CN112736638B - 全光纤窄线宽纳秒可调谐绿光激光器 - Google Patents

全光纤窄线宽纳秒可调谐绿光激光器 Download PDF

Info

Publication number
CN112736638B
CN112736638B CN202110044838.0A CN202110044838A CN112736638B CN 112736638 B CN112736638 B CN 112736638B CN 202110044838 A CN202110044838 A CN 202110044838A CN 112736638 B CN112736638 B CN 112736638B
Authority
CN
China
Prior art keywords
fiber
optical fiber
gain
optical
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110044838.0A
Other languages
English (en)
Other versions
CN112736638A (zh
Inventor
李平雪
李舜
于可新
杨敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202110044838.0A priority Critical patent/CN112736638B/zh
Publication of CN112736638A publication Critical patent/CN112736638A/zh
Application granted granted Critical
Publication of CN112736638B publication Critical patent/CN112736638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094042Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • H01S3/1095Frequency multiplication, e.g. harmonic generation self doubling, e.g. lasing and frequency doubling by the same active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1666Solid materials characterised by a crystal matrix borate, carbonate, arsenide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1675Solid materials characterised by a crystal matrix titanate, germanate, molybdate, tungstate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了全光纤窄线宽纳秒可调谐绿光激光器,包括激光种子源、两级单模光纤激光放大器、四级多模光纤激光放大器和二次谐波装置。激光种子源发出重复频率和脉冲宽度连续可调谐的窄线宽纳秒种子光,两级单模光纤激光放大器用于对种子光进行初步放大,四级多模光纤激光放大器用于将种子光的功率进一步放大,二次谐波装置接收经多级功率放大后获取的基频光,并对其进行倍频处理得到绿光激光;将重复频率和脉冲宽度连续可调谐的窄线宽纳秒种子光通过多级有源光纤进行多级功率放大得到基频光,最后将基频光通过二次谐波装置进行倍频得到绿色激光,最终实现全光纤窄线宽纳秒可调谐绿光激光器。

Description

全光纤窄线宽纳秒可调谐绿光激光器
技术领域
本发明涉及绿光激光领域,特别是涉及一种全光纤窄线宽纳秒可调谐绿光激光器。
背景技术
绿光激光器广泛应用于材料加工、医疗、激光投影和泵浦光参量放大器等领域。目前,获得绿光激光的主要途径是通过固体激光器发射激光,然后通过非线性晶体对该激光倍频得到,尽管固态激光器已经生产出了100瓦以上的绿光激光器,但这些激光器的光束质量M2>10,且调谐范围有限。
近年来,光纤激光器以其光束质量高、稳定性好、热耗散大以及可调谐范围广等优点受到人们的广泛关注,尤其是大功率、窄线宽、线偏振式脉冲激光器在激光雷达、光谱测量和精密测量中更是得到了广泛应用。基于窄线宽光纤激光器在体积、效率、光束质量以及可调谐方面的优势,研究人员更倾向于采用窄线宽光纤激光器来获得二次谐波(SHG)输出,从而实现窄线宽、可调谐、高效率的绿光激光器。
发明内容
本发明旨在提出一种全光纤窄线宽纳秒可调谐绿光激光器,克服传统绿光激光器线宽较宽、可调谐范围小以及结构复杂的问题。
本发明是通过以下技术方案实现的:
一种全光纤窄线宽纳秒可调谐绿光激光器,其特征包括激光种子源(a)、两级单模光纤放大器(b)、四级多模光纤放大器(c)和二次谐波装置(d)。激光种子源(a)为商用重复频率和脉冲宽度连续可调谐的窄线宽纳秒激光器,该激光种子源输出重复频率1kHz~100kHz可调、脉冲宽度1ns~200ns可调、平均功率为微瓦量级的窄线宽脉冲信号光,通过两级单模光纤激光放大器(b)后,信号光功率得到初步放大达到毫瓦两级,随后信号光进入四级多模光纤放大器(c),此时信号光的功率进一步得到放大并从光纤端帽输出得到基频光,将基频光通过二次谐波装置(d)后得到绿光激光。该绿光激光器输出窄线宽、纳秒以及重复频率和脉冲宽度可调谐的绿光激光,且各个模块之间通过光纤熔接实现一个全纤化系统。
进一步地,所述激光种子源(a)为商用重复频率和脉冲宽度连续可调谐的窄线宽纳秒激光器,连接第一带通滤波器。
进一步地,所述两级单模光纤放大器(b)包含第一光纤波分复用器、第一增益光纤、第一半导体激光器、第二带通滤波器、第二光纤波分复用器、第二增益光纤、第二半导体激光器、第三带通滤波器、第一光纤环形器、第一反射式光纤光栅、第一信号光隔离器;第一半导体激光器输出端连接第一光纤波分复用器泵浦纤端,第一带通滤波器输出端连接第一光纤波分复用器信号纤端,第一光纤波分复用器公共端连接第一增益纤输入端,第一增益纤输出端连接第二带通滤波器输入端,第二带通滤波器输出端连接第二光纤波分复用器信号纤端,第二半导体激光器输出端连接第二光纤波分复用器泵浦纤端,第二光纤波分复用器公共端连接第二增益光纤输入端,第二增益光纤输出端连接第三带通滤波器输入端,第三带通滤波器输出端链接第一光纤环形器输入端,第一光纤环形器反射端连接第一反射式光纤光栅前端,第一反射式光纤光栅后端连接第一光纤跳线,第一光纤环形器输出端连接第一信号光隔离器输入端。
进一步地,所述四级多模光纤放大器(c)由四级光纤放大器级联组成,包括第三半导体激光器、第一光纤合束器、第三增益光纤、第二信号光隔离器、第四半导体激光器、第二光纤合束器、第四增益光纤、第三信号光隔离器、第五半导体激光器、第三光纤合束器、第五增益光纤、第四信号光隔离器、第六半导体激光器、第四光纤合束器、第六增益光纤、包层光滤除器和输出端帽。
进一步地,第一信号光隔离器输出端连接第一光纤合束器信号纤端,第三半导体激光器连接第一光纤合束器泵浦纤端,第一光纤合束器公共端连接第三增益光纤输入端,第三增益光纤输出端连接第二信号光隔离器输入端,第二信号光隔离器输出端连接第二光纤合束器信号纤端,第四半导体激光器连接第二光纤合束器泵浦纤端,第二光纤合束器公共端连接第四增益光纤输入端,第四增益光纤输出端连接第三信号光隔离器输入端;第三信号光隔离器输出端连接第三光纤合束器信号纤端,第五半导体激光器连接第三光纤合束器泵浦纤端,第三光纤合束器公共端连接第五增益光纤输入端,第五增益光纤输出端连接第四信号光隔离器输入端;第四信号光隔离器输出端连接第四光纤合束器信号纤端,第六半导体激光器连接第四光纤合束器泵浦纤端,第四光纤合束器公共端连接第六增益光纤输入端,第六增益光纤输出端连接包层光滤除器输入端,包层光滤除器输出端熔接上输出端帽。
进一步地,所述二次谐波装置(d)包括第一透镜、1/4波片、第一半波片和偏振分光棱镜、第二半波片、第二透镜、非线性倍频晶体和滤光片;信号光由输出端帽输出后进入第一透镜,由第一透镜出射后进入1/4波片,从1/4波片出射后进入第一半波片,从第一半波片出射后进入偏振分光棱镜的前端面,从偏振分光棱镜的后端面出射后进入第二半波片,从第二半波片出射后进入第二透镜,从第二透镜出射后进入非线性倍频晶体的前端面,从非线性倍频晶体的后端面出射后进入滤光片,滤光片与信号光成45°放置,滤光片的反射面输出窄线宽纳秒绿光激光。
进一步地,所述第三增益光纤、第四增益光纤和第五增益光纤为非保偏的双包层掺镱增益光纤,所述第六增益光纤为非保偏的高掺杂超大模场双包层掺镱光纤。
进一步地,所述的非保偏的高掺杂超大模场双包层掺镱光纤的包层泵浦吸收系数为5.0dB/m,模场直径为48.0-52.0μm。
进一步地,所述的滤光片接收所述的非线性倍频晶体输出的绿光激光,并对所述绿光激光进行反射,透射所述绿光激光中的剩余杂质光。
进一步地,所述的非线性倍频晶体为三硼酸锂(LBO)或磷酸氧钛钾晶体(KTP)中的一种,使用数量是1块,使用长度为0.5mm。
与现有技术比,本发明的有益效果是:
1.本发明采用光纤熔接技术构成一个全纤化的系统,该系统抗干扰能力强、结构简单,便于操作同时全纤化的结构便于小型化封装;
2.本发明激光种子源为重复频率和脉冲宽度连续可调谐的窄线宽纳秒激光器,重复频率在1kHz~100kHz连续可调、脉冲宽度在1ns~200ns连续可调;
3.本发明所用的非线性倍频晶体为三硼酸锂(LBO)或磷酸氧钛钾晶体(KTP)中的一种,有效非线性系数高,使用数量是1块,使用长度为0.5mm;
附图说明
图1是本发明全光纤窄线宽纳秒可调谐绿光激光器的模块示意图;
图2是本发明全光纤窄线宽纳秒可调谐绿光激光器的结构原理图。
图中:(a)激光种子源、(b)两级单模光纤放大器、(c)四级多模光纤放大器和(d)二次谐波装置;1—窄线宽纳秒种子源,2—第一带通滤波器,3—第一半导体激光器,4—第一光纤波分复用器,5—第一增益光纤,6—第二带通滤波器,7—第二半导体激光器,8—第二光纤波分复用器,9—第二增益光纤,10—第三带通滤波器,11—光纤环形器,12—反射式光纤光栅,13—第一信号光隔离器,14—第一光纤合束器、15—第三半导体激光器,16—第三增益光纤,17—第二信号光隔离器,18—第三光纤合束器,19—第四半导体激光器,20—第四增益光纤21—第三信号光隔离器,22—第五半导体激光器,23—第三光纤合束器,24—第五增益光纤,25—第四信号光隔离器,26—第六半导体激光器,27—第四光纤合束器,28—第六增益光纤,29—包层光滤除器,30—输出端帽,31—第一透镜,32—1/4波片,33—第一半波片,34—偏振分光棱镜,35—第二半波片,36—第二透镜,37—第二半波片,38—滤光片。
具体实施方式
下面结合附图和实施例对本发明作进一步描述,需要说明的是本发明要求保护的范围并不局限于实施例所表述的范围。
如图1所示,本发明实施例提供一种全光纤窄线宽纳秒可调谐绿光激光器,包括:激光种子源(a)、两级单模光纤放大器(b)、四级多模光纤放大器(c)和二次谐波装置(d),所述激光种子源(a)为重复频率和脉冲宽度连续可调谐的窄线宽纳秒激光器;所述两级单模光纤放大器(b)由高掺杂单模增益光纤和与之配合使用的单模光纤器件组成;四级多模光纤放大器(c)由多级光纤放大器级联组成的功率放大器;二次谐波装置(d)由偏振控制装置、非线性倍频晶体以及滤光片组成。
如图2所示,重复频率和脉冲宽度连续可调的窄线宽纳秒种子源1与第一带通滤波器2相连,脉冲经第一带通滤波器2后进入两级单模光纤激光放大器,进行功率的初步放大。
两级单模光纤放大器(b)包括第一半导体激光器3、第一光纤波分复用器4、第一增益光纤5、第二带通滤波器6、第二半导体激光器7、第二光纤波分复用器8、第二增益光纤9、第三带通滤波器10、第一光纤环形器11、第一反射式光纤光栅12、第一信号光隔离器13;第一半导体激光器3输出端连接第一光纤波分复用器4泵浦纤端,第一带通滤波器2输出端连接第一光纤波分复用器4信号纤端,第一光纤波分复用器4公共端连接第一增益纤5输入端,第一增益纤5输出端连接第二带通滤波器6输入端,第二带通滤波器6输出端连接第二光纤波分复用器8信号纤端,第二半导体激光器7输出端连接第二光纤波分复用器8泵浦纤端,第二光纤波分复用器8公共端连接第二增益光纤9输入端,第二增益光纤输出端9连接第三带通滤波器10输入端,第三带通滤波器输出端10连接第一光纤环形器11输入端,第一光纤环形器11反射端连接第一反射式光纤光栅12前端,第一反射式光纤光栅12后端连接第一光纤跳线,第一光纤环形器11输出端连接第一信号光隔离器13输入端。
四级多模光纤放大器(c)包括第一光纤合束器14、第三半导体激光器15、第三增益光纤16、第二信号光隔离器17、第二光纤合束器18、第四半导体激光器19、第四增益光纤20、第三信号光隔离器21、第五半导体激光器22、第三光纤合束器23、第五增益光纤24、第四信号光隔离器25、第六半导体激光器26、第四光纤合束器27、第六增益光纤28、包层光滤除器29和输出端帽30。
第一信号光隔离器13输出端连接第一光纤合束器14信号纤端,第三半导体激光器15连接第一光纤合束器14泵浦纤端,第一光纤合束器14公共端连接第三增益光纤16输入端,第三增益光纤16输出端连接第二信号光隔离器17输入端,第二信号光隔离器17输出端连接第二光纤合束器18信号纤端,第四半导体激光器19连接第二光纤合束器18泵浦纤端,第二光纤合束器18公共端连接第四增益光纤20输入端,第四增益光纤20输出端连接第三信号光隔离器21输入端;第三信号光隔离器21输出端连接第三光纤合束器23信号纤端,第五半导体激光器22连接第三光纤合束器23泵浦纤端,第三光纤合束器23公共端连接第五增益光纤24输入端,第五增益光纤24输出端连接第四信号光隔离器25输入端;第四信号光隔离器25输出端连接第四光纤合束器27信号纤端,第六半导体激光器26连接第四光纤合束器27泵浦纤端,第四光纤合束器27公共端连接第六增益光纤28输入端,第六增益光纤28输出端连接包层光滤除器29输入端,包层光滤除器29输出端熔接上输出端帽30。
二次谐波装置(d)包括第一透镜31、1/4波片32、第一半波片33和偏振分光棱镜34、第二半波片35、第二透镜36、非线性倍频晶体37和滤光片38;信号光由输出端帽30输出后进入第一透镜31,由第一透镜31出射后进入1/4波片32,从1/4波片32出射后进入第一半波片33,从第一半波片33出射后进入偏振分光棱镜34的前端面,从偏振分光棱镜34的后端面出射后进入第二半波片35,从第二半波片35出射后进入第二透镜36,从第二透36镜出射后进入非线性倍频晶体37的前端面,从非线性倍频晶体37的后端面出射后进入滤光片38,滤光片38与信号光成45°放置,滤光片38的反射面输出窄线宽纳秒绿光激光。
本发明使用的激光种子源为重复频率1kHz~100kHz、脉冲宽度1ns~200ns连续可调谐的窄线宽纳秒激光器,能够输出微瓦量级的脉冲功率,经两级单模光纤激光放大器放大后,脉冲功率提升至毫瓦量级,在每级单模光纤激光放大器后连接一个带通滤波器用来滤除放大自发辐射,光纤环形器和反射式光栅用于去除带内间的放大自发辐射,随后脉冲进入四级多模光纤激光放大器中,脉冲功率进一步被放大至数十瓦,并由输出端帽30切8°角输出,包层光滤除装置29是通过在去除涂覆层的双包层光纤外涂覆高折射率导热介质的方法,剥除包层中剩余泵浦光及其它包层光,每一级多模光纤放大器后连接一个信号光隔离器,保证脉冲激光单向传播,将光纤放大器输出的脉冲时间和重复频率可调谐的基频光注入二次谐波装置进行激光倍频,经过第一透镜31准直后,经偏振控制装置得到高功率的线偏振光,偏振控制装置由1/4波片32、第一半波片33和偏振分光棱镜34组成,1/4波片32将放大器输出的椭圆偏振光转换为线偏振光输出;第一半波片33可以旋转线偏振光的偏振方向,偏振分光棱镜34控制输出线偏振光的功率大小,通过第一半波片33和偏振分光棱镜34的配合使用实现精度更高的调节,随后将线偏振光经第二半波片35和第二透镜36耦合至非线性被倍频晶体37上,最后通过转动第二半波片35改变基频光的偏振方向满足相位匹配后倍频产生绿光激光输出,随后成45°进入滤光片38,滤光片38接收非线性倍频晶体37输出的绿光激光,并对绿光激光进行反射,透射绿光激光中的剩余杂质光。基于上述方法,最终实现全光纤高重频纳秒窄线宽可调谐绿光激光器的输出,且整个装置设计简单、结构紧凑。

Claims (7)

1.一种全光纤窄线宽纳秒可调谐绿光激光器,其特征包括激光种子源(a)、两级单模光纤放大器(b)、四级多模光纤放大器(c)和二次谐波装置(d),所述激光种子源(a)为重复频率和脉冲宽度连续可调谐的窄线宽纳秒激光器;所述两级单模光纤放大器(b)由高掺杂单模增益光纤和与之配合使用的单模光纤器件组成;四级多模光纤放大器(c)由多级光纤放大器级联组成的功率放大器;二次谐波装置(d)由偏振控制装置、非线性倍频晶体以及滤光片组成;
所述两级单模光纤放大器(b)包含第一光纤波分复用器、第一增益光纤、第一半导体激光器、第二带通滤波器、第二光纤波分复用器、第二增益光纤、第二半导体激光器、第三带通滤波器、第一光纤环形器、第一反射式光纤光栅、第一信号光隔离器;第一半导体激光器输出端连接第一光纤波分复用器泵浦纤端,第一带通滤波器输出端连接第一光纤波分复用器信号纤端,第一光纤波分复用器公共端连接第一增益纤输入端,第一增益纤输出端连接第二带通滤波器输入端,第二带通滤波器输出端连接第二光纤波分复用器信号纤端,第二半导体激光器输出端连接第二光纤波分复用器泵浦纤端,第二光纤波分复用器公共端连接第二增益光纤输入端,第二增益光纤输出端连接第三带通滤波器输入端,第三带通滤波器输出端链接第一光纤环形器输入端,第一光纤环形器反射端连接第一反射式光纤光栅前端,第一反射式光纤光栅后端连接第一光纤跳线,第一光纤环形器输出端连接第一信号光隔离器输入端;所述第一增益光纤、第二增益光纤为非保偏掺镱单模增益光纤;
所述四级多模光纤放大器(c)由四级光纤放大器级联组成,包括第三半导体激光器、第一光纤合束器、第三增益光纤、第二信号光隔离器、第四半导体激光器、第二光纤合束器、第四增益光纤、第三信号光隔离器、第五半导体激光器、第三光纤合束器、第五增益光纤、第四信号光隔离器、第六半导体激光器、第四光纤合束器、第六增益光纤、包层光滤除器和输出端帽;
第一信号光隔离器输出端连接第一光纤合束器信号纤端,第三半导体激光器连接第一光纤合束器泵浦纤端,第一光纤合束器公共端连接第三增益光纤输入端,第三增益光纤输出端连接第二信号光隔离器输入端,第二信号光隔离器输出端连接第二光纤合束器信号纤端,第四半导体激光器连接第二光纤合束器泵浦纤端,第二光纤合束器公共端连接第四增益光纤输入端,第四增益光纤输出端连接第三信号光隔离器输入端;第三信号光隔离器输出端连接第三光纤合束器信号纤端,第五半导体激光器连接第三光纤合束器泵浦纤端,第三光纤合束器公共端连接第五增益光纤输入端,第五增益光纤输出端连接第四信号光隔离器输入端;第四信号光隔离器输出端连接第四光纤合束器信号纤端,第六半导体激光器连接第四光纤合束器泵浦纤端,第四光纤合束器公共端连接第六增益光纤输入端,第六增益光纤输出端连接包层光滤除器输入端,包层光滤除器输处端熔接上输出端帽;
所述二次谐波装置(d)包括第一透镜、1/4 波片、第一半波片和偏振分光棱镜、第二半波片、第二透镜、非线性倍频晶体和滤光片;信号光由输出端帽输出后进入第一透镜,由第一透镜出射后进入1/4 波片,从1/4 波片出射后进入第一半波片,从第一半波片出射后进入偏振分光棱镜的前端面,从偏振分光棱镜的后端面出射后进入第二半波片,从第二半波片出射后进入第二透镜,从第二透镜出射后进入非线性倍频晶体的前端面,从非线性倍频晶体的后端面出射后进入滤光片,滤光片与信号光成45°放置,滤光片的反射面输出窄线宽纳秒绿光激光。
2.根据权利要求1所述的全光纤窄线宽纳秒可调谐绿光激光器,其特征在于:所述激光种子源(a)为重复频率和脉冲宽度连续可调谐的窄线宽纳秒激光器,连接第一带通滤波器;
所述激光种子源为光纤激光器或半导体激光器中的一种。
3.根据权利要求1所述的全光纤窄线宽纳秒可调谐绿光激光器,其特征在于,所述第三增益光纤、第四增益光纤和第五增益光纤为非保偏的双包层掺镱增益光纤,所述第六增益光纤为非保偏的高掺杂超大模场双包层掺镱光纤。
4.根据权利要求3所述的全光纤窄线宽纳秒可调谐绿光激光器,其特征在于,所述的高掺杂超大模场双包层掺镱光纤的包层泵浦吸收系数为5.0dB/m,模场直径为48.0-52.0μm。
5.如权利要求1所述的全光纤窄线宽纳秒可调谐绿光激光器,其特征在于,所述的滤光片接收所述的非线性倍频晶体输出的绿光激光,并对所述绿光激光进行反射,透射所述绿光激光中的剩余杂质光。
6.如权利要求1所述的全光纤窄线宽纳秒可调谐绿光激光器,其特征在于,所述的非线性倍频晶体为三硼酸锂(LBO)或磷酸氧钛钾晶体(KTP)中的一种,使用数量是1块单个晶体,使用长度为0.5mm。
7.根据权利要求1所述的全光纤窄线宽纳秒可调谐绿光激光器,其特征在于,所述的激光种子源的重复频率为1kHz~100kHz,纳秒量级脉冲脉宽为1ns~200ns。
CN202110044838.0A 2021-01-14 2021-01-14 全光纤窄线宽纳秒可调谐绿光激光器 Active CN112736638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110044838.0A CN112736638B (zh) 2021-01-14 2021-01-14 全光纤窄线宽纳秒可调谐绿光激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110044838.0A CN112736638B (zh) 2021-01-14 2021-01-14 全光纤窄线宽纳秒可调谐绿光激光器

Publications (2)

Publication Number Publication Date
CN112736638A CN112736638A (zh) 2021-04-30
CN112736638B true CN112736638B (zh) 2024-04-26

Family

ID=75592111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110044838.0A Active CN112736638B (zh) 2021-01-14 2021-01-14 全光纤窄线宽纳秒可调谐绿光激光器

Country Status (1)

Country Link
CN (1) CN112736638B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113314932B (zh) * 2021-06-11 2024-05-17 中国科学院上海光学精密机械研究所 一种760nm高稳定性全光纤倍频激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665320B1 (en) * 2001-01-29 2003-12-16 Lightwave Electronics Wideband tunable laser sources with multiple gain elements
CN1976141A (zh) * 2006-12-13 2007-06-06 北京航空航天大学 单频可调谐掺铒光纤激光器系统
CN101212115A (zh) * 2006-12-28 2008-07-02 中国科学院半导体研究所 可调谐掺铒光纤环形腔激光器
CN102946041A (zh) * 2012-11-26 2013-02-27 中国人民解放军国防科学技术大学 可调谐单偏振超窄线宽布里渊掺铒光纤激光器
CN206498081U (zh) * 2017-02-23 2017-09-15 苏州龙格库塔光电科技有限公司 一种可调谐超短脉冲光纤参量振荡器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665030B1 (ko) * 2005-02-15 2007-01-04 한국표준과학연구원 불연속 파장 가변되는 단일 종모드의 아이티유-티 채널 그리드 파장 가변 광섬유 링 레이저

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665320B1 (en) * 2001-01-29 2003-12-16 Lightwave Electronics Wideband tunable laser sources with multiple gain elements
CN1976141A (zh) * 2006-12-13 2007-06-06 北京航空航天大学 单频可调谐掺铒光纤激光器系统
CN101212115A (zh) * 2006-12-28 2008-07-02 中国科学院半导体研究所 可调谐掺铒光纤环形腔激光器
CN102946041A (zh) * 2012-11-26 2013-02-27 中国人民解放军国防科学技术大学 可调谐单偏振超窄线宽布里渊掺铒光纤激光器
CN206498081U (zh) * 2017-02-23 2017-09-15 苏州龙格库塔光电科技有限公司 一种可调谐超短脉冲光纤参量振荡器

Also Published As

Publication number Publication date
CN112736638A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
US6990270B2 (en) Fiber amplifier for generating femtosecond pulses in single mode fiber
CN211579186U (zh) 一种窄线宽掺镱光纤放大器及其倍频系统
JP2000503476A (ja) 高エネルギーレベルを有する高ピークパワーを供給する光増幅器
CN102510001B (zh) 二倍频绿光激光器
CN108767637B (zh) 基于色散波的THz高重复频率高功率飞秒光纤激光器
JP2017502531A (ja) 連続波方式および疑似連続波方式で動作する超高出力の単一モード緑色ファイバレーザ
CN111541140B (zh) 一种基于亮度级联泵浦的Yb:YAG超短脉冲激光放大器
CN104466636A (zh) 一种单频调q脉冲光纤激光器
CN101777724B (zh) 端面泵浦双波长同轴切换输出调q基频、倍频激光器
CN104009380A (zh) 1.6μm波段脉冲型单频线偏振激光器
CN112736638B (zh) 全光纤窄线宽纳秒可调谐绿光激光器
CN113629482A (zh) 一种亚纳秒绿光激光器
WO2020226912A1 (en) Single crystal optical parametric amplifier
CN214706576U (zh) 一种数十兆赫兹窄线宽可调谐纳秒紫外激光器
WO2005081430A2 (en) Apparatus and method for the delivery of high-energy ultra-short optical pulses from a fibre amplifier
CN113140952B (zh) 一种基于随机光纤激光器的高效率可调谐波长倍频系统
CN214754665U (zh) 全光纤高重频纳秒窄线宽可调谐绿光激光器
Babushkin et al. Pulsed fiber laser with 30W output power at 532nm
CN111900598A (zh) 激光发射装置
CN205752973U (zh) 一种可调谐蓝—青激光器
CN220570043U (zh) 具有频率失谐的sbs产-放双池压缩器
CN109494564A (zh) 基于自相似放大技术的多阶可调谐拉曼放大方法
WO2005008328A2 (en) Optical frequency converter for non-polarized light
CN217789033U (zh) 混合脉冲激光器
CN220122325U (zh) 一种腔内倍频光纤激光器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant