CN112342495A - 一种不锈钢表面氮化物与金属复合导电涂层制备方法 - Google Patents

一种不锈钢表面氮化物与金属复合导电涂层制备方法 Download PDF

Info

Publication number
CN112342495A
CN112342495A CN202011287182.7A CN202011287182A CN112342495A CN 112342495 A CN112342495 A CN 112342495A CN 202011287182 A CN202011287182 A CN 202011287182A CN 112342495 A CN112342495 A CN 112342495A
Authority
CN
China
Prior art keywords
nitride
metal
coating
layer
conductive coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011287182.7A
Other languages
English (en)
Inventor
耿树江
李天亮
赵茂森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202011287182.7A priority Critical patent/CN112342495A/zh
Publication of CN112342495A publication Critical patent/CN112342495A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种不锈钢表面氮化物与金属复合导电涂层制备方法。该发明采用多弧离子镀、磁控溅射、激光溅射以及真空蒸镀至少一种方法对复合涂层进行制备,先以金属单质为靶材,氮气为反应气体,沉积一层氮化物薄膜,以期作为防止内层Cr向外扩散的扩散障。在扩散障外层继续沉积一层金属薄膜,将其热转化成尖晶石导电涂层。该复合涂层由于有一层防止Cr扩散的氮化物扩散障,应用于SOFC连接体涂层时能有效抑制基体Cr挥发,解决SOFC阴极Cr中毒这一难题,能够降低SOFC功率衰减速度,延长电池堆的使用寿命;同时外层的尖晶石涂层有良好的导电性和相匹配的热膨胀系数,可作为理想的抗热腐蚀导电涂层。

Description

一种不锈钢表面氮化物与金属复合导电涂层制备方法
技术领域
本发明涉及涂层制备技术,具体地说是一种氮化物与金属复合导电涂层制备方法和应用。
背景技术
由于SOFC在工作时内部温度一般为800℃~1000℃,涂层界面在服役过程中不断演变,界面元素扩散和相反应导致不锈刚基体中的Cr向外扩散,从而使SOFC电池阴极Cr中毒,造成电池堆性能衰减。制备涂层的方法主要是通过物理气相沉积、化学气相沉积等方法来实现的。物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。但是目前存在的问题在于:采用物理气相沉积在SOFC连接体表面仅仅制备一层金属防护涂层,不能解决Cr向外扩散的问题。
发明内容
(一)期望解决的技术问题
本发明的目的是通过在基体与金属涂层之间制备一层氮化物涂层,以期望氮化物涂层能作为一个扩散障,有效地抑制基体中的Cr与最外层的金属之间发生的互扩散现象,从而有效延长电池堆的使用寿命。
(二)技术方案
一种氮化物与金属复合导电涂层,其成分由内部的氮化物扩散障涂层和外层金属涂层组成;按质量百分数记,涂层中氮化物含量为10%-15%,其余为金属涂层。
所述氮化物与金属复合导电涂层的制备方法,包括以下步骤是首先在不锈钢基体上采用多弧离子镀技术在不锈钢基体表面采用弧光放电的方法,在固体的阴极靶材上直接蒸发并离化金属靶材,从而在空间中形成等离子体,同时通入氮气与金属靶材发生反应,从而在基体表面沉积一层厚度为3.4~6.8μm的氮化物薄膜,沉积时间为1h~2h。第二步继续在外层采用磁控溅射技术沉积一层厚度为1.75~3.5μm的金属单质薄膜,沉积时间为1h~2h。
上述氮化物与金属复合导电涂层的制备方法,具体包括以下操作步骤:
(1)使用磨样机对不锈钢基体进行打磨处理。依次用 240#、400#、600#、1000#、2000#SiC的砂纸打磨基体表面,去除氧化表皮。使用2000#砂纸对基体磨棱、倒角,削弱镀膜和氧化过程中的尖端效应,防止涂层脱落。
(2)首先在基体表面上通过多弧离子镀沉积金属氮化物扩散障,以期望抑制基体与涂层之间Cr发生的互扩散现象:先对多弧离子镀设备进行预抽和预热,将真空室抽真空至真空度1×10-3Pa~5×10-3Pa,并加热至200~300℃,温度优选200℃。然后通Ar气并保持真空室压力为0.1Pa~0.6Pa,优选为0.2Pa。稳定后通入氮气气并保持真空室压力为0.4Pa~0.9Pa,优选为0.5Pa。调整偏压至100V~200V,电流密度为3A 。开启溅射后通入的氮气会与金属靶发生反应生成氮化物,将消耗一部分氮气当氮气气压下降后重新调至0.5Pa直至其气压稳定开启溅射,开启溅射的同时开启计时器开始计时溅射1h~2h。
(3)磁控溅射沉积3.5μm厚的金属单质外层:将电压调节至 400V~700V,优选400V。电流调节至1A~6A,优选3A。通入Ar气调节气压至0.1Pa~0.6Pa,优选0.2Pa。气压稳定后开启溅射,在氮化物扩散障上继续沉积一层金属金属,沉积时间为1h~2h。
高温热处理,使该防护涂层转化为尖晶石涂层。
步骤(2)中在集体上通过多弧离子镀沉积金属氮化物扩散障层,以期望解决基体与涂层之间的Cr元素互扩散的问题。
步骤(2)所述的基体在使用之前先用丙酮、酒精分别超声10-20min,在吹干后放入真空室备用。
利用多弧离子镀镀膜速率高,沉积速度快,绕镀性好。膜的附着力和致密性高,强度和耐磨性好的特点,通过多弧离子镀与磁控溅射复合沉积氮化物/ 金属导电涂层,可提高涂层与基体的结合力,同时降低了涂层脆性,提升了涂层的柔韧性和承载力,也进一步提升了涂层的机械性能与高温性能。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明采用多弧离子镀与磁控溅射复合沉积,通过多弧离子镀沉积中间扩散障层,以降低基体与防护涂层之间发生的互扩散现象,通过沉积条件的改变改善涂层抗摩擦磨损性能和热稳定性,使得涂层能应用于SOFC工作时苛刻的高温环境中。
(2)本发明的制备方法简单,可操作性强,可控性好,降低了对镀膜设备真空度的要求,适用于SOFC连接体表面的防护,具有较好的经济效益。
附图说明
图1为未经过热处理带涂层的金属基体的截面形貌示意图。
图2为经过100h热处理带涂层的金属基体的截面形貌示意图。
具体实施方法
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
一种氮化物与金属复合导电涂层,其成分由内部的氮化物扩散障涂层和复合涂层金属组成;按质量百分数记,涂层中氮化物含量为10%-15%,其余为金属。所述氮化物与金属复合导电涂层的制备方法,包括以下步骤是首先在不锈钢基体上采用多弧离子镀技术在不锈钢基体表面采用弧光放电的方法,在固体的阴极靶上直接蒸发并离化金属靶材,从而在空间中形成等离子体,同时通入氮气与金属靶材发生反应,从而在基体表面沉积一层厚度为3.4~6.8μm的氮化物薄膜。第二步继续在外层采用磁控溅射技术沉积一层厚度为1.75~3.5μm的金属薄膜。制备方法按照以下步骤:
步骤一:将基体在使用之前先用丙酮、酒精分别超声10-20min,在吹干后放入真空室。
步骤二:对多弧离子镀设备进行预抽和预热,将真空室抽真空至真空度1×10-3Pa~5×10-3Pa,并加热至200~300℃,温度优选200℃。然后通Ar气并保持真空室压力为0.1Pa~0.6Pa,优选为0.2Pa。稳定后通入氮气气并保持真空室压力为0.4Pa~0.9Pa,优选为0.5Pa。调整偏压至100V~200V,电流密度为3A 。开启溅射后通入的氮气会与金属靶发生反应生成氮化物,将消耗一部分氮气当氮气气压下降后重新调至0.5Pa直至其气压稳定开启溅射,开启溅射的同时开启计时器开始计时溅射1h~2h。
步骤三:继续磁控溅射沉积1.75~3.5μm厚的金属外层:将电压调节至 400V~700V,优选400V。电流调节至1A~6A,优选3A。通入Ar气调节气压至0.1Pa~0.6Pa,优选0.2Pa。气压稳定后开启溅射,在氮化物扩散障上继续沉积一层金属层,沉积时间为1h~2h。
步骤四:将步骤三中的金属基体置于马弗炉中高温处理100h,热暴露温度为600~800℃,优选800℃,通过此方法将该防护涂层转化为尖晶石涂层。
通过对以上制备方法中制得的涂层进行截面观察,氧化物层的厚度约为2~3.5μm,均匀致密,有效地抑制了Cr元素在涂层与基体之间的互扩散现象。外层尖晶石的厚度约为2~3.5μm,与氧化物层结合紧密。此尖晶石涂层不但提高了涂层的导电性能,也能有效地抑制Cr元素向外扩散。
图1为实施例所得氮化物与金属复合导电涂层的结构示意图。涂层的结构由外层磁控溅射沉积的金属单质,多弧离子镀沉积的氮化物扩散障层构成。氮化物扩散障层可以有效减少基体与涂层之间发生的互扩散现象。
图2是氮化物与金属复合导电涂层在800℃高温下氧化热处理100h的结构示意图。从图中可以看出外层已经生成一层致密的尖晶石涂层,内层一层致密的氧化物层,有效地抑制互扩散现象的同时,表面质量和面比电阻也得到很大的优化。
实施例1
本实施例提供一种氮化物与金属复合导电涂层的制备方法,具体步骤如下:
步骤一:将基体在使用之前先用丙酮、酒精分别超声10min,在吹干后放入真空室。
步骤二:对多弧离子镀设备进行预抽和预热,将真空室抽真空至真空度3×10-3Pa~5×10-3Pa,并加热至200℃。然后通Ar气并保持真空室压力为0.2Pa~0.6Pa。稳定后通入氮气气并保持真空室压力为0.6Pa~0.9Pa。调整偏压至100V~200V,电流密度为3A 。开启溅射后通入的氮气会与金属靶发生反应生成氮化物,将消耗一部分氮气当氮气气压下降后重新调至0.5Pa直至其气压稳定开启溅射,开启溅射的同时开启计时器开始计时溅射2h。
步骤三:继续磁控溅射沉积3.5μm厚的金属金属外层:将电压调节至600V~700V。电流调节至5A~6A。通入Ar气调节气压至0.5Pa~0.6Pa。气压稳定后开启溅射,在氮化物扩散障上继续沉积一层金属层,沉积时间为2h。
步骤四:将步骤三中的金属基体置于马弗炉中高温处理100h,热暴露温度为700℃~800℃,通过此方法将该防护涂层转化为尖晶石涂层。利用四点法测量其面比电阻平均值为 4.25mΩ·cm2。
如图2所示,对在800℃高温下氧化热处理100h的氮化物与金属复合导电涂层的截面进行观察,氧化物层的厚度为3.5μm左右,均匀致密,结合良好。尖晶石层的厚度为2μm左右,与氧化物层结合良好。
实施例2
本实施例提供一种氮化物与金属复合导电涂层的制备方法,具体步骤如下:
步骤一:将基体在使用之前先用丙酮、酒精分别超声10min,在吹干后放入真空室。
步骤二:对多弧离子镀设备进行预抽和预热,将真空室抽真空至真空度1×10-3Pa~2×10-3Pa,并加热至200℃。然后通Ar气并保持真空室压力为0.1Pa~0.2Pa。稳定后通入氮气气并保持真空室压力为0.4Pa~0.5Pa。调整偏压至100V~200V,电流密度为3A 。开启溅射后通入的氮气会与金属靶发生反应生成氮化物,将消耗一部分氮气当氮气气压下降后重新调至0.5Pa直至其气压稳定开启溅射,开启溅射的同时开启计时器开始计时溅射1h。
步骤三:继续磁控溅射沉积金属金属外层:将电压调节至400V~500V。电流调节至1A~3A。通入Ar气调节气压至0.1Pa~0.2Pa。气压稳定后开启溅射,在氮化物扩散障上继续沉积一层金属层,沉积时间为2h。
步骤四:将步骤三中的金属基体置于马弗炉中高温处理100h,热暴露温度700℃~800℃,通过此方法将该防护涂层转化为尖晶石涂层。利用四点法测量其面比电阻,结果平均值为6.15mΩ·cm2 。
实施例3
本实施例提供一种氮化物与金属复合导电涂层的制备方法,具体步骤如下:
步骤一:将基体在使用之前先用丙酮、酒精分别超声10min,在吹干后放入真空室。
步骤二:对多弧离子镀设备进行预抽和预热,将真空室抽真空至真空度4×10-3Pa~5×10-3Pa,并加热至300℃。然后通Ar气并保持真空室压力为0.5Pa~0.6Pa。稳定后通入氮气气并保持真空室压力为0.8Pa~0.9Pa。调整偏压至100V~200V,电流密度为3A 。开启溅射后通入的氮气会与金属靶发生反应生成氮化物,将消耗一部分氮气当氮气气压下降后重新调至0.5Pa直至其气压稳定开启溅射,开启溅射的同时开启计时器开始计时溅射1h。
步骤三:继续磁控溅射沉积金属外层:将电压调节至600V~700V。电流调节至5A~6A。通入Ar气调节气压至0.5Pa~0.6Pa。气压稳定后开启溅射,在氮化物扩散障上继续沉积一层金属层,沉积时间为1h。
步骤四:将步骤三中的金属基体置于马弗炉中高温处理100h,热暴露温度700℃~800℃,通过此方法将该防护涂层转化为尖晶石涂层。利用四点法测量其面比电阻,平均值为3.6 mΩ·cm2 。
实施例4
本实施例提供一种氮化物与金属复合导电涂层的制备方法,具体步骤如下:
步骤一:将基体在使用之前先用丙酮、酒精分别超声10min,在吹干后放入真空室。
步骤二:对多弧离子镀设备进行预抽和预热,将真空室抽真空至真空度2×10-3Pa~3×10-3Pa,并加热至300℃。然后通Ar气并保持真空室压力为0.2Pa~0.3Pa。稳定后通入氮气并保持真空室压力为0.5Pa~0.6Pa。调整偏压至100V~200V,电流密度为3A 。开启溅射后通入的氮气会与金属靶发生反应生成氮化物,将消耗一部分氮气当氮气气压下降后重新调至0.5Pa直至其气压稳定开启溅射,开启溅射的同时开启计时器开始计时溅射2h。
步骤三:继续磁控溅射沉积金属外层:将电压调节至400V~500V。电流调节至2A~3A。通入Ar气调节气压至0.2Pa~0.3Pa。气压稳定后开启溅射,在氮化物扩散障上继续沉积一层金属涂层,沉积时间为1h。
步骤四:将步骤三中的金属基体置于马弗炉中高温处理100h,热暴露温度800℃,通过此方法将该防护涂层转化为尖晶石涂层。利用四点法测量其面比电阻,结果平均值为4.36mΩ·cm2 。
由此可见,本发明提供的氮化物与金属复合导电涂层,能有效地在抑制互扩散现象的同时,使金属基体的表面质量和面比电阻也得到很大的优化。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其部分技术特征进行等同替换。凡在本发明的精神原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种氮化物与金属复合导电涂层,其特征在于:涂层是由两层组成。
2.内层的成分是氮气与金属靶反应生成一层氮化物的扩散障,外层是一层金属单质。
3.根据权利要求1所述的一种氮化物与金属复合导电涂层,其特征在于:所述氮化物扩散障层和金属层的厚度分别为3.4~6.8μm的1.75~3.5μm
所述氮化物与金属复合导电涂层的制备方法,包括以下步骤是首先在不锈钢基体上采用多弧离子镀技术在不锈钢基体表面采用弧光放电的方法,在固体的阴极靶材上直接蒸发并离化金属靶材,从而在空间中形成等离子体,同时通入氮气与金属靶材发生反应,从而在基体表面沉积一层氮化物薄膜,沉积时间为1h~2h。
4.第二步继续在外层采用磁控溅射技术沉积一层金属薄膜,沉积时间为1h~2h。
5.按权利要求3所述的方法,其特征在于:氮化物与金属复合导电涂层的制备的具体步骤为使用磨样机对不锈钢基体进行打磨处理,首先在基体表面上通过多弧离子镀沉积金属氮化物扩散障,最后磁控溅射沉积3.5μm厚的金属单质外层。
6.根据权利要求1所述的氮化物与金属复合导电涂层进行热处理。
CN202011287182.7A 2020-11-17 2020-11-17 一种不锈钢表面氮化物与金属复合导电涂层制备方法 Pending CN112342495A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011287182.7A CN112342495A (zh) 2020-11-17 2020-11-17 一种不锈钢表面氮化物与金属复合导电涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011287182.7A CN112342495A (zh) 2020-11-17 2020-11-17 一种不锈钢表面氮化物与金属复合导电涂层制备方法

Publications (1)

Publication Number Publication Date
CN112342495A true CN112342495A (zh) 2021-02-09

Family

ID=74364140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011287182.7A Pending CN112342495A (zh) 2020-11-17 2020-11-17 一种不锈钢表面氮化物与金属复合导电涂层制备方法

Country Status (1)

Country Link
CN (1) CN112342495A (zh)

Similar Documents

Publication Publication Date Title
US7989077B2 (en) Metal strip product
US10320019B2 (en) Process for producing a solid oxide fuel cell by depositing an electrically conductive and gas permeable layer on a porous support substrate
US6645657B2 (en) Sol-gel coated cathode side hardware for carbonate fuel cells
KR101166407B1 (ko) 지르코니아로 코팅된 강 스트립
EP2483436A2 (en) Highly electrically conductive surfaces for electrochemical applications and methods to produce same
WO2023284596A1 (zh) 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用
CN113969394B (zh) 一种铌合金表面耐高温高阻氧隔热涂层及其制备方法
WO2023197469A1 (zh) 高导电耐蚀非晶/纳米晶复合共存的涂层及其制法与应用
CN111748782B (zh) Max相涂层及其制备方法
CN112458416A (zh) 一种磁控溅射法制备五元高熵合金尖晶石涂层的方法
CN115142018A (zh) 一种耐高温液态铅/铅铋合金腐蚀的高熵合金涂层及其制备方法
CN114657509A (zh) 一种耐液态铅铋合金腐蚀的陶瓷-金属多层复合涂层及其制备方法
CN112342495A (zh) 一种不锈钢表面氮化物与金属复合导电涂层制备方法
CN115961259A (zh) 一种强韧耐蚀max相多层复合涂层及其制备方法与应用
CN111029606B (zh) 用于燃料电池双极板的金属硼化物基复合涂层及其制备方法
US9840780B2 (en) System and process for aluminization of metal-containing substrates
CN114068946B (zh) 钠硫电池硫极集流体max相多层复合防护涂层及其制备方法
WO2024169350A1 (zh) 一种涂层及其制备方法、双极板和燃料电池
CN118497668A (zh) 一种燃料电池金属双极板复合梯度防护涂层及制备方法
CN118480768A (zh) 一种稀土氧化物-惰性金属-尖晶石导电复合涂层及制备方法
KR100380724B1 (ko) 알루미늄-철 복합코팅층을 갖는 용융탄산염 연료전지용분리판
CN117604473A (zh) 兼具高温抗氧化与结构热稳定性的CrSiC复合涂层、制备方法与应用
CN117265476A (zh) 一种可高温服役的长寿命AlCrN/NiCrAlYSi复合涂层及其制备方法
CN118086844A (zh) 一种磁控溅射制备铬酸镧涂层的方法
JPS61127864A (ja) 被覆炭素電極

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210209