其制备方法 - Google Patents

多孔碳化硅陶瓷及其制备方法 Download PDF

Info

Publication number
CN112759400A
CN112759400A CN202011492478.2A CN202011492478A CN112759400A CN 112759400 A CN112759400 A CN 112759400A CN 202011492478 A CN202011492478 A CN 202011492478A CN 112759400 A CN112759400 A CN 112759400A
Authority
CN
China
Prior art keywords
silicon carbide
carbide ceramic
porous silicon
parts
micro powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011492478.2A
Other languages
English (en)
Other versions
CN112759400B (zh
Inventor
刘国彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen De Aomei Technology Co ltd
Original Assignee
Shenzhen De Aomei Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen De Aomei Technology Co ltd filed Critical Shenzhen De Aomei Technology Co ltd
Priority to CN202011492478.2A priority Critical patent/CN112759400B/zh
Publication of CN112759400A publication Critical patent/CN112759400A/zh
Application granted granted Critical
Publication of CN112759400B publication Critical patent/CN112759400B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0675Vegetable refuse; Cellulosic materials, e.g. wood chips, cork, peat, paper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本申请涉及碳化硅陶瓷领域,具体公开了一种多孔碳化硅陶瓷及其制备方法。该多孔碳化硅陶瓷包括以下重量份数的组分:碳化硅微粉80~100份、烧结助剂2~10份、造孔剂1~5份、交联剂1~5份、分散剂3~6份、去离子水45~55份,造孔剂为粒径是1~30μm秸秆微粉;其制备方法为:将碳化硅微粉、烧结助剂、交联剂、分散剂、去离子水混合并进行搅拌,然后加入造孔剂和催渗剂并于真空条件下搅拌得到碳化硅陶瓷浆料;对碳化硅陶瓷浆料进行真空抽滤后放入模具中烘烤得到多孔碳化硅陶瓷素坯,将多孔碳化硅陶瓷素坯在氩气气氛下进行烧结,得到多孔碳化硅陶瓷。本申请制得的多孔碳化硅陶瓷环保性好、成本低,孔隙率大且性能优异。

Description

多孔碳化硅陶瓷及其制备方法
技术领域
本申请涉及碳化硅陶瓷领域,更具体地说,它涉及一种多孔碳化硅陶瓷及其制备方法。
背景技术
多孔碳化硅陶瓷具有化学稳定性好、机械强度大、耐酸碱、耐高温等优点,在石化工业等苛刻环境中有着广泛的应用。同时多孔碳化硅陶瓷具有高的热导率、低的热膨胀系数特性,经过精细加工后可以获得超高的平面度,并且平面度不受温度变化的影响,使多孔碳化硅陶瓷在集成电路制造装备中晶圆承载吸附上获得了良好的应用,如光刻用吸盘、激光淬火用吸盘、激光划片用吸盘等等。
多孔碳化硅陶瓷的制备技术是推动多孔碳化硅陶瓷产业发展的核心部分,多孔碳化硅陶瓷制备技术的核心和关键是提高多孔碳化硅陶瓷的孔隙率、孔径分布、孔径大小、强度等特性。
为了达到多孔的目的,多孔碳化硅陶瓷在加工时通常会加入石墨、碳粉、淀粉等造孔剂,利用其造孔剂本身的多孔结构或者易分解的物性在碳化硅陶瓷烧结成型后形成多孔结构,其中以石墨为较优。但是在工业生产过程中,造孔剂在多孔碳化硅陶瓷生产中的原料占比比较大,石墨、碳粉、淀粉会产生较大的污染以及固废,环保性较差,并且石墨、碳粉、淀粉的成本也较高。
发明内容
为了改善现有的多孔碳化硅陶瓷生产时环保性较差的问题,本申请提供一种多孔碳化硅陶瓷及其制备方法。
第一方面,本申请提供一种多孔碳化硅陶瓷,采用如下的技术方案:
一种多孔碳化硅陶瓷,该多孔碳化硅陶瓷包括以下重量份数的组分:
碳化硅微粉:80~100份;
烧结助剂:2~10份;
造孔剂:1~5份;
交联剂:1~5份;
分散剂:3~6份;
去离子水:45~55份;
其中,所述造孔剂为秸秆微粉,所述秸秆微粉的粒径为1~30μm。
通过采用上述配方,秸秆成本非常低,且易于加工,能够节省很多原料成本和工艺加工成本,并且也能够实现对秸秆进行回收利用,有利于减少了秸秆废弃处置时产生的污染,环保性很好,将秸秆应用于多孔碳化硅陶瓷的生产中不仅能够节省很多的能耗和成本,同时也减少了对秸秆作为固废处理的处理成本;同时,秸秆密度小,质量轻,同样重量的秸秆微粉在碳化硅微粉中的分布面积更大、更均匀,有利于提高多孔碳化硅陶瓷的孔隙率和开孔分布的均匀性,使多孔碳化硅陶瓷在保证较好的结构强度条件下具有很高的孔隙率,性能卓越;秸秆微粉的粒径控制在1~30μm有利于秸秆微粉在体系中的分散,使秸秆微粉和碳化硅微粉能够均匀地混合,有利于提高多孔碳化硅陶瓷的孔隙率和开孔分布的均匀性。
优选的,所述多孔碳化硅陶瓷还包括0.04~0.06重量份的催渗剂,所述催渗剂为碳酸钡粉末。
通过在多孔碳化硅陶瓷的原料中加入碳酸钡,当秸秆在烧结过程中烧结为木炭时,木炭与碳酸钡在900℃左右会产生渗碳现象,木炭在催渗剂的作用下会向碳化硅结构中分散渗透并均匀地分散在碳化硅结构中,从而有利于提高多孔碳化硅陶瓷的结构强度,并且随着烧结温度的升高,碳酸钡会逐渐分解为二氧化碳,有利于碳化硅陶瓷的造孔。
优选的,所述碳化硅微粉的粒径为5~80μm。
通过将碳化硅微粉的粒径控制在5~80μm,使秸秆微粉和碳化硅微粉能够均匀地混合,提高了秸秆微粉与碳化硅微粉的混合效果,有利于提高多孔碳化硅陶瓷的孔隙率和开孔分布的均匀性。
优选的,所述烧结助剂为氧化钾粉末。
通过采用上述技术方案,采用氧化钾粉末作为烧结助剂能够在高温下形成共溶液相体系,对于多孔碳化硅陶瓷的烧结过程有较好的促进作用,并且可降低烧结所需的温度,缩短烧结时间,降低生产能耗。
优选的,所述交联剂为N,N-亚甲基双丙烯酰胺。
优选的,所述分散剂为聚乙烯亚胺、氨水、氢氧化钾中的一种或者其组合。
通过采用上述技术方案,分散剂用于降低碳化硅微粉的表面能,使碳化硅微粉能够均匀地进行分散,极大地减少了碳化硅微粉在与其他原料混合过程中出现的团聚现象,有利于碳化硅微粉与其他原料的混合,从而有利于提高烧结出的多孔碳化硅陶瓷的孔隙率和开孔分布的均匀性,聚乙烯亚胺、氨水、氢氧化钾在水溶液中均呈碱性,从而使碳化硅微粉在混合为浆料时的体系呈碱性,在碱性条件下碳化硅微粉的分散效果更佳。
第二方面,本申请提供一种多孔碳化硅陶瓷的制备方法,采用如下的技术方案:
一种多孔碳化硅陶瓷的制备方法,包括以下步骤:
(A)将碳化硅微粉、烧结助剂、交联剂、分散剂、去离子水混合并进行搅拌,搅拌时间为 1~2个小时,得到初混浆料;
(B)将造孔剂和催渗剂加入搅拌后的初混浆料中,于真空条件下搅拌1~2个小时,得到碳化硅陶瓷浆料;
(C)对搅拌后的碳化硅陶瓷浆料进行真空抽滤,抽滤时间为20~30分钟;
(D)将抽滤后的碳化硅陶瓷浆料放入模具中,于70~80℃下烘烤2~3个小时,然后冷却到室温后脱模,得到多孔碳化硅陶瓷素坯;
(E)将得到的多孔碳化硅陶瓷素坯在氩气气氛下进行烧结,得到多孔碳化硅陶瓷。
通过采用本制备方法,先将碳化硅微粉与烧结助剂、交联剂、分散剂进行初混,使碳化硅微粉预分散开,以便于和造孔剂均匀混合;然后在真空条件下进行搅拌以便于将浆料体系中存在的气泡脱掉,从而使碳化硅微粉与秸秆微粉混合地更均匀、更紧密;接着通过真空抽滤去除浆料体系中的水分,以便于后续进行烧结,同时也能够进一步对浆料体系进行脱泡处理;最后将多孔碳化硅陶瓷素坯在氩气气氛下进行烧结能够很好地对碳化硅进行保护,防止烧结过程中碳化硅被氧化。
优选的,所述步骤(B)中搅拌时的控制压力为-0.02~-0.04MPa。
经实验测试,将初混浆料与造孔剂的搅拌压力控制在-0.02~-0.04MPa既能够保证混合的均匀性和脱泡效果,又能够避免反应体系膨胀而造成原料损耗。
优选的,所述步骤(C)中抽滤时的控制压力为-0.06~-0.08MPa。
经实验测试,将抽滤压力控制在-0.06~-0.08MPa能够对浆料体系中的水分起到很好的吸附效果,节省抽滤时间。
优选的,所述步骤(E)具体为:
(a)将多孔碳化硅陶瓷素坯放入烧结炉内,向烧结炉内通入氩气,使炉内气压达到0.3MPa 并保持2min,然后将炉内气体释放掉恢复常压,重复3次后将炉内气体置换为氩气;
(b)在氩气保护下,先以3~5℃/min的速率升温至900~950℃,保温1~1.5个小时;
(c)然后以5~8℃/min的速率升温至1350~1500℃,保温2~3个小时,保温结束后冷却到室温得到多孔碳化硅陶瓷成品。
通过本制备方法,先将烧结炉内通过氩气进行置换,使烧结环境为氩气气氛,防止烧结过程中碳化硅被氧化,置换3次能够保证烧结炉内的气体完全置换为氩气,本制备方法中采用单原子的氩气作为保护气体,相比于双原子分子的氮气具有更好的稳定性,在高温下不容易与物质发生化学反应,能够很好地为烧结提供保护气氛;烧结时先缓慢升温再快速升温能够减小碳化硅陶瓷的热应力,有利于保护碳化硅陶瓷的结构稳定性和结构强度,减少碳化硅陶瓷开裂的可能性,提高烧结质量,同时也能够给渗碳留下充足的时间,提高渗碳效果,有利于提高碳化硅陶瓷的结构强度。
综上所述,本申请具有以下有益效果:
1、由于本申请采用成本非常低且易于加工的秸秆作为造孔剂能够节省很多的生产成本,并且也能够实现对秸秆进行回收利用,减少了对秸秆作为固废处理的处理成本,也有利于减少了秸秆废弃处置时产生的污染,环保性好;同时,秸秆密度小,质量轻,同样重量的秸秆微粉在碳化硅微粉中的分布面积更大、更均匀,有利于提高多孔碳化硅陶瓷的孔隙率和开孔分布的均匀性,使多孔碳化硅陶瓷在保证较好的结构强度条件下具有很高的孔隙率,性能卓越;另外,秸秆作为造孔剂在多孔碳化硅陶瓷烧结过程中产生的氧化钾也能够作为烧结助剂,从而减少了原料烧结助剂的添加量,进一步节省了生产成本。
2、本申请中优选将秸秆微粉的粒径控制在1~30μm,将碳化硅微粉的粒径控制在5~80μm,使秸秆微粉和碳化硅微粉能够均匀地混合,提高了秸秆微粉与碳化硅微粉的混合效果,有利于提高多孔碳化硅陶瓷的孔隙率和开孔分布的均匀性。
3、本申请在多孔碳化硅陶瓷的原料中加入碳酸钡,当秸秆在烧结过程中烧结为木炭时,木炭与碳酸钡在900℃左右会产生渗碳现象,木炭在催渗剂的作用下会向碳化硅结构中分散渗透并均匀地分散在碳化硅结构中,从而有利于提高多孔碳化硅陶瓷的结构强度,并且随着烧结温度的升高,碳酸钡会逐渐分解为二氧化碳,有利于碳化硅陶瓷的造孔;
4、本申请的方法,通过先将碳化硅微粉与烧结助剂、交联剂、分散剂进行初混,使碳化硅微粉预分散开,以便于和造孔剂均匀混合;然后真空条件下进行搅拌能够将浆料体系中存在的气泡脱掉,从而使碳化硅微粉与秸秆微粉混合地更均匀、更紧密;接着再通过真空抽滤去除浆料体系中的水分,以便于后续进行烧结,同时也能够进一步对浆料体系进行脱泡;最后将多孔碳化硅陶瓷素坯在氩气气氛下进行烧结能够很好地对碳化硅进行保护,防止烧结过程中碳化硅被氧化。
具体实施方式
为了更好地理解本发明,下面将结合本申请实施例的表格,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在理解本申请的发明构思前提下所获得的其他实施例,都属于本申请保护的范围内。
多孔碳化硅陶瓷因其优异的性能获得了广泛的应用,其核心和关键是提高多孔碳化硅陶瓷的孔隙率、孔径分布、孔径大小、强度等特性。目前多孔碳化硅陶瓷在加工时通常会加入石墨、碳粉、淀粉等造孔剂,利用其造孔剂本身的多孔结构或者易分解的物性在碳化硅陶瓷烧结成型后形成多孔结构。但是石墨、碳粉、淀粉等造孔剂成本较高,而造孔剂在多孔碳化硅陶瓷生产中的原料占比又比较大,因此目前工业上多孔碳化硅陶瓷的生产成本一直较高。本申请通过使用秸秆作为造孔剂,实现了多孔碳化硅陶瓷工业生产成本大幅降低的目的。
为了更方便理解本申请的技术方案,以下结合表格和实施例对本申请作进一步详细说明,但不作为本申请限定的保护范围。
实施例1
本申请公开了一种多孔碳化硅陶瓷,包括碳化硅微粉100份、烧结助剂5份、造孔剂3份、催渗剂0.05份、交联剂3份、分散剂5份、去离子水50份,其中,碳化硅微粉的粒径为80 μm,造孔剂采用粒径为20μm的秸秆微粉,催渗剂为碳酸钡粉末,烧结助剂为氧化钾粉末,交联剂为N,N-亚甲基双丙烯酰胺,分散剂为聚乙烯亚胺,组分生产厂家见表1。
表1:各组分生产厂家
组分名称 生产厂家
碳化硅微粉 山东金德新材料有限公司
秸秆微粉 陕西金禾农业科技有限公司
碳酸钡粉末 佛山市骏鹏化工原料有限公司
氧化钾粉末 上海宏瑞化工有限公司
N,N-亚甲基双丙烯酰胺 山东豪顺化工有限公司
聚乙烯亚胺 上海尤恩化工有限公司
该多孔碳化硅陶瓷的制备方法如下:
(A)将碳化硅微粉、烧结助剂、交联剂、分散剂、去离子水混合并在搅拌罐中进行搅拌,搅拌时间为1个小时,得到初混浆料;
(B)将造孔剂和催渗剂加入搅拌后的初混浆料中,并加入真空搅拌罐内于真空条件下搅拌 2个小时,得到碳化硅陶瓷浆料,真空搅拌罐内压力为-0.03MPa;
(C)对搅拌后的碳化硅陶瓷浆料进行真空抽滤,抽滤时间为20分钟,抽滤压力为-0.08MPa;
(D)将抽滤后的碳化硅陶瓷浆料放入模具中,然后放置到烘箱中在80℃下烘烤2个小时,然后冷却到室温后脱模,得到多孔碳化硅陶瓷素坯;
(E)将得到的多孔碳化硅陶瓷素坯放入烧结炉内,向烧结炉内通入氩气,使炉内气压达到 0.3MPa并保持2min,然后将炉内气体释放掉恢复常压,重复3次后将炉内气体置换为氩气;
(F)在氩气保护下,先以5℃/min的速率升温至940℃,保温1个小时,然后以8℃/min的速率升温至1450℃,保温3个小时,保温结束后自然冷却到室温得到多孔碳化硅陶瓷成品。
实施例2
与实施例1的区别在于,实施例2中秸秆微粉添加的重量份数为5份。
实施例3
与实施例2的区别在于,实施例3中烧结助剂添加的重量份数为3份。
实施例4
与实施例1的区别在于,实施例4中秸秆微粉的粒径为30μm。
实施例5
与实施例1的区别在于,实施例5中秸秆微粉的粒径为10μm。
实施例6
与实施例1的区别在于,实施例6中碳化硅微粉的粒径为60μm。
实施例7
与实施例6的区别在于,实施例7中秸秆微粉的粒径为10μm。
对比例1
与实施例1的区别在于,对比例1中将秸秆微粉替换为相同重量份数以及粒径的石墨,且不添加催渗剂。
对实施例1-7以及对比例1制得的多孔碳化硅陶瓷成品进行性能测试,具体测试数据如表2。
表2:实施例1-7以及对比例1中多孔碳化硅陶瓷成品性能数据
Figure RE-GDA0002986367070000061
Figure RE-GDA0002986367070000071
通过表2中的数据可知,当碳化硅微粉的添加量一定时,随着秸秆粉末添加量的增加,多孔碳化硅陶瓷的孔隙率会变大,但是其弯曲强度会降低,热膨胀系数会变大,此时多孔碳化硅陶瓷的性能会受到较大的影响;而当烧结助剂的量降低时,多孔碳化硅陶瓷的弯曲强度会降低。另外,当碳化硅微粉和秸秆微粉的粒径变小时,多孔碳化硅陶瓷的孔隙率变化不大,但是其弯曲强度会变大,热膨胀系数会变小,性能越好。对比整体数据,其中以实施例7中的配比为更优。
另外,对比表2中实施例1和对比例1的数据也可以看出,对比例1中多孔碳化硅陶瓷的孔隙率远大于对比例1中多孔碳化硅陶瓷的孔隙率,可以得出秸秆微粉对于提高多孔碳化硅陶瓷孔隙率的效果比石墨好很多,并且对比例1中多孔碳化硅陶瓷的弯曲强度和热膨胀系数也均由于对比例1中的多孔碳化硅陶瓷,可见秸秆微粉对于多孔碳化硅陶瓷性能的提升也有很大的帮助。
实施例8
与实施例7的区别在于,实施例8中催渗剂添加的重量份数为0.04份。
实施例9
与实施例7的区别在于,实施例9中催渗剂添加的重量份数为0.06份。
对比例2
与实施例7的区别在于,对比例2中不添加催渗剂。
表3:实施例8-9以及对比例2中多孔碳化硅陶瓷成品性能数据
Figure RE-GDA0002986367070000072
通过表3的数据可知,催渗剂添加量的减少会导致多孔碳化硅陶瓷的孔隙率以及弯曲强度降低,说明催渗剂会影响多孔碳化硅陶瓷的孔隙率以及弯曲强度,但是随着催渗剂添加量的逐渐增多,多孔碳化硅陶瓷的孔隙率以及弯曲强度不再有明显的提高,对比整体数据,其中以实施例7中催渗剂添加量的配比为更优。
综上,采用秸秆微粉为造孔剂能够有效提高多孔碳化硅陶瓷的孔隙率、弯曲强度以及热膨胀系数,添加催渗剂也有助于提高多孔碳化硅陶瓷的孔隙率以及弯曲强度。当控制碳化硅微粉粒径为60μm,秸秆微粉粒径为10μm,催渗剂添加量为0.05重量份时制得的多孔碳化硅陶瓷孔隙率高、弯曲强度大、热膨胀系数小,各项性能均比较优异,整体性能更均衡更优。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

Claims (10)

1.一种多孔碳化硅陶瓷,其特征在于,该多孔碳化硅陶瓷包括以下重量份数的组分:
碳化硅微粉:80~100份;
烧结助剂:2~10份;
造孔剂:1~5份;
交联剂:1~5份;
分散剂:3~6份;
去离子水:45~55份;
其中,所述造孔剂为秸秆微粉,所述秸秆微粉的粒径为1~30μm。
2.根据权利要求1所述的多孔碳化硅陶瓷,其特征在于:所述多孔碳化硅陶瓷还包括0.04~0.06重量份的催渗剂,所述催渗剂为碳酸钡粉末。
3.根据权利要求1所述的多孔碳化硅陶瓷,其特征在于:所述碳化硅微粉的粒径为5~80μm。
4.根据权利要求1所述的多孔碳化硅陶瓷,其特征在于:所述烧结助剂为氧化钾粉末。
5.根据权利要求1所述的多孔碳化硅陶瓷,其特征在于:所述交联剂为N,N-亚甲基双丙烯酰胺。
6.根据权利要求1所述的多孔碳化硅陶瓷,其特征在于:所述分散剂为聚乙烯亚胺、氨水、氢氧化钾中的一种或者其组合。
7.一种如权利要求1-6任意一条所述的多孔碳化硅陶瓷的制备方法,其特征在于,包括以下步骤:
(A)将碳化硅微粉、烧结助剂、交联剂、分散剂、去离子水混合并进行搅拌,搅拌时间为1~2个小时,得到初混浆料;
(B)将造孔剂和催渗剂加入搅拌后的初混浆料中,于真空条件下搅拌1~2个小时,得到碳化硅陶瓷浆料;
(C)对搅拌后的碳化硅陶瓷浆料进行真空抽滤,抽滤时间为20~30分钟;
(D)将抽滤后的碳化硅陶瓷浆料放入模具中,于70~80℃下烘烤1~2个小时,然后冷却到室温后脱模,得到多孔碳化硅陶瓷素坯;
(E)将得到的多孔碳化硅陶瓷素坯在氩气气氛下进行烧结,得到多孔碳化硅陶瓷。
8.根据权利要求7所述的多孔碳化硅陶瓷的制备方法,其特征在于:所述步骤(B)中搅拌时的控制压力为-0.02~-0.04MPa。
9.根据权利要求7所述的多孔碳化硅陶瓷的制备方法,其特征在于:所述步骤(C)中抽滤时的控制压力为-0.06~-0.08MPa。
10.根据权利要求7所述的多孔碳化硅陶瓷的制备方法,其特征在于:所述步骤(E)具体为:
(a)将多孔碳化硅陶瓷素坯放入烧结炉内,向烧结炉内通入氩气,使炉内气压达到0.3MPa并保持2min,然后将炉内气体释放掉恢复常压,重复3次后将炉内气体置换为氩气;
(b)在氩气保护下,先以3~5℃/min的速率升温至900~950℃,保温1~1.5个小时;
(c)然后以5~8℃/min的速率升温至1350~1500℃,保温2~3个小时,保温结束后冷却到室温得到多孔碳化硅陶瓷成品。
CN202011492478.2A 2020-12-16 2020-12-16 多孔碳化硅陶瓷及其制备方法 Active CN112759400B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011492478.2A CN112759400B (zh) 2020-12-16 2020-12-16 多孔碳化硅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011492478.2A CN112759400B (zh) 2020-12-16 2020-12-16 多孔碳化硅陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN112759400A true CN112759400A (zh) 2021-05-07
CN112759400B CN112759400B (zh) 2022-07-08

Family

ID=75695806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011492478.2A Active CN112759400B (zh) 2020-12-16 2020-12-16 多孔碳化硅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112759400B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264780A (zh) * 2021-07-07 2021-08-17 哈尔滨科友半导体产业装备与技术研究院有限公司 一种多孔碳化硅原料的制备方法
CN116477953A (zh) * 2023-05-15 2023-07-25 西安交通大学 一种SiC半导体点火材料、制备方法及应用
TWI818410B (zh) * 2022-01-14 2023-10-11 中國砂輪企業股份有限公司 多孔吸附器及其製法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565847A (zh) * 2016-03-02 2016-05-11 武汉工程大学 一种以秸秆为成孔剂制备孔梯度多孔陶瓷的方法
CN105948781A (zh) * 2016-04-29 2016-09-21 航天材料及工艺研究所 一种高开孔率多孔碳化硅陶瓷材料的制备方法
CN111484332A (zh) * 2020-03-31 2020-08-04 中国建筑材料科学研究总院有限公司 多孔碳化硅陶瓷及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565847A (zh) * 2016-03-02 2016-05-11 武汉工程大学 一种以秸秆为成孔剂制备孔梯度多孔陶瓷的方法
CN105948781A (zh) * 2016-04-29 2016-09-21 航天材料及工艺研究所 一种高开孔率多孔碳化硅陶瓷材料的制备方法
CN111484332A (zh) * 2020-03-31 2020-08-04 中国建筑材料科学研究总院有限公司 多孔碳化硅陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郁苏俊: "烧成氛围对多孔碳化硅支撑体耐碱性能的影响", 《硅酸盐学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264780A (zh) * 2021-07-07 2021-08-17 哈尔滨科友半导体产业装备与技术研究院有限公司 一种多孔碳化硅原料的制备方法
TWI818410B (zh) * 2022-01-14 2023-10-11 中國砂輪企業股份有限公司 多孔吸附器及其製法
CN116477953A (zh) * 2023-05-15 2023-07-25 西安交通大学 一种SiC半导体点火材料、制备方法及应用

Also Published As

Publication number Publication date
CN112759400B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN112759400B (zh) 多孔碳化硅陶瓷及其制备方法
CN111533572B (zh) 一种多孔碳化硅陶瓷支撑体的制备方法
CN110922204B (zh) 一种低温烧结氧化铝陶瓷膜的制备方法
KR101954067B1 (ko) 촉매 금속이 담지된 다공질 탄화규소 구조체의 제조방법
CN110981533A (zh) 一种有机泡沫浸渍法制备多孔陶瓷的工艺
CN107353015B (zh) 一种碳化硅-氮化硅多孔复合陶瓷制备方法
CN114956828A (zh) 碳化硅陶瓷及其制备方法和应用
CN109734457B (zh) 一种高硬度Sialon陶瓷材料及其制备方法和应用
US20240182367A1 (en) Method for manufacturing a sic ceramic part
KR20040002053A (ko) 미세다공질 세라믹스 소재 및 그 제조방법
CN111960846A (zh) 一种纳米多孔材料及其制备方法
CN111548179A (zh) 一种以酚醛树脂为碳源的烧结制备多孔碳化硅陶瓷的方法
CN112851394B (zh) 一种多孔碳化硅陶瓷的制备方法
CN107663101B (zh) 一种抗氧化SiC泡沫及其制备方法
CN115872771A (zh) 一种激光3D打印结合浸渍裂解工艺制备多孔SiOC基陶瓷膜支撑体的方法
CN106589969B (zh) 含硅芳炔树脂碳泡沫材料及其制备方法
CN109534816B (zh) 一种制备高强度多孔碳化硅陶瓷的方法
CN107986790B (zh) 一种抗氧化HfC/SiC泡沫及其制备方法
CN111849016A (zh) 一种隔热材料及其制备方法
JP2000344587A (ja) 高耐熱樹脂複合セラミックスの製造法
JPH1171106A (ja) ガラス状カーボン材の製造法
CN115490528B (zh) 一种高强度耐火砖及其制备方法
KR102686621B1 (ko) 기계구조용 바인더 피치, 흑연나노플레이트 및 실리콘 카바이드가 포함된 탄소 블록, 그 제조방법
JPH0718013B2 (ja) ガラス状炭素被覆体の製造方法
CN113121258A (zh) 一种高强度高孔隙率的多孔陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant