CN112538344A - 一种锗-铒掺杂二氧化锡多层复合薄膜及其制备方法 - Google Patents

一种锗-铒掺杂二氧化锡多层复合薄膜及其制备方法 Download PDF

Info

Publication number
CN112538344A
CN112538344A CN202011575069.9A CN202011575069A CN112538344A CN 112538344 A CN112538344 A CN 112538344A CN 202011575069 A CN202011575069 A CN 202011575069A CN 112538344 A CN112538344 A CN 112538344A
Authority
CN
China
Prior art keywords
erbium
germanium
tin dioxide
doped tin
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011575069.9A
Other languages
English (en)
Other versions
CN112538344B (zh
Inventor
李东珂
夏丽霞
李怡欢
严莲
翟章印
陈贵宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Normal University
Original Assignee
Huaiyin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Normal University filed Critical Huaiyin Normal University
Priority to CN202011575069.9A priority Critical patent/CN112538344B/zh
Publication of CN112538344A publication Critical patent/CN112538344A/zh
Application granted granted Critical
Publication of CN112538344B publication Critical patent/CN112538344B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种锗量子‑铒掺杂二氧化锡多层复合半导体薄膜及其制备方法,本发明利用高真空多射频靶磁控溅射系统,在清洗后的衬底上,交替进行铒掺杂二氧化锡子层和非晶锗子层的溅射沉积,将沉积得到的铒掺杂二氧化锡/非晶锗多层复合半导体薄膜在氮气环境中进行热退火处理,使非晶锗子层内锗原子聚集晶化形成锗量子点,得到交替层叠结合在衬底上的锗量子‑铒掺杂二氧化锡多层复合半导体薄膜。本发明采用在铒掺杂二氧化锡半导体薄膜中插入锗量子点层,利用锗量子点的电子强关联特性敏化增强铒发光中心的光学活性,提高其发光效率;通过调节锗量子点的微观尺寸,可以改变其电子关联特性,实现对铒掺杂氧化物半导体材料中铒发光中心的光学调控。

Description

一种锗-铒掺杂二氧化锡多层复合薄膜及其制备方法
技术领域
本发明属于半导体薄膜技术领域,具体涉及一种锗-铒掺杂二氧化锡多层复合薄膜及其制备方法。
背景技术
稀土是指化学周期表中的镧系元素以及与其密切相关的钪和钇共17种元素。稀土离子具有未填满的4f电子壳层结构,其中4f电子在4f组态之内或4f5d之间的跃迁可产生大约30000条可观察到的谱线,涵盖了从紫外、可见到近红外多种波段范围内的光发射。稀土发光材料具有发光谱带窄、波长分布区域宽、发射光色纯度高、物理化学性能稳定等优点,因而是近年来探寻新型发光材料的主要研究对象之一。
将稀土元素掺入到易于沉积的固态基体材料中从而制备发光材料与器件,对实现高效固态照明提供了新的思路和方向。目前关于稀土掺杂固态材料的研究主要集中在稀土掺杂硅基半导体材料、Ⅲ-Ⅴ族半导体材料以及氧化物半导体材料等体系。然而,在稀土掺杂固体材料中,其荧光光谱具有明显的淬火效应,即随着温度提高荧光强度会显著减小。实验上发现这种淬火效应会随着基质材料禁带宽度的增加而减弱,而且富氧环境的敏化作用可以极大地增强铒离子的发光,因此具有宽禁带的氧化物半导体材料成为稀土元素掺杂的理想基质材料。此外,掺杂稀土的氧化物半导体材料相较其他两者,在成本、工艺和性能等方面具有明显的优势,受到了科研工作者的广泛关注。稀土元素掺杂氧化物半导体材料在新一代固态光通讯光源和光探测器件等领域展现出了巨大的应用前景。然而,由于稀土离子在薄膜掺杂中存在浓度淬灭和能量背转移等效应的存在,严重限制了其发光效率的提高。因此,如何提高稀土掺杂半导体薄膜中的光学活性是国家未来在光电子材料与器件领域取得制高点的必经途径之一。
在稀土掺杂发光材料的研究中,其中最具代表性的稀土元素之一是铒(Er)元素,这是由于Er3+除了在可见波段有绿光发射外,从第一激发态 4 I 13/2 向基态 4 I 15/2 的跃迁产生的发光位于1.55 μm,该波长处于光纤通信的最低损耗窗口,因而在光通讯光源和光电器件中,Er3+离子掺杂氧化物半导体材料将具有广泛的应用前景。
目前实验中制备铒掺杂氧化物半导体材料主要通过离子注入、原子层沉积等工艺,将浓度可控的铒发光中心离子掺杂到氧化物薄膜中。为了提高材料的发光性能,有研究报道可以通过提高氧化物基质材料的晶格无序性来增强发光中心离子在其中的溶解度,从而提高Er3+相关的光学特性。但即使如此,发光中心在基质薄膜中的浓度仍需再提高2个数量级以上才能真正满足实际需要。而在无序氧化物半导体薄膜中,如此高的杂质浓度(>1×1018 cm-3)会引起掺杂元素聚集、合金化等浓度淬灭效应,因此单纯依靠提高稀土发光中心浓度的方法很难提高其发光效率。
发明内容
针对现有技术的不足,本发明的目的在于提供一种锗-铒掺杂二氧化锡多层复合薄膜,通过在稀土掺杂半导体薄膜中插入具有电子强关联特性的锗量子点层得到高光学活性的稀土掺杂半导体薄膜材料;本发明的另一目的在于提供该多层复合薄膜的制备方法,通过在铒掺杂二氧化锡薄膜中精准插入锗量子点层,严格调控插入层的厚度,可以实现对稀土铒离子掺杂二氧化锡半导体薄膜光学活性的增强和调控。
本发明是通过以下技术方案实现的:
一种锗量子-铒掺杂二氧化锡多层复合半导体薄膜,包含交替层叠结合在衬底上的铒掺杂二氧化锡层与锗量子点层。
进一步的,所述衬底为单晶硅片和石英片;所述锗量子点层直接结合于所述衬底之上,所述铒掺杂二氧化锌层同时受到上下层锗量子点的敏化调控。
本发明的进一步改进方案为:
制备上述锗量子-铒掺杂二氧化锡多层复合薄膜的方法,具体步骤如下:利用高真空多射频靶磁控溅射系统,在清洗后的衬底上,交替进行铒掺杂二氧化锡子层和非晶锗子层的溅射沉积3~4次,将沉积得到的铒掺杂二氧化锡/非晶锗多层复合半导体薄膜在氮气环境中进行热退火处理,使非晶锗子层内锗原子聚集晶化形成锗量子点,得到锗量子-铒掺杂二氧化锡多层复合半导体薄膜。
进一步的,所述衬底为单晶硅片和石英片。
进一步的,在交替进行铒掺杂二氧化锡子层和非晶锗子层的溅射沉积的时候,先进行非晶锗子层的溅射沉积,最后一次沉积为非晶锗子层的溅射沉积。
进一步的,衬底的清洗过程为将经RCA清洗流程清洗烘干后的衬底放置到溅射腔室内部上方的衬底托盘中,将腔室本底抽真空,通入氩气进行电离,在氩等离子体作用下再对衬底表面进行离子清洗。
进一步的,所述铒掺杂二氧化锡子层的溅射沉积过程为利用氩等离子体射频共溅射氧化铒靶和二氧化锡靶在衬底上沉积铒掺杂二氧化锌层。所述溅射沉积时,本底真空低于1×10-4Pa,沉积气压为2Pa,沉积温度为200℃,Er2O3的射频功率为 80W,SnO2 的射频功率为 100W,沉积时间为15min,每层厚度控制在50nm以下。
进一步的,所述非晶锗子层的溅射沉积过程为利用氩等离子体射频溅射锗靶在衬底上沉积非晶锗子层。所述溅射沉积时,锗的射频功率为 100W,沉积温度为200℃,沉积气压为2Pa,沉积时间为1-3min,每层厚度控制在约15nm以下。
进一步的,所述热退火处理的温度为400℃~500℃。
与现有技术相比,本发明的有益效果为:
1.本发明在铒掺杂二氧化锡半导体薄膜中插入锗量子点层,可以在不增加铒掺杂浓度的情况下,通过尺寸调控锗量子点的电子强关联特性,敏化增强稀土发光中心的活性,实现铒发光效率的增强,有效地避免因掺杂元素聚集、合金化等引起的发光淬灭效应。
2.本发明中,在热退火处理过程中,非晶锗子层内锗原子聚集晶化形成锗量子点,其尺寸受到上下异质结限制,与原始沉积的非晶锗子层相一致,因此,本发明通过改变溅射时长、生长温度、溅射功率等参数可以调控非晶锗层的厚度,而通过控制非晶锗插入层的微纳厚度改变锗量子点的尺寸与电子强关联特性,实现对稀土发光效率的调控。
3.本发明的掺杂氧化物半导体薄膜与锗掺入层在实验制备手段上完全兼容,简单易行,大大降低了制备成本,而且避免了离子注入等手段带来的薄膜晶格损伤。
附图说明
图1为常规的铒掺杂二氧化锡半导体薄膜与本发明制得的锗量子-铒掺杂二氧化锡多层复合半导体薄膜的结构示意图;
图2为对比例1以及实施例2-3制得的半导体薄膜在可见光波段和近红外光波段的光致发光谱。
具体实施方式
对比例1
步骤一、选取单晶硅片和高质量石英片作为衬底,经RCA清洗流程清洗烘干后放置到溅射腔室内部上方的衬底托盘中。将腔室本底真空抽到低于1×10-4 Pa后,通入氩气(99.99%)进行电离,在氩等离子体作用下对衬底表面进行离子清洗3min。
步骤二、靶材的选取与放置:选取纯度为99.99%的氧化铒靶、二氧化锡靶,放置在衬底托盘下方的射频靶托上。
步骤三、铒掺杂二氧化锡层的制备:利用氩等离子体射频共溅射氧化铒靶和二氧化锡靶在衬底上沉积铒掺杂二氧化锌层,沉积过程中Er2O3的射频功率为 80W,SnO2 的射频功率为 100W,沉积温度为200℃,沉积气压为2Pa,沉积时间为45min。
将沉积好的薄膜在氮气气氛中,500℃下进行热退火处理,得铒掺杂二氧化锡半导体薄膜。
实施例2
步骤一、选取单晶硅片和高质量石英片作为衬底,经RCA清洗流程清洗烘干后放置到溅射腔室内部上方的衬底托盘中。将腔室本底真空抽到低于1×10-4 Pa后,通入氩气(99.99%)进行电离,在氩等离子体作用下对衬底表面进行离子清洗3min。
步骤二、靶材的选取与放置:选取纯度为99.99%的氧化铒靶、二氧化锡靶、锗靶,放置在衬底托盘下方的射频靶托上。
步骤三、锗量子点层的制备:利用氩等离子体射频溅射锗靶在衬底上沉积锗非晶插入层,沉积环境:锗的射频功率为 100W,沉积温度为200℃,沉积气压为2Pa,沉积时间为3min。
步骤四、铒掺杂二氧化锡层的制备:利用氩等离子体射频共溅射氧化铒靶和二氧化锡靶在衬底上沉积铒掺杂二氧化锌层,沉积环境:Er2O3的射频功率为 80W,SnO2 的射频功率为 100W,沉积温度为200℃,沉积气压为2Pa,沉积时间为15min。
交替重复步骤三与步骤四的沉积各2次后,再重复步骤三的操作1次,得铒掺杂二氧化锡/非晶锗多层复合半导体薄膜,将得到的薄膜在氮气气氛中,500℃下进行热退火处理,使非晶锗子层内锗原子聚集晶化形成锗量子点,得到锗量子-铒掺杂二氧化锡多层复合半导体薄膜。
实施例3
步骤一、选取单晶硅片和高质量石英片作为衬底,经RCA清洗流程清洗烘干后放置到溅射腔室内部上方的衬底托盘中。将腔室本底真空抽到低于1×10-4 Pa后,通入氩气(99.99%)进行电离,在氩等离子体作用下对衬底表面进行离子清洗3min。
步骤二、靶材的选取与放置:选取纯度为99.99%的氧化铒靶、二氧化锡靶、锗靶,放置在衬底托盘下方的射频靶托上。
步骤三、锗量子点层的制备:利用氩等离子体射频溅射锗靶在衬底上沉积锗非晶插入层,沉积环境:锗的射频功率为 100W,沉积温度为200℃,沉积气压为2Pa,沉积时间为2min。
步骤四、铒掺杂二氧化锡层的制备:利用氩等离子体射频共溅射氧化铒靶和二氧化锡靶在衬底上沉积铒掺杂二氧化锌层,沉积环境:Er2O3的射频功率为 80W,SnO2 的射频功率为 100W,沉积温度为200℃,沉积气压为2Pa,沉积时间为15min。
交替重复步骤三与步骤四的沉积各2次后,再重复步骤三的操作1次,得铒掺杂二氧化锡/非晶锗多层复合半导体薄膜,将得到的薄膜在氮气气氛中,500℃下进行热退火处理,使非晶锗子层内锗原子聚集晶化形成锗量子点,得到锗量子-铒掺杂二氧化锡多层复合半导体薄膜。
常规的铒掺杂二氧化锡半导体薄膜与本发明制得的锗量子-铒掺杂二氧化锡多层复合半导体薄膜的结构示意图如图1所示。
对比例1(常规的铒掺杂二氧化锡半导体薄膜)以及实施例2-3制得的半导体薄膜在可见光波段和近红外光波段的光致发光谱谱图如图2所示,1-3例中铒掺杂二氧化锡薄膜的总厚度保持一致。由图2可知,与对比例1比较,实施例2中插入了沉积时间为3min的锗量子点层,铒发光中心相关的在可见与近红外波段的发光都明显增强。对比实施例2与3,当锗量子点层的沉积时间从3min减小到2min时,铒发光活性得到进一步增强,这是由于锗量子层的厚度减小,锗量子点的尺度也相应减小,其电子强关联特性及对二氧化锡薄膜中的铒发光中心的敏化作用增强。因此,从图中看出,锗量子点层的加入可以显著提高铒稀土发光中心的光学活性,且通过调控锗量子点的尺寸(厚度)可以实现对发光增强的调控。

Claims (10)

1.一种锗量子-铒掺杂二氧化锡多层复合半导体薄膜,其特征在于,包含交替堆叠结合在衬底上的铒掺杂二氧化锡层与锗量子点层。
2.根据权利要求1所述的一种锗量子-铒掺杂二氧化锡多层复合半导体薄膜,其特征在于:所述衬底为单晶硅片和石英片。
3.根据权利要求1所述的一种锗量子-铒掺杂二氧化锡多层复合半导体薄膜,其特征在于:所述锗量子点层直接结合于所述衬底之上,所述铒掺杂二氧化锌层同时受到上下层锗量子点的敏化调控。
4.制备如权利要求1所述的一种锗量子-铒掺杂二氧化锡多层复合薄膜的方法,其特征在于,具体步骤如下:利用高真空多射频靶磁控溅射系统,在清洗后的衬底上,交替进行铒掺杂二氧化锡子层和非晶锗子层的溅射沉积3~4次,将沉积得到的铒掺杂二氧化锡/非晶锗多层复合半导体薄膜在氮气环境中进行热退火处理,使非晶锗子层内锗原子聚集晶化形成锗量子点,得到锗量子-铒掺杂二氧化锡多层复合半导体薄膜。
5.根据权利要求4所述的一种锗量子-铒掺杂二氧化锡多层复合薄膜的制备方法,其特征在于:所述衬底为单晶硅片和石英片。
6.根据权利要求4所述的一种锗量子-铒掺杂二氧化锡多层复合薄膜的制备方法,其特征在于:在交替进行铒掺杂二氧化锡子层和非晶锗子层的溅射沉积的时候,先进行非晶锗子层的溅射沉积,最后一次沉积为非晶锗子层的溅射沉积。
7.根据权利要求4所述的一种锗量子-铒掺杂二氧化锡多层复合薄膜的制备方法,其特征在于:衬底的清洗过程为将经RCA清洗流程清洗烘干后的衬底放置到溅射腔室内部上方的衬底托盘中,将腔室本底抽真空,通入氩气进行电离,在氩等离子体作用下再对衬底表面进行离子清洗。
8.根据权利要求4所述的一种锗量子-铒掺杂二氧化锡多层复合薄膜的制备方法,其特征在于:所述铒掺杂二氧化锡子层的溅射沉积过程为利用氩等离子体射频共溅射氧化铒靶和二氧化锡靶在衬底上沉积铒掺杂二氧化锌层;所述溅射沉积时,本底真空低于1×10-4Pa,沉积气压为2Pa,沉积温度为200℃,Er2O3的射频功率为 80W,SnO2 的射频功率为 100W,沉积时间为15min,每层厚度控制在50nm以下。
9.根据权利要求4所述的一种锗量子-铒掺杂二氧化锡多层复合薄膜的制备方法,其特征在于:所述非晶锗子层的溅射沉积过程为利用氩等离子体射频溅射锗靶在衬底上沉积非晶锗子层,所述溅射沉积时,锗的射频功率为 100W,沉积温度为200℃,沉积气压为2Pa,沉积时间为1-3min,每层厚度控制在约15nm以下。
10.根据权利要求4所述的一种锗量子-铒掺杂二氧化锡多层复合薄膜的制备方法,其特征在于:所述热退火的温度为400℃~500℃。
CN202011575069.9A 2020-12-28 2020-12-28 一种锗-铒掺杂二氧化锡多层复合薄膜及其制备方法 Active CN112538344B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011575069.9A CN112538344B (zh) 2020-12-28 2020-12-28 一种锗-铒掺杂二氧化锡多层复合薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011575069.9A CN112538344B (zh) 2020-12-28 2020-12-28 一种锗-铒掺杂二氧化锡多层复合薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112538344A true CN112538344A (zh) 2021-03-23
CN112538344B CN112538344B (zh) 2022-11-11

Family

ID=75017675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011575069.9A Active CN112538344B (zh) 2020-12-28 2020-12-28 一种锗-铒掺杂二氧化锡多层复合薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112538344B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928561A (zh) * 2009-06-26 2010-12-29 中国科学院福建物质结构研究所 铒离子掺杂二氧化锡纳米晶近红外发光材料及其制备方法和用途
CN102071396A (zh) * 2011-01-19 2011-05-25 天津大学 锗量子点掺杂纳米二氧化钛复合薄膜的制备方法
CN102360962A (zh) * 2011-09-30 2012-02-22 中国科学院等离子体物理研究所 一种量子点敏化太阳电池的制备方法
CN103274607A (zh) * 2013-06-06 2013-09-04 昆明理工大学 纳米银修饰稀土掺杂频率转换的发光材料及其制备方法
CN104377257A (zh) * 2013-09-05 2015-02-25 国家纳米科学中心 一种硅基锗量子点复合结构材料、其制备方法及应用
CN104419906A (zh) * 2013-08-29 2015-03-18 国家纳米科学中心 一种层状锗量子点材料及其制备方法
CN105347692A (zh) * 2015-12-03 2016-02-24 华东师范大学 一种低温超声雾化热解沉积锂掺杂立方相SnO2薄膜的方法
CN108682739A (zh) * 2018-05-03 2018-10-19 五邑大学 一种金属量子点增强ZnO阻变存贮器及其制备方法
CN108878058A (zh) * 2018-06-25 2018-11-23 湖北雄华科技有限公司 用于调光玻璃的三层结构透明导电薄膜及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928561A (zh) * 2009-06-26 2010-12-29 中国科学院福建物质结构研究所 铒离子掺杂二氧化锡纳米晶近红外发光材料及其制备方法和用途
CN102071396A (zh) * 2011-01-19 2011-05-25 天津大学 锗量子点掺杂纳米二氧化钛复合薄膜的制备方法
CN102360962A (zh) * 2011-09-30 2012-02-22 中国科学院等离子体物理研究所 一种量子点敏化太阳电池的制备方法
CN103274607A (zh) * 2013-06-06 2013-09-04 昆明理工大学 纳米银修饰稀土掺杂频率转换的发光材料及其制备方法
CN104419906A (zh) * 2013-08-29 2015-03-18 国家纳米科学中心 一种层状锗量子点材料及其制备方法
CN104377257A (zh) * 2013-09-05 2015-02-25 国家纳米科学中心 一种硅基锗量子点复合结构材料、其制备方法及应用
CN105347692A (zh) * 2015-12-03 2016-02-24 华东师范大学 一种低温超声雾化热解沉积锂掺杂立方相SnO2薄膜的方法
CN108682739A (zh) * 2018-05-03 2018-10-19 五邑大学 一种金属量子点增强ZnO阻变存贮器及其制备方法
CN108878058A (zh) * 2018-06-25 2018-11-23 湖北雄华科技有限公司 用于调光玻璃的三层结构透明导电薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RANRAN FAN等: "Formation of size controlled Ge nanocrystals in Er-doped ZnO matrix and their enhancement effect in 1.54 μm photoluminescence", 《APPLIED SURFACE SCIENCE》 *

Also Published As

Publication number Publication date
CN112538344B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
CN109023251B (zh) 一种层数可控的稀土铒掺杂二硫化钨薄膜材料制备方法
US8735290B2 (en) Amorphous group III-V semiconductor material and preparation thereof
US20110278702A1 (en) Method for producing a dopant profile
CN111653652B (zh) 一种硅基铒掺杂镓酸锌薄膜电致发光器件及其制备方法
US20050095809A1 (en) Method of film-forming transparent electrode layer and device therefor
CN111304739B (zh) 一种硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜及其制备方法和应用
WO2011004601A1 (ja) 蛍光体結晶薄膜とその作製方法
US20230246115A1 (en) The Preparation Method and Application of An Er Doped Ga2O3 Film
CN110444644B (zh) 一种增强硅基铒掺杂ZnO薄膜电致发光的器件及制备方法
CN113444520B (zh) 具有包覆层的硫化物荧光体及制备具有包覆层的硫化物荧光体的磁控溅射法
CN109509819B (zh) 一种基于铒、氟共掺杂ZnO薄膜的电致发光器件及制备方法
CN109082631B (zh) 一种Ga2O3基透明导电薄膜及其制备方法
CN112538344B (zh) 一种锗-铒掺杂二氧化锡多层复合薄膜及其制备方法
CN101299513A (zh) 电场诱导光抽运硅基氧化锌薄膜随机激光器及其制备方法
Song et al. Characterization of luminescent properties of ZnO: Er thin films prepared by rf magnetron sputtering
Kuan et al. Growth process control produces high-crystallinity and complete-reaction perovskite solar cells
KR100739457B1 (ko) 마그네트론 코스퍼터링법을 이용한 금속 도핑 ZnO 박막의 제조방법
CN109449224B (zh) 一种硅基光电材料及其制备方法
CN114806549B (zh) 一种磷掺杂增强硅纳米晶发光强度的方法
CN115832133A (zh) 尺寸可控的磷掺杂纳米硅量子点led器件及制备方法
CN114284377B (zh) 双面Si基AlGaN探测器及其制备方法
CN117727848A (zh) 基于绝缘加速层效应提供热电子的电致发光器件及其制备方法
Li et al. Comparison of different annealing gases effects on the optical emission properties of zinc oxide thin films deposited by radio frequency sputtering
Cardin et al. First rare earth ions doped Si based down converter layers integration in an industrial Si solar cell
CN116334557A (zh) 一种氟铒共掺氧化锡薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant