CN112604702B - 一种微波驱动型催化剂的制备方法及应用 - Google Patents

一种微波驱动型催化剂的制备方法及应用 Download PDF

Info

Publication number
CN112604702B
CN112604702B CN202011434579.4A CN202011434579A CN112604702B CN 112604702 B CN112604702 B CN 112604702B CN 202011434579 A CN202011434579 A CN 202011434579A CN 112604702 B CN112604702 B CN 112604702B
Authority
CN
China
Prior art keywords
catalyst
microwave
slurry
hours
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011434579.4A
Other languages
English (en)
Other versions
CN112604702A (zh
Inventor
吴秋浩
王允圃
马晨露
彭渝洁
杨琦
刘玉环
李志�
李薇
柯林垚
徐佳敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202011434579.4A priority Critical patent/CN112604702B/zh
Publication of CN112604702A publication Critical patent/CN112604702A/zh
Application granted granted Critical
Publication of CN112604702B publication Critical patent/CN112604702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种微波驱动型催化剂的制备方法及应用。所述微波驱动型催化剂为在碳化硅泡沫陶瓷外表面烧结一层金属氧化物。其制备是先通过有机泡沫浸渍法采用高温烧结制备碳化硅泡沫陶瓷;再在碳化硅外表面低温烧结一层金属氧化物。本发明微波驱动型催化剂具有致密的微波吸收层和疏松的催化活性层。本发明微波驱动型催化剂可用于生物质热解、有机合成反应中。本发明微波驱动型催化剂应用于微波体系中可实现催化剂“原位吸波生热”和“催化转化”的协同,充分发挥微波加热特性,减缓催化剂结焦、提高催化效率及催化剂使用寿命。同时,本发明微波驱动型催化剂具有压降低的特点,适合工业化生产应用,可避免因催化压降大而导致的高能耗和安全问题。

Description

一种微波驱动型催化剂的制备方法及应用
技术领域
本发明涉及催化剂领域,特别涉及一种微波驱动型催化剂的制备方法及应用。
背景技术
生物质热解技术是生物质转化,发展可再生能源的重要技术之一。催化剂的应用可以有效缓解生物油含氧量高、热值低、粘度大等问题。催化体系的引入可以有效提升生物油品质、减少气体中焦油含量,常用的催化剂包括分子筛催化剂、金属氧化物催化剂、金属盐催化剂,催化温度通常在400-600℃。分子筛催化剂,如ZSM-5,表现出了优异的芳构化和脱氧能力;金属氧化物催化剂,如CaO、MgO,表现出了良好的脱氧能力。目前,催化剂易钝化失活、使用寿命短,经济效益差仍是限制生物质广泛替代石油的瓶颈问题之一。因此如何提高催化体系的催化性能和使用寿命,对生物质热解转化制油、产气十分重要。多环芳烃是催化剂结焦钝化的重要前驱物,减少多环芳烃的产生或提高多环芳烃的降解显得十分重要。
微波加热具有即时性、整体性、选择性和高效性等优点。前期研究表明,微波应用于催化体系可以提高催化剂的催化活性。以ZSM-5为例,在微波体系下催化剂的脱氧和芳构化能力均得到增强。传统分子筛催化、金属氧化物催化剂均不具有微波吸收能力,一定程度上限制了微波加热在催化体系的应用。
发明内容
本发明提供了一种微波驱动型催化剂的制备方法,制备工艺简单,具有微波耦合能力,可实现催化剂“原位吸波生热”和“催化转化”的协同,充分发挥微波加热特性,减缓催化剂结焦、提高催化效率及催化剂使用寿命。
本发明是通过以下技术方案实现的。
本发明所述的一种微波驱动型催化剂的制备方法,按如下步骤。
(1)“核”体陶瓷浆料配制:SiC与TiC按比例混合后,低速球磨混合0.5-2小时制备陶瓷骨料。陶瓷骨料与磷酸二氢铝按照1:1-4:1进行混合并添加高岭土和去离子水配置浆料。浆料搅拌混匀后室温困料12-48小时。
(2)将聚胺酯泡沫切割成需要的形状大小后用8%-20%的氢氧化钠溶液浸泡揉搓1-3小时,洗净后再用0.5%-3%的羧甲基纤维素钠溶液浸渍0.5-3小时后备用。
(3)处理过后的聚胺酯泡沫浸入浆料中,通过辊压工艺除去多余浆料得到预制体。
(4)预制体在室温下干燥12-48小时,转入烘箱中在65℃下干燥8-24小时,最后空气中煅烧制得微波耦合“核”体材料。煅烧过程采用程序升温,首先以2℃/min从室温到200℃,随后以1℃/min从200℃升温至500℃并保持1小时,最后以2℃/min升至终温并保持2小时。
(5)“壳”体催化剂浆料配制:选用原料氢氧化钙、氧化镁、氧化铝、氧化铈和氧化锆中的一种或多种按照比例进行复配后在球磨机中低速混合0.5-2小时,记为复配原料1。以复配原料1为100份计,按照聚乙烯醇0.1-0.5份、羧甲基纤维素0.5-4.0份、碱性硅溶胶0.2-1.0份称取溶于一定量去离子水中,混合均匀后记为复配原料2。复配原料1和复配原料2混合,搅拌0.5-1.5小时制备得到“壳”体催化剂浆料。
(6)将烧制成型的“核”体材料浸入“壳”体催化剂浆料中,甩去多余浆料后室温干燥12-24小时。干燥后的胚体采用浆料喷淋法二次挂浆,甩去多余浆料后室温干燥12-24小时。同二次挂浆,可进行多次挂浆,直到胚体均匀挂浆。最后一次挂浆后室温干燥12-24小时,转入烘箱中65℃干燥8-24小时得到催化剂胚体。
(7)催化剂胚体煅烧:催化剂胚体煅烧采用程序升温,首先以2℃/min从室温到300℃,随后以1℃/min从300℃升温至500℃并保持1小时,最后以2℃/min升至终温并保持2小时。最终制得微波驱动型催化剂。
进一步地,所述步骤(1)中去离子水按浆料固含率为60-80%进行添加。
进一步地,所述步骤(4)中终温设定在1000-1500℃。
进一步地,所述步骤(5)中去离子水按浆料固含率为40-60%进行添加。
进一步地,所述步骤(7)中终温设定在800-1200℃。
本发明所述的一种微波驱动型催化剂,以具有微波吸收性能的SiC和TiC为“核”体材料,以具有催化性能的金属氧化物为“壳”体材料。“核”体采用高温烧结制成致密结构的微波耦合材料,“壳”体采用低温烧结制成疏松结构的催化材料。将微波驱动型催化剂应用于生物质热解的微波催化体系中,“核”体吸收微波迅速升温,带动催化剂整体迅速升温,生物质热解蒸汽通过时,即可实现快速催化提质。催化剂在微波场中形成的热点可以实现消碳反应,减少焦的沉积,提高催化效率及催化剂使用寿命。泡沫陶瓷的多孔结构可以降低催化压减,减少副反应发生,同时降低能耗、提高安全性能。本发明对生物质热解制油、产气的产业化运营具有重要的现实意义。
具体实施方式
本发明将通过以下实施例进一步说明,其仅用作对本发明的解释而并非限制。
实施例1
(1)称取40g SiC与40g TiC按比例混合后,低速球磨混合1小时制备陶瓷骨料。称取磷酸二氢铝40g、高岭土4g和去离子水41.33g配置浆料。浆料搅拌混匀后室温困料24小时。
(2)将聚胺酯泡沫切割成直径3厘米、厚度0.5厘米的圆柱体后用15%的氢氧化钠溶液浸泡揉搓2小时,洗净后再用1%的羧甲基纤维素钠溶液浸渍1小时后备用。
(3)处理过后的聚胺酯泡沫浸入浆料中,通过辊压工艺除去多余浆料得到预制体。
(4)预制体在室温下干燥24小时,转入烘箱中在65℃下干燥12小时,最后空气中煅烧制得微波耦合“核”体材料。煅烧过程采用程序升温,首先以2℃/min从室温到200℃,随后以1℃/min从200℃升温至500℃并保持1小时,最后以2℃/min升至终温并保持2小时。终温设定为1000℃。
(5)“壳”体催化剂浆料配制:称取94g氢氧化钙和6g氧化锆,低速球磨混合1小时,记为复配原料1。称取聚乙烯醇0.4g、羧甲基纤维素2g、碱性硅溶胶0.5g溶于102.9g去离子水1小时制备得到“壳”体催化剂浆料。
(6)将烧制成型的“核”体材料浸入“壳”体催化剂浆料中,甩去多余浆料后室温干燥12小时。干燥后的胚体采用浆料喷淋法二次挂浆,甩去多余浆料后室温干燥12小时。二次挂浆干燥后的胚体采用浆料喷淋法三次挂浆,甩去多余浆料后室温干燥24小时后,转入烘箱中65℃干燥18小时得到催化剂胚体。
(7)催化剂胚体煅烧:催化剂胚体煅烧采用程序升温,首先以2℃/min从室温到300℃,随后以1℃/min从300℃升温至500℃并保持1小时,最后以2℃/min升至终温并保持2小时。终温设定在1100℃。最终制得微波驱动型催化剂。
本实施例中,称取50g微波驱动型催化剂装填在催化管中,采用微波加热,催化温度设置为400℃。以200g皂脚为原料,热解温度为550℃,热解蒸汽经催化管催化后冷凝收集生物油。取生物油样分析,生物油中烃含量89.23%,单环芳烃含量为60.24%。
实施例2
(1)称取60g SiC与20g TiC按比例混合后,低速球磨混合1小时制备陶瓷骨料。称取磷酸二氢铝40g、高岭土4g和去离子水41.33g配置浆料。浆料搅拌混匀后室温困料24小时。
(2)将聚胺酯泡沫切割成直径3厘米、厚度0.5厘米的圆柱体后用15%的氢氧化钠溶液浸泡揉搓2小时,洗净后再用1%的羧甲基纤维素钠溶液浸渍1小时后备用。
(3)处理过后的聚胺酯泡沫浸入浆料中,通过辊压工艺除去多余浆料得到预制体。
(4)预制体在室温下干燥24小时,转入烘箱中在65℃下干燥12小时,最后空气中煅烧制得微波耦合“核”体材料。煅烧过程采用程序升温,首先以2℃/min从室温到200℃,随后以1℃/min从200℃升温至500℃并保持1小时,最后以2℃/min升至终温并保持2小时。终温设定为1200℃。
(5)“壳”体催化剂浆料配制:称取90g氢氧化钙和10g氧化锆,低速球磨混合1小时,记为复配原料1。称取聚乙烯醇0.4g、羧甲基纤维素2g、碱性硅溶胶0.5g溶于102.9g去离子水1小时制备得到“壳”体催化剂浆料。
(6)将烧制成型的“核”体材料浸入“壳”体催化剂浆料中,甩去多余浆料后室温干燥12小时。干燥后的胚体采用浆料喷淋法二次挂浆,甩去多余浆料后室温干燥12小时。二次挂浆干燥后的胚体采用浆料喷淋法三次挂浆,甩去多余浆料后室温干燥24小时后,转入烘箱中65℃干燥18小时得到催化剂胚体。
(7)催化剂胚体煅烧:催化剂胚体煅烧采用程序升温,首先以2℃/min从室温到300℃,随后以1℃/min从300℃升温至500℃并保持1小时,最后以2℃/min升至终温并保持2小时。终温设定在1000℃。最终制得微波驱动型催化剂。
本实施例中,称取50g微波驱动型催化剂装填在催化管中,采用微波加热,催化温度设置为400℃。以200g皂脚为原料,热解温度为550℃,热解蒸汽经催化管催化后冷凝收集生物油。取生物油样分析,生物油中烃含量90.47%,单环芳烃含量为61.37%。
实施例3
(1)称取60g SiC与20g TiC按比例混合后,低速球磨混合1小时制备陶瓷骨料。称取磷酸二氢铝40g、高岭土4g和去离子水41.33g配置浆料。浆料搅拌混匀后室温困料24小时。
(2)将聚胺酯泡沫切割成直径3厘米、厚度0.5厘米的圆柱体后用15%的氢氧化钠溶液浸泡揉搓2小时,洗净后再用1%的羧甲基纤维素钠溶液浸渍1小时后备用。
(3)处理过后的聚胺酯泡沫浸入浆料中,通过辊压工艺除去多余浆料得到预制体。
(4)预制体在室温下干燥24小时,转入烘箱中在65℃下干燥12小时,最后空气中煅烧制得微波耦合“核”体材料。煅烧过程采用程序升温,首先以2℃/min从室温到200℃,随后以1℃/min从200℃升温至500℃并保持1小时,最后以2℃/min升至终温并保持2小时。终温设定为1200℃。
(5)“壳”体催化剂浆料配制:称取80g氢氧化钙、10g氧化镁和10g氧化锆,低速球磨混合1小时,记为复配原料1。称取聚乙烯醇0.4g、羧甲基纤维素2g、碱性硅溶胶0.5g溶于102.9g去离子水1小时制备得到“壳”体催化剂浆料。
(6)将烧制成型的“核”体材料浸入“壳”体催化剂浆料中,甩去多余浆料后室温干燥12小时。干燥后的胚体采用浆料喷淋法二次挂浆,甩去多余浆料后室温干燥12小时。二次挂浆干燥后的胚体采用浆料喷淋法三次挂浆,甩去多余浆料后室温干燥24小时后,转入烘箱中65℃干燥18小时得到催化剂胚体。
(7)催化剂胚体煅烧:催化剂胚体煅烧采用程序升温,首先以2℃/min从室温到300℃,随后以1℃/min从300℃升温至500℃并保持1小时,最后以2℃/min升至终温并保持2小时。终温设定在1000℃。最终制得微波驱动型催化剂。
本实施例中,称取50g微波驱动型催化剂装填在催化管中,采用微波加热,催化温度设置为400℃。以200g皂脚为原料,热解温度为550℃,热解蒸汽经催化管催化后冷凝收集生物油。催化管冷却后,再次称取200g皂脚为原料,热解温度为550℃,热解蒸汽经催化管催化后冷凝收集生物油,共进行10次热解。对十次生物油分别取样分析,生物油中烃含量从第一次到第十次依次为88.93%、88.29%、87.69%、86.47%、87.26%、87.64%、86.31%、86.46%、87.06%、85.43%,单环芳烃含量从第一次到第十次依次为60.87%、59.36%、58.37%、58.96%、57.41%、58.19%、57.32%、58.51%、57.94%、57.34%。
以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (5)

1.一种微波驱动型催化剂的制备方法,其特征在于先采用有机泡沫浸渍法通过高温烧结制备微波耦合“核”体材料,再采用浸渍法通过低温烧结制备具有催化活性的“壳”体材料,“核”体材料为具有微波吸收性能的SiC和TiC;
具体包括以下步骤:
(1)“核”体陶瓷浆料配制:SiC与TiC按比例混合后,低速球磨混合0.5-2小时制备陶瓷骨料;陶瓷骨料与磷酸二氢铝按照1:1-4:1进行混合并添加高岭土和去离子水配置浆料;浆料搅拌混匀后室温困料12-48小时;
(2)将聚氨酯泡沫切割成需要的形状大小后用8%-20%的氢氧化钠溶液浸泡揉搓1-3小时,洗净后再用0.5%-3%的羧甲基纤维素钠溶液浸渍0.5-3小时后备用;
(3)处理过后的聚氨 酯泡沫浸入浆料中,通过辊压工艺除去多余浆料得到预制体;
(4)预制体在室温下干燥12-48小时,转入烘箱中在65℃下干燥8-24小时,最后空气中煅烧制得微波耦合“核”体材料;煅烧过程采用程序升温,首先以2℃/min从室温到200℃,随后以1℃/min从200℃升温至500℃并保持1小时,最后以2℃/min升至终温1000-1500℃并保持2小时;
(5)“壳”体催化剂浆料配制:选用原料氢氧化钙、氧化镁、氧化铝、氧化铈和氧化锆中的一种或多种按照比例进行复配后在球磨机中低速混合0.5-2小时,记为复配原料1;以复配原料1为100份计,按照聚乙烯醇0.1-0.5份、羧甲基纤维素0.5-4.0份、碱性硅溶胶0.2-1.0份称取溶于一定量去离子水中,混合均匀后记为复配原料2;复配原料1和复配原料2混合,搅拌0.5-1.5小时制备得到“壳”体催化剂浆料;
(6)将烧制成型的“核”体材料浸入“壳”体催化剂浆料中,甩去多余浆料后室温干燥12-24小时;干燥后的胚体采用浆料喷淋法二次挂浆,甩去多余浆料后室温干燥12-24小时;同二次挂浆,可进行多次挂浆,直到胚体均匀挂浆;最后一次挂浆后室温干燥12-24小时,转入烘箱中65℃干燥8-24小时得到催化剂胚体;
(7)催化剂胚体煅烧:催化剂胚体煅烧采用程序升温,首先以2℃/min从室温到300℃,随后以1℃/min从300℃升温至500℃并保持1小时,最后以2℃/min升至终温800-1200℃并保持2小时;最终制得微波驱动型催化剂。
2.根据权利要求1所述的一种微波驱动型催化剂的制备方法,其特征在于,所述步骤(1)中去离子水按浆料固含率为60-80%进行添加。
3.根据权利要求1所述的一种微波驱动型催化剂的制备方法,其特征在于,所述步骤(5)中去离子水按浆料固含率为40-60%进行添加。
4.如权利要求1-3任一所述的制备方法得到的微波驱动型催化剂。
5.如权利要求1-3任一所述的制备方法得到的微波驱动型催化剂于生物质热解中的应用。
CN202011434579.4A 2020-12-10 2020-12-10 一种微波驱动型催化剂的制备方法及应用 Active CN112604702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011434579.4A CN112604702B (zh) 2020-12-10 2020-12-10 一种微波驱动型催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011434579.4A CN112604702B (zh) 2020-12-10 2020-12-10 一种微波驱动型催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN112604702A CN112604702A (zh) 2021-04-06
CN112604702B true CN112604702B (zh) 2022-06-14

Family

ID=75232582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011434579.4A Active CN112604702B (zh) 2020-12-10 2020-12-10 一种微波驱动型催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN112604702B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115337946A (zh) * 2021-05-15 2022-11-15 陕西青朗万城环保科技有限公司 一种多孔陶瓷微波催化剂的制作工艺及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351954A (zh) * 2000-11-15 2002-06-05 中国科学院金属研究所 一种用于甲烷与二氧化碳重整反应的微波催化剂
CN102872892A (zh) * 2012-10-24 2013-01-16 浙江大学苏州工业技术研究院 一种泡沫陶瓷基光催化组件及其制备方法
CN106635110A (zh) * 2016-10-27 2017-05-10 陕西科技大学 一种农林废弃物微波催化热裂解制备富含酚类、醇类液体产物的方法
CN109665821A (zh) * 2019-01-02 2019-04-23 广东工业大学 一种用于催化剂载体的泡沫陶瓷及其制备方法和应用
CN109796999A (zh) * 2019-01-31 2019-05-24 盐城工学院 一种生物质催化热解方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070037697A1 (en) * 2005-08-11 2007-02-15 Dimascio Felice High surface area ceramic catalysts and the manufacture thereof
US10155908B2 (en) * 2012-03-07 2018-12-18 Research Triangle Institute Catalyst compositions and use thereof in catalytic biomass pyrolysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351954A (zh) * 2000-11-15 2002-06-05 中国科学院金属研究所 一种用于甲烷与二氧化碳重整反应的微波催化剂
CN102872892A (zh) * 2012-10-24 2013-01-16 浙江大学苏州工业技术研究院 一种泡沫陶瓷基光催化组件及其制备方法
CN106635110A (zh) * 2016-10-27 2017-05-10 陕西科技大学 一种农林废弃物微波催化热裂解制备富含酚类、醇类液体产物的方法
CN109665821A (zh) * 2019-01-02 2019-04-23 广东工业大学 一种用于催化剂载体的泡沫陶瓷及其制备方法和应用
CN109796999A (zh) * 2019-01-31 2019-05-24 盐城工学院 一种生物质催化热解方法

Also Published As

Publication number Publication date
CN112604702A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN112608134B (zh) 一种多孔陶瓷球催化剂的制备方法及应用
JP4704400B2 (ja) 接触分解触媒スラリーの固形成分含有量を高める方法
EP2683476B1 (en) Phyllosilicate-based compositions and methods of making the same for catalytic pyrolysis of biomass
US20130261355A1 (en) Catalyst Compositions for Use in a Two-Stage Reactor Assembly Unit for the Thermolysis and Catalytic Conversion of Biomass
Dai et al. Enhancement of aromatics production from catalytic pyrolysis of biomass over HZSM-5 modified by chemical liquid deposition
CN112604702B (zh) 一种微波驱动型催化剂的制备方法及应用
Vichaphund et al. Selective aromatic formation from catalytic fast pyrolysis of Jatropha residues using ZSM-5 prepared by microwave-assisted synthesis
Woranuch et al. Fine-tuned fabrication parameters of CaO catalyst pellets for transesterification of palm oil to biodiesel
CN106582663A (zh) 一种原位催化脱除生物质热解过程中焦油的方法
CN104560091B (zh) 一种富含轻质芳烃生物油的制备方法
CN113117710B (zh) 生物质热解用催化剂载体、催化剂及其制法
Zhang et al. One-pot synthesis of sulfonated carbon/palygorskite solid-acid catalyst for the esterification of oleic acid with methanol
CN115784230A (zh) 一种炭复合材料及其制备方法和应用
CN103506106B (zh) 一种用于加工劣质重油的接触剂及其制备方法和应用
CN214571719U (zh) 一种应用于生物质热解的光耦合微波催化体系
KR101298688B1 (ko) 양이온 치환 헤테로폴리산을 포함한 활성 카본에어로젤에 담지된 귀금속 촉매 및 상기 촉매를 이용한 리그닌 화합물 분해 방법
RU2412758C1 (ru) Катализатор для конверсии углеводородов, способ его приготовления и способ получения синтез-газа
CN111359602B (zh) 一种固体酸催化剂、泡沫结构碳材料及制备方法
CN106391033A (zh) 一种原位催化生物质热解挥发分产高值可燃气的方法
XIAO et al. One-pot catalytic agroforestry waste cellulose to polyols over self-reducing bifunctional catalysts
CN107497451A (zh) 一种竹炭基固体酸催化剂的制备方法
CN112500875A (zh) 一种应用于生物质热解的光耦合微波催化体系和生物质热解设备
Fu et al. Green synthesis of ZSM-5 using silica fume and catalytic co-cracking of lignin and plastics for production of monocyclic aromatics
Yan et al. Preparation of Al-based layered double hydroxides and corresponding mixed oxides supported Pt catalysts and their performance in the hydrodeoxygenation of p-cresol
CN113617360B (zh) 催化型热载体的制备方法及其在自热式热解液化中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant