CN112285504B - 多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法 - Google Patents

多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法 Download PDF

Info

Publication number
CN112285504B
CN112285504B CN202011162020.0A CN202011162020A CN112285504B CN 112285504 B CN112285504 B CN 112285504B CN 202011162020 A CN202011162020 A CN 202011162020A CN 112285504 B CN112285504 B CN 112285504B
Authority
CN
China
Prior art keywords
ultraviolet
discharge
image
solar blind
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011162020.0A
Other languages
English (en)
Other versions
CN112285504A (zh
Inventor
王胜辉
律方成
牛雷雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202011162020.0A priority Critical patent/CN112285504B/zh
Publication of CN112285504A publication Critical patent/CN112285504A/zh
Application granted granted Critical
Publication of CN112285504B publication Critical patent/CN112285504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法,所述多谱段日盲窄带紫外成像仪,当光线通过镜头进入分光镜后,分别进入两个相互独立的可见光通道和紫外通道;所述可见光通道:光线经过分光镜的折射和反射后进入可见光相机,进行可见光成像并将可见光成像传输给图像控制处理模块;所述紫外通道:透过分光镜输出的光线经过日盲紫外滤光片后并经过多谱段滤光片之后进入紫外像增强器中,并将紫外像增强器处理过的光电子转换图像传输给图像控制处理模块。

Description

多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法
技术领域
本发明属于日盲紫外成像及其放电诊断技术领域,具体涉及一种多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法。
背景技术
多谱段日盲紫外成像仪的紫外成像波段为240-280nm,因为太阳光中该波段的光线在经过大气层时,其能量几乎被大气分子的散射和臭氧层的吸收消耗殆尽,在空气中的太阳光谱分布中不存在240-280nm波段,形成了一个天然的屏蔽层,而燃烧爆炸和放电现象会发射出各个谱段,包括日盲波段的紫外光,因此,通过观测、分析和定位日盲波段的光便可以实现对放电的定位和评估。
现阶段国内外市场上主流的紫外成像仪的紫外成像系统主要包括日盲紫外像增强器的紫外单光子成像系统、基于多阳极阵列微通道探测器的紫外单光子成像系统和基于固体紫外探测器的单光子成像系统三种。其中第二种方法采用多阳极阵列微通道探测器,由光电阴极、微通道板和阳极阵列组成,具有高增益、低噪声等优点,并具有良好的光子计数和成像功能,缺点是设计难度大,成本高,其他两种方法噪声大、增益有限、探测面积小,易受外界环境的影响,对极微弱的目标探测具有局限性。高端紫外成像仪一般采用第二种方法,在实现对放电的高灵敏探测和降噪方面具有较好的表现。如现有技术:中国专利(申请号:CN2010201418040,公告号:CN201689138U)公开一种基于窄带光谱的日盲紫外成像仪,它主要由保护镜头、紫外镜头、光谱图像采集器、数据处理器和显示器依次构成,是所述的保护镜头后设置有分光板,在分光板后分别设置可见光镜头和紫外镜头;可见光镜头通过CCD与光谱图像采集器电连接,紫外镜头通过紫外探测器与光谱采集器电连接,所述的光谱图像采集器是双光谱图像采集器,双光谱图像采集器在通过数据处理器与显示器及数据输出设备电连接。中国专利(申请号:CN201820450726,公告号:CN208092177U)公开一种基于紫外光子数校正的新型日盲紫外成像仪,包括捕光镜头、反射分光镜、可见光镜头、可见光CCD、紫外光镜头、紫外滤光片、紫外光ICCD、双通道视频采集卡、主板和显示器;捕光镜头连接反射分光镜,反射分光镜通过可见光镜头额可见光CCD与双通道视频采集卡连接,反射分光镜还通过紫外光镜头、紫外滤光片和紫外光ICCD与双通道视频采集卡连接,双通道视频采集卡的输出端与主板的输入端连接,主板的输出端与显示器连接,主板还设有最佳增益自动获取模块、检测距离校正模块、海拔高度校正模块和设备表面放电缺陷定级模块。中国专利(申请号:CN2017100641714,公开号:CN107015125 A)公开一种基于红外、紫外和可见光的一体化检测方法和装置,包括分别采集红外信号和紫外信号,并分别对所述的红外信号和紫外信号进行处理;根据处理后的红外信号和紫外信号进行综合定位,获得故障诊断;分别采集超声信号和视频信号,并分别对所述超声信号和视频信号进行处理;根据处理后的超声信号和视频信号,进行超声局放处理得到故障报警信息;将故障诊断结果和故障报警结果发送给检测平台。中国专利(申请号:CN2017206951796,公告号:CN206832940U)公开一种具有虹膜识别功能的日盲紫外成像仪,其包括:可见光PAL相机,紫外PAL相机,数据处理及显控板,电源供给模块以及虹膜识别模块。其中,数据处理及显控板包括:FPGA模块,ARM模块以及图像显示模块。FPGA模块的图像采集端分别与可见光PAL相机与紫外PAL相机连接,FPGA模块的第一图像数据输出端与ARM模块的图像处理输入端连接,FPGA模块的第二图像数据输出端与图像显示模块连接。虹膜识别模块与ARM模块的控制端连接。电源供给模块分别与FPGA模块、ARM模块以及虹膜识别模块电连接。中国专利(申请号:CN2014105059567,公开号:CN104280670 A)公开一种基于日盲紫外成像仪的电晕检测方法,该方法包括:使用预设的标准紫外光源对日盲紫外成像仪进行标定;根据标定后的标定数据设置增益控制参数,并根据增益控制参数对日盲紫外成像仪的增益进行自动调节;使用所述日盲紫外成像仪对目标位置的电晕放电进行检测,得到实际检测数据;根据检测数据计算得到对应的目标位置的电晕的辐射亮度。中国专利(申请号:CN201621403628,公告号:CN206248773U)公开一种应用于电晕检测的日盲紫外成像仪,包括壳体,所述壳体的顶端设有第一凹槽,在第一凹槽内通过第一铰接轴安装有扫描反射镜,在扫描反射镜上安装有第一盖板,在第一盖板下方安装有保护扫描反射镜的第一保护块,在壳体的前端面上设有通孔,在前端面的通孔内设有阶梯槽,在阶梯槽内依次安装有第二盖板、反射镜和保护反射镜的第二保护块,反射镜通过第二铰接轴铰接在壳体上,在壳体内安装有双通道日盲紫外成像仪。中国专利(申请号:CN2012104900861,公开号:CN103018640 A)公开高压绝缘子表面电晕放电强度测试方法,它利用日盲紫外成像仪在不同仪器增益和观测距离下采集复合绝缘子在不同放电强度时的电晕放电视频信号,然后采用视频分析和数字图像处理算法分割出放电光斑区域,获得放电光斑面积、视在放电量、观测距离和仪器增益这四者的相关数据,在此基础上采用最小二乘支持向量机回归算法建立放电量强度预测模型,最后利用该模型对高压绝缘子表面电晕放电强度进行测试。
随着紫外放电信号无噪声倍增、可见光和紫外光图像融合技术的发展,当前的紫外成像仪在高灵敏度微弱放电探测和定位方面有较好的效果。一般而言,紫外图像的最终呈现形式是二值化的放电光斑,并于可见光图像融和。但在观测较严重的火花和弧光放电过程中,整个成像范围内会被放电光斑覆盖,影响对放电严重程度的判断。
研究表明,电晕放电的光谱大部分处于紫外区域。亟需研究利用而火花放电和电弧放电阶段各个谱段的化学反应及其紫外光放电谱段,解决较强放电情况下成像界面被放电光斑占据的问题。
发明内容
为了解决上述现有技术中的不足,本发明公开一种多谱段日盲窄带紫外成像仪检测放电状态的方法包括多谱段日盲窄带紫外成像仪装置和基于此的放电状态诊断方法。
多谱段日盲窄带紫外成像仪,当光线通过镜头101进入分光镜102后,分别进入两个相互独立的可见光通道和紫外通道;其特征为:
所述可见光通道:光线经过分光镜102的折射和反射后进入可见光相机110,进行可见光成像并将可见光成像传输给图像控制处理模块109;
所述紫外通道:透过分光镜102输出的光线经过日盲紫外滤光片103后并经过多谱段滤光片104之后进入紫外像增强器中,并将紫外像增强器处理过的光电子转换图像传输给图像控制处理模块109。
优选为:所述紫外像增强器进行真空处理,并与图像控制处理模块109进行链接;所述紫外像增强器包括顺序设置的光电阴极105、MCP106、光纤锥107、CCD108。
优选为:所述多谱段滤光片104输出的日盲紫外光经过所述光电阴极105之后将光转换为光电子,光电子在强电场的作用下进入微通道板MCP106的微通道,与通道壁碰撞产生光电子的倍增,并完成基于最大光子电流的UVcount参数处理和计算;初始输入的光电子经过MCP百万级别的放大,经过光纤锥107进行采集处理,最终在CCD108屏上完成光电子到图像的转换;经过转换的图像信号经过图像控制处理模块109完成图像的数字化及紫外通道颜色等显示信息的控制,通过控制外加电压Ux完成紫外图像增益控制,通过紫外通道光电流信号IUV完成最大光子电流的UVcount参数的计算。
优选为:所述日盲紫外滤光片的带通波段为240-280nm日盲波段;
优选为:经过多谱段滤光片104之后的紫外通道的光波段为240-250nm,250-260nm,260-270nm和270-280nm。
优选为:所述多通道多谱段滤光片104采用同轴连杆装置,连杆装置的一端与定位盘相连,另一端与控制端相连;多通道多谱段滤光片与同轴连杆装置之间的铆接方式采用错位相切分布,可以实现不同滤光镜片选择与切换的稳定性。
优选为:多通道多谱段滤光片104的位置通过测距盘(202)与激光发射接收器之间的4个特定距离d1,d2,d3,d4来确定,该距离分别对应4个多通道多谱段滤光片的距离(240-250nmL1,250-260nmL2,260-270nmL3,270-280nmL4)。激光测距模块(201)将所测到测距盘(202)的距离d传送给控制端),根据确定各个多谱段滤光片所在位置,并据此发出启动和停止控制电机的命令。
此外,本发明还公开一种采用多谱段日盲窄带紫外成像仪检测不同放电状态的方法,包括如下步骤:
步骤1:放电环境的搭建,主要搭建多参量可控的放电模型;
步骤2:环境参数采集,主要完成对放电相关环境参量的信号采集工作;
步骤3:放电和紫外量化参数采集,主要通过泄漏电流和光强信号放电强度量化参数,紫外量化参数提取;
步骤4:基于放电量化参数和紫外量化参数数据分析,主要包括频谱分析,聚类分析,实现对放电状态的定性和定量化,提取紫外定量和定性的紫外参量;
步骤5:基于深度学习的放电量化参数对紫外量化参数的标定和深度学习系统训练;
步骤6:基于放电紫外量化参数的放电状态识别。
有益效果:
利用而火花放电和电弧放电阶段各个谱段的化学反应及其紫外光放电谱段,解决较强放电情况下成像界面被放电光斑占据的问题。
附图说明
图1多谱段日盲窄带紫外成像仪结构示意图。
图2(a)为连杆机构侧视图,图2(b)为连杆机构俯视图。
图3镜头切换控制流程图。
图4多谱段日盲窄带紫外成像检测原理接线图。
图5基于多谱段日盲窄带紫外成像智能检测识别系统训练阶段。
图6基于多谱段日盲窄带紫外成像智能检测识别系统识别阶段。
其中:101镜头,102分光镜,103日盲滤光片,104多通道多光谱滤光片、105光电阴极,106微通道板MCP,107光纤锥、108成像电荷耦合元件CCD,109图像控制处理模块,110可见光相机,201激光测距模块,202测距盘,203支架,204镜片,205连杆轴,206齿轮转盘,207传送带,208步进电机电源,209电机位置控制线,210步进电机,211位置传输线,401高压电源,402光电倍增管,403气压控制阀门出口,404湿度控制器,405接地和泄漏电流测量模块,406循环工质温度控制单元,407散冷(热)循环工质及导管,408散冷(热)翅片组,409超声波和超高频传感器,410透紫外玻璃观察窗,411紫外成像仪,412、413针板(棒棒、棒板)电极,414温度、湿度和气压可控研究腔体,415温度控制贴片。
具体实施方式
下面将结合本发明中的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
由图1可知,多谱段日盲窄带紫外成像仪包括镜头101、分光镜102、标准日盲紫外滤光片103、多通道多谱段滤光片104、光电阴极105、微通道板(Microchannel plate,MCP)106、光纤锥107、成像电荷耦合元件(Charge-coupled Device,CCD)108及对ultravioletcount(UV count)和紫外光斑(ultravioletspot,UV spot)进行图像控制处理的图像控制处理模块109、可见光相机110。
自然光和放电等发出的光通过感光面积达30cm2的镜头进入分光镜102,分光镜将光线分为相互独立的可见光通道和紫外通道。可见光通道的经分光镜102折射和反射之后进入可见光相机110,进行可见光成像。可见光图像与紫外图像经过图像配准和图像融合之后,可以实现对放电位置的定位。
紫外通道透过分光镜102输出的光线经过日盲紫外滤光片103后并经过多谱段滤光片104之后进入紫外像增强器中,并将紫外像增强器处理过的光电子转换图像传输给图像控制处理模块109。紫外通道光进入多谱段滤光片104具有以下主要特点:多谱段(240-250nm,250-260nm,260-270nm和270-280nm),高透过率(特定谱段内的透过率大于18%),深截止(各个波段截止率达到OD6optical density)截止率的计算如公式(1)所示:其中OD为optical density,光密度值,trans为滤光片的透光值。
经过多谱段段滤光片104之后的紫外通道的光波段为240-250nm,250-260nm,260-270nm和270-280nm,在电晕等放电的起始阶段,这个波段的光是很弱的;紫外成像仪紫外通道默认选择的滤光片是日盲波段(240-280nm)。光电阴极-MCP-光纤锥-CCD共同构成紫外像增强器,光电阴极105为具有负电子亲和势的半导体材料,主要采用锑(Sb),碘(I)和诸如锂Li,钠Na,钾K和铯Cs的化合物,采用最多的为CsSb,CsI,新一代的紫外光电阴极材料诸如三材料GaAlN,ZnO等,其主要特点为在紫外和可见光区的领子效率最高可达30%。
为了避免环境干扰,紫外像增强器进行真空处理,并与图像控制处理模块109进行链接。特定谱段的日盲紫外光经过光电阴极之后将光转换为光电子,光电子在MCP106两端外加高压Ux下产生强电场的作用下进入MCP106微通道,与通道壁碰撞产生倍增光电子,倍增光电子采用多阳极读出模块,MCP不同位置所输出的倍增电子对应着不同的阳极二维排列位置,完成光电信号的转换,并记录电子的位置信息与光电流IUV的大小,多阳极阵列输出信号经过光纤锥107进行采集,最终在CCD108屏上完成电信号到图像的转换。荧光屏的成像信号经过图像控制处理模块109完成图像的数字化及紫外通道颜色等显示信息的控制,通过控制外加电压Ux完成紫外图像增益控制,通过紫外通道光电流信号IUV完成最大光子电流的UVcount参数的计算。
根据紫外光和可见光图像的特点,采用刚体变换模型对变换矩阵求解,并用该矩阵完成图像配准。其公式可以表示为:
上式中x和y为分别表示待配准图像中位于(x,y)点的横、纵坐标,x’,y’为(x,y)经过刚体变换后的横、纵坐标,为刚体变换矩阵配准后的紫外通道和可见光成像输入图像进行图像融合:
1)进行NSST(Non-subsampled Shearlet Transform,非下采样剪切波)分解,分别得到对应图像的高频子带系数和低频子带系数;
2)对各自的高、低频子带系数分别通过高频融合规则和低频融合规则进行融合,得到融合后的高、低频系数;
3)将融合后的系数作为输入,利用NSST重构函数其进行处理,得到最终融合后的图像。
多通道多谱段滤光片104采用同轴连杆装置,连杆装置的一端与测距盘202相连,另一端与控制端相连。多通道多谱段滤光片104与同轴连杆装置之间的铆接方式采用错位相切分布,可以实现不同滤光镜片选择与切换的稳定性,保证其互不干扰。
多通道多谱段滤光片104的控制可以设置为自动切换和手动切换两种模式,最终实现紫外成像统计参数的处理。
在图像控制处理模块109中设置“是否开启镜头自动切换软开关a”,具有0和1两个可选值,当自动切换开关a为1,为自动调节模式,自动切换开关a为0时,为手动选镜头模式。可以根据是否开启镜头自动切换软开关a的值实现手动和自动镜片切换方式的选择,默认为自动切换模式。
当控制模式为自动切换时,连杆装置的控制端通过传送带与步进电机210相连接,步进电机在收到图像控制处理模块109发出的启动命令之后启动步进电机,控制开始时,将定投的调节次数T置零,通过传动装置旋转连杆装置实现对不同谱段镜片的切换,当收到停止命令之后,步进电机停止工作,每切换成功一次(镜头所在位置L发生变化),调节次数变为T+1,计算并记录镜片位置L和相应的R值,当切换次数大于3时(所有镜片切换过一遍),控制器发出命令,将镜头自动切换为位置L所对应激光发射接收器距离d,继续执行紫外成像统计参数处理。
当自动切换开关a为0时,控制模式为手动切换,用户通过界面选择希望的光谱段,控制端判断镜片所在位置L是否与用户算选谱段Luser一致,如果一致,则给出反馈信息“已成功切换至所选谱段”;随后进行紫外成像统计参数处理;如果多通道多谱段滤光片(104)所在位置L与用户所算选谱段镜片所在位置Luser不一致(L≠Luser),图像控制处理模块109启动步进电机,通过传动装置旋转连杆装置切换至所选谱段镜头,当激光测距模块(201)给出距离与所选谱段一致时,图像控制处理模块109发出停止命令,步进电机停止工作,并给出反馈信息“已成功切换至所选谱段”并继续执行紫外成像统计参数处理。
其中,多通道多谱段滤光片104的位置通过测距盘(202)与激光发射接收器之间的不同4个特定距离d1,d2,d3,d4来确定,该距离分别对应4个多通道多谱段滤光片(240-250nmL1,250-260nm L2,260-270nm L3,270-280nm L4)的距离。不同紫外波段及其指定距离之间的关系如公式(3)所示:
其中,d为激光发射接收器不同距离,SUV_band为设备的滤光片波段激光测距模块(201)将所测到测距盘(202)的距离d传送给控制端,根据确定各个多谱段滤光片所在位置,并据此发出启动和停止控制电机的命令。其中,对多通道滤光片104的采用自动控制策略,通过控制采用光斑面积Suv与可见光成像范围Svi的比值阈值设定(默认为0.4)则进行镜头切换,并且具有已切换滤光片的记忆功能,当上述比值R不满足要求时,自动选择具有最小R值的滤光片。R计算公式及其分类准则如公式(4)和公式(5)所示:
其中光斑面积Suv的计算公式为,其中m,n分别为经过CCD屏上经过二值化的图像行和列,B(x,y)为大于一定阈值的成像点,Svi为可见光面积,其值为成像选取的图像分辨率的长于宽的乘积。K为是否进行进攻图切换的判断常数,当k=0时,系统判定不进行镜头切换操作,当k=1时,判定为需要进行镜头切换。
多通道多谱段滤光片104及其控制模块结构如图2所示。
1)激光测距模块(201)与测距盘(202)相匹配,两者之间的距离分为d1,d2,d3,d44个等级;
2)测距盘(202)与L1,L2,L3,L4四组镜片(204),齿轮转盘(206)通过连杆轴(205)固定链接在一起,连杆轴通过轴承实现与支架(203)之间的单轴连接,使连杆轴及其固定链接的器件可以绕轴承转动;
3)激光测距模块(201)所测得到测距盘(202)的距离d1,d2,d3,d4时,进光口位置分别对应连轴杆的L1,L2,L3,L4四组镜片(204),4组镜片采用同轴连杆装置之间的铆接方式采用错位相切分布;
4)步进电机(210)通过传送带(207)与齿轮转盘(206)连接,通过步进电机转动控制连杆轴的位置,实现镜片位置的控制;
5)激光测距模块(201)将数据通过位置传输线(211)传输给图像控制处理模块109;
6)图像控制处理模块109处理激光测距模块(201)得到的距离信号确定当前镜片,根据控制程序调制步进电机(210)的电源,实现电机启动和停止的控制,进而实现投入镜片的切换。
例如,当镜头位于240-250nm谱段位置时,激光测距模块(201)得到d1距离,并将信息发出给控制端,控制端发出启动控制电机命令,连杆机构开始转动,当激光测距模块(201)得到d2距离时,终端发出停止控制电机命令,镜头成功切换为250-260nm谱段。其余谱段镜片的切换与此类似。
经过上述方案,仪器可以实现对日盲紫外波段的镜头进行精细化控制,解决不同放电阶段所发射的光谱位于不同谱段,而240-280nm波段成像无法区分的问题;解决在较为放电严重程度的情况下,被紫外图像占满成像画面的问题。
采用基于氘灯-单色仪-积分球组成精细化的,240-280nm的波段微光测试单元,实现1×10-19W/cm2级别光照控制,实现对紫外通道的校准调试;
基于深度学习的日盲紫外成像智能诊断方法作为一种非接触式的放电诊断测试方法,具有安全,可定位,方法简单,诊断准确度搞等优点,基于较高准确度的电和非电参量放电分级测试校准和放电量化参数和紫外量化参数数据分析实现基于深度学习的日盲紫外成像智能诊断。该诊断方法的主要步骤主要包括:步骤1:放电环境的搭建,主要搭建多参量可控的放电模型;
步骤2:环境参数采集,主要完成对放电相关环境参量的信号采集工作;
步骤3:放电和紫外量化参数采集,主要通过泄漏电流和光强信号等电放电强度量化参数,紫外量化参数提取;
步骤4:基于放电量化参数和紫外量化参数数据分析,主要包括频谱分析,聚类分析,实现对放电状态的定性和定量化,提取紫外定量和定性的紫外参量;
步骤5:基于深度学习的放电量化参数对紫外量化参数的标定和深度学习系统训练;
步骤6:基于放电紫外量化参数的放电状态识别。
步骤1放电环境的搭建,放电腔体414为研究腔体,采用采用针板电极(可换为棒棒,板板电极)412,413,进行放电状态分级理论测试,两者之间的距离可调节。腔体中,采用温度控制贴片415实现腔体温度的控制,采用散冷(热)翅片组408,循环工质温度控制单元406,散冷(热)循环工质及导管407实现腔体内放电环境温度控制;采用404湿度控制器实现放电环境湿度控制;采用气压控制阀门403实现放电环境气压控制。
步骤2中,环境参数采集,主要控制采集的环境参量主要包括:环境温度、湿度、气压,电极种类,电极距离,观测距离。
试验中温度范围选择为-20℃~50℃,相对湿度变化在10%~100%范围。电极种类包括棒棒,棒板和针板电极,分别模拟不同电气设备不同放电严重程度的情况,电极距离分别采用10cm,20cm,30cm。现场检测时,观测距离范围为3-100m,具体参数范围的选择如表所示。
表模型试验参数范围的选择
表模型试验参数范围的选择
步骤3中,放电和紫外量化参数采集,在放电的测试过程中,同步记录施加电压值,并通过电流传感器采集分析泄漏电流、光电倍增管402采集光强信号、声音传感器409采集超声波和超高频信号,将放电光参数和紫外成像仪采集的紫外参量411同步策略,将同一放电时刻所得的电信号参数和紫外参量进行精确到1ms的精细化映射。
步骤4基于放电量化参数和紫外量化参数数据分析,主要对包括泄漏电流、紫外放电量化参数、超声和超高频等参量的频谱、聚类分析,实现对放电状态的定性和定量分析。
紫外定量和定性参量及其信号处理主要包括:
1)泄漏电流传感器405采集放电产生的泄漏电流Ileakage,对得到的泄漏电流进行傅里叶变化,其变换如公式(6)所示:
其中,i(t)为测得的泄漏电流模拟信号,αn和βn分别表示信号中含有的倍频分量的幅值。分析变换所得的频域分量,用于电晕,闪络等放电过程的分级和测定。
采用高时间分辨率的光电倍增管402,采集并分析不同放电阶段产生的光强度D,研究D随时间的变换特性与泄漏电流随时间变换的相关性,相关性计算如公式(7)所示:
其中,D和I分别表示放电产生的光强和泄漏电流在某一时间的连续值,cov为正时表示正相关,cov为负时表示负相关,cov的幅值表示相关程度。基于此确定采用光强与泄漏电流的方式确定放电强度的可行性。
3)超声波和超高频传感器409。采集放电产生的信号U,并对其进行傅里叶变化,其变换如公式(8)所示:
其中,u(t)为测得的超声波模拟信号,an和βn分别表示信号中含有的频率为w/2p分量的幅值。分析变换所得的频域分量,用于电晕,闪络等放电过程的分级和测定。
4)紫外放电量化参数411。通过调节MCP和CCD成像形成的PUVcount量化参数和放电形成的光斑参数S序列如(9)和(10)所示:
P=[p0…,pn-1]T,n为采样点数 (9)
S=[s0…,sn-1]T,n为采样点数 (10)
将得到的PUV count量化参数和放电形成的光斑参数S序列进行离散傅里叶变换,得到时域统计参数和频域分布参数,以光斑参数序列S为例,离散傅里叶变换如公式(11)、(12)所示:
其中,S表示紫外成像仪记录的放电产生的光斑参数序列,经过分析得到S的采样序列为i[n],经过转换得到的频域分量。光斑参数序列S经过离散傅里叶变换之后,得到的n维向量F,其表达式及其构成如公式(13)、(14)所示:
其中,公式(13)又称为傅里叶矩阵,通过公式(12)和傅里叶矩阵可以得到光斑参数序列S的频域信息,实现离散的光斑参数信息于连续的电压和泄漏电流信号进行基于频域的相关度分析,具体步骤见公式(6),为紫外成像方法对放电状态的区分提供一种心得方法,采用同样的方法可以得到PUV count量化参数的相关信息。
5)基于K-means聚类算法的数据处理。采用紫外量化参数及其统计参数的量化分析。
1)-4)中的放电量化参数包括PUV count量化参数和放电形成的光斑参数S,统计参数包括放电最大值,均值,方差,最大值出现频率。
K-means聚类算法对泄漏电流脉冲峰值,超声信号和放电量等电参数对放电状态进行聚类,获得4种放电状态的聚类中心,根据各个参数的数值将放电分为强,中,弱和无放电4种状态,分别对应电弧放电,火花放电,电晕放电和无放电状态;
K-means样本值:
T{(x1,y1),(x2,y2),...,(xn,y n)} (15)
其中,xi属于由实数组成的n维实特征向量分别对应着统一放电的泄漏电流脉冲峰值,超声信号和放电量等电参数对放电状态参数,yi为实例的类别,对应着电弧放电,火花放电,电晕放电和无放电状态其对应值为0,1,2,3。
距离变量为:
其中,Lp(xi,xj)定义为xi=(xi (1),xi (2),…,xi (n))T和xj=(xj (1),xj (2),…,xj (n))T的Lp距离,p可取的值为正整数集,当p=1时成为曼哈顿距离,当p=2时代表欧氏距离,当p=∞时代表各个坐标距离的最大值。
步骤5:基于深度学习的放电量化参数对紫外量化参数的标定和深度学习系统训练。
深度学习隶属于神经网络,其特点和核心是采用端到端的方式实现图片、声音信息的检测识别,在网络框架的构架过程中,采用卷积计算对图片和声音信号进行抽象信号的提取。
将类别检测和bounding box预测的预测是否为同步,深度学习完成分为twostage和one-stage两种检测方法,前者以R-CNN和Faster R-CNN为代表,优点为具有较高的识别精度,缺点是识别速度偏慢;对比而言,YOLO(YouOnly Look Once)是具有更快的识别速度基于Darknet的深度学习网络框架one-stage检测方法,经过了3个阶段的发展,YOLOv4采用SSP(spatial pyramid pooling)和PAN(pathaggravation network)作为网络框架的中间部分,采用了诸如马赛克数据扩充(Mosaic data augmentation,MSA),DropBlock正则化方法,分类标签平和化,Mish激活函数等网络优化调优方法,使得检测速度更快,并提高了检测精度。
YOLOv4框架以darknet53作为骨架,以SPP和PAN作为中间(Neck)框架,以YOLOv3作为网络出口(head),总共包含110个卷积层,3个最大值池化层,23个shortcut层,18个route层。
darknet53中的卷积层采用mish作为激活函数,其表达式如式(18)所示:
y=xgtanh(lh(1+ex)) (18)
Mish是一个平滑的曲线,平滑的激活函数允许更好的信息深入神经网络,从而得到更好的准确性和泛化;在负值的时候并不是完全截断,允许比较小的负梯度流入。
中间框架采用leaky-RELU作为激活函数,其中,3个池化层和3个route层组成SPP,leaky-RELU的计算公式如(19)所示。
y=max(0.1x,x) (19)
当x<0时,它得到0.1的正梯度。它具备ReLU激活函数的所有特征,如计算高效、快速收敛、在正区域内不会饱和,但与mish相比,该函数的结果并不连贯。Shortcut层和三个主体之间的链接层采用线性函数y=x作为激活函数。
网络出口(head)除三个主体之间的3个检测尺度的链接层采用线性函数y=x作为激活函数外,其余均采用leaky-RELU作为激活函数。
网络参数的训练方面如图5所示,智能评估系统(503)作为一个端到端的诊断系统,通过超参数(学习率等)、激活函数对网络的训练过程进行调优,分析其对IOU、Recall、mAP、avgLoss等评价参数的影响,完成具有最佳识别训练效果网络框架参数的选择,实现放电的紫外图像统计参数(502)和放电状态聚类参数(504)的匹配。
1)在匹配紫外成像镜头光谱段参数(501)的基础上,放电的紫外图像信息(502)包括紫外图像、视频,紫外图像统计参数和UV count统计参数;
2)放电状态聚类参数(504)包括“无放电”、“电晕放电”、“弧光放电”和“火花放电”,其在放电参量(505)的基础上完成聚类;
3)在训练过程中,网络放电状态聚类参数作为训练过程中原始输入数据的label信息,是实现网络分类的重要依据;
4)在训练和识别过程中,紫外图像信息(502)作为网络的输入信息;
5)紫外图像信息(502)和放电参量(505)使用精确到ms的数据同步触发,实现使光电信息同步。
本方法在对YOLOv4框架的基础上提出了网络误差的AP-loss改进方法,改进方法具体包括:
1)首先对标注框(x,y,w,h)和放电状态聚类参数(504,“无放电”、“电晕放电”、“弧光放电”和“火花放电”)进行转换,得到标注框和放电状态聚类参数(标注值)的变换格式,如式(20)和式(21)所示:
xkm=-(αkm) (20)
式中:k和m分别表示一张图片中第k行m列个锚框,和分别为两标注框重叠度的指标和转换后的标注值;α和β分别为锚框的真值匹配度标量评分和原始标注值。
2)经过变换后的网络误差计算如式22所示:
式中:H(x)为符号函数,仅当x>0时取1,否则为0;和分别为标注值1和0的数据组的集合。
3)经过变换后的网络的最小化目标函数如式(23)和式(24)所示:
其中,和/>分别为评分αk在正样本和所有有效样本中的排序;L(x)和y为所有Lkm和ykm组成的d维向量;其中d为所有标注框的有效数目;为系统优化参数。
4)对score函数求导数得到网络的反向传播梯度如式(25)所示
在误差计算函数的基础上,利用链式求导计算损失函数对每个权重的偏导数(梯度),然后根据梯度下降公式更新权重。
1)前向计算每个神经元的输出值αj(其中j表示网络的第j个神经元);
2)反向计算每个神经元的误差项Φj,也叫敏感度,其实际上是网络的损失函数Ed对神经元加权输入Inj的偏导数,即
3)计算每个神经元连接权重ωij的梯度(表示从神经元i连接到神经元j的权重,即),其中,αi表示神经元i的输出。
4)根据梯度下降法则更新每个权重公式为:
其中为学习率,为第i个样本的特征值,为第i个样本的标记值,在本方法中为4种放电状态,分别为电弧放电,火花放电,电晕放电和无放电状态,为模型对第i个样本的预测值,如根据网络输入参数的计算,将放电状态预测为无放电。
步骤6:基于放电紫外量化参数的放电状态识别过程如图6所示,将紫外图像信息(603)输入经过训练的智能评估系统(604),经过网络运算后给出放电评估结果(605)
1)紫外图像信息(603)将获得的电气设备放电的信息进行统计处理(502),具体包括可见光和紫外融合、紫外光成像和可见光图片(602)或经过统计处理的紫外视频(601),将统计信息作为附加参数,同图片和视频信号一起,打包送入智能评估系统,进行识别;
2)智能评估系统(604)通过调用步骤5中经过系统loss最小化和网络参数调优训练得到的网络参数(503),通过输入信息,进行卷积计算,提取图像和视频的抽象特征,最终给出放电评估(605)
3)放电评估(605)结果包括“无放电”、“电晕放电”、“弧光放电”和“火花放电”。
通过采用多谱段日盲窄带紫外成像仪及其检测不同放电状态的智能诊断方法,对日盲紫外波段光谱进行了细分,制定了多谱段窄带滤光片的自动和手动控制策略,解决在现场检测时发生较严重的放电情况下,可见光图像被紫外光斑图像覆盖的问题;提出了包括泄漏电流、紫外放电量化参数、超声和超高频等参量的频谱、聚类分析,实现对放电状态的定性和定量分析,实现了基于多光谱紫外成像的放电量化;采用改进了loss误差函数的深度学习智能诊断算法对经过量化分级的紫外图像和视频进行了训练,解决了现场检测过程中产生放电严重程度的智能评估问题。
在以上的描述中阐述了很多具体细节以便于充分理解本发明。但是以上描述仅是本发明的较佳实施例而已,本发明能够以很多不同于在此描述的其它方式来实施,因此本发明不受上面公开的具体实施的限制。同时任何熟悉本领域技术人员在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (7)

1.多谱段日盲窄带紫外成像仪,当光线通过镜头进入分光镜后,分别进入两个相互独立的可见光通道和紫外通道;其特征为:
所述可见光通道:光线经过分光镜的折射和反射后进入可见光相机,进行可见光成像并将可见光成像传输给图像控制处理模块;所述可见光成像进行基于深度学习的电气设备本体识别,同时可见光图像与紫外光图像经过图像配准和图像融合,两者的融合精度为若干毫弧度,实现放电位置的精准定位;
所述紫外通道:透过分光镜输出的光线经过日盲紫外滤光片后并经过多谱段滤光片之后进入紫外像增强器中,并将紫外像增强器处理过的光电子转换图像传输给图像控制处理模块;
多通道所述多谱段滤光片采用同轴连杆装置,连杆装置的一端与测距盘相连,另一端与控制端相连;多通道多谱段滤光片与同轴连杆装置之间的铆接方式采用错位相切分布,实现不同滤光镜片选择与切换的稳定性;
多谱段滤光片的位置是通过测距盘与激光发射接收器之间4个特定距离d1,d2,d3,d4来确定,该距离分别对应4个多通道多谱段滤光片:
240-250nm L1,250-260nm L2,260-270nm L3,270-280nm L4;激光测距模块将所测到测距盘的距离d传送给控制端,根据确定各个多谱段滤光片所在位置,并据此发出启动和停止控制电机的命令。
2.根据权利要求1所述的多谱段日盲窄带紫外成像仪,其特征为:所述紫外像增强器进行真空处理,并与图像控制处理模块进行链接;所述紫外像增强器包括顺序设置的光电阴极、微通道板MCP、光纤锥、CCD。
3.根据权利要求2所述的多谱段日盲窄带紫外成像仪,其特征为:所述多谱段滤光片输出的日盲紫外光经过所述光电阴极之后将光转换为光电子,光电子在强电场的作用下进入微通道板MCP的微通道,与通道壁碰撞产生光电子的倍增,并完成基于最大光子电流的UVcount参数处理和计算;初始输入的光电子经过MCP百万级别的放大,经过光纤锥进行采集处理,最终在CCD屏上完成光电子到图像的转换。
4.根据权利要求1所述的多谱段日盲窄带紫外成像仪,其特征为:所述日盲紫外滤光片的带通波段为240-280nm日盲波段。
5.采用多谱段日盲窄带紫外成像仪检测不同放电状态的方法,包括权利要求1-4任一所述的多谱段日盲窄带紫外成像仪,其特征为:包括如下步骤:
步骤1:放电环境的搭建,主要搭建多参量可控的放电模型;
步骤2:环境参数采集,主要完成对放电相关环境参量的信号采集工作;
步骤3:放电和紫外量化参数采集,主要通过泄漏电流和光强信号放电强度量化参数,紫外量化参数提取;
步骤4:基于放电量化参数和紫外量化参数数据分析,主要包括频谱分析,聚类分析,实现对放电状态的定性和定量化,提取紫外定量和定性的紫外参量;
步骤5:基于深度学习的放电量化参数对紫外量化参数的标定和深度学习系统训练;
步骤6:基于放电紫外量化参数的放电状态识别。
6.根据权利要求5所述的采用多谱段日盲窄带紫外成像仪检测不同放电状态的方法,其特征为:所述步骤1进一步包括:
所述放电环境的搭建包括以放电腔体为研究腔体,采用针板电极进行放电状态分级理论测试,两者之间的距离可调节;腔体中,采用温度控制贴片实现腔体温度的控制,采用散冷/热翅片组,循环工质温度控制单元,散冷/热循环工质及导管实现腔体内放电环境温度控制;采用湿度控制器实现放电环境湿度控制;采用气压控制阀门实现放电环境气压控制。
7.根据权利要求5所述的采用多谱段日盲窄带紫外成像仪检测不同放电状态的方法,其特征为:所述步骤5进一步包括:
1)首先对标注框(x,y,w,h)和放电状态聚类参数进行转换,得到标注框和放电状态聚类参数,即标注值的变换格式,如式(19)和式(20)所示:
xkm=-(αkm) (19)
式中:k和m分别表示一张图片中第k行m列个锚框,xkm和ykm分别为两标注框重叠度的指标和转换后的标注值;α和β分别为锚框的真值匹配度标量评分和原始标注值;
2)经过变换后的网络误差计算如式(21)所示:
式中:H(x)为符号函数,仅当x>0时取1,否则为0;∧和T分别为标注值1和0的数据组的集合;
3)经过变换后的网络的最小化目标函数如式(22)和式(23)所示:
其中,和/>分别为评分αk在正样本和所有有效样本中的排序;L(x)和y为所有Lkm和ykm组成的d维向量;其中d为所有标注框的有效数目;λ为系统优化参数;
4)对score函数求导数得到网络的反向传播梯度如式(24)所示:
在误差计算函数的基础上,利用链式求导计算损失函数对每个权重的偏导数,即梯度,然后根据梯度下降公式更新权重;
(1)前向计算每个神经元的输出值αj,其中j表示网络的第j个神经元;
(2)反向计算每个神经元的误差项Φj,也叫敏感度,其实际上是网络的损失函数Ed对神经元加权输入Inj的偏导数,即
(3)计算每个神经元连接权重ωij的梯度,即表示从神经元i连接到神经元j的权重,即其中,αi表示神经元i的输出;
4)根据梯度下降法则更新每个权重公式为:
其中η为学习率,xi为第i个样本的特征值,yi为第i个样本的标记值,在本方法中为4种放电状态,分别为电弧放电,火花放电,电晕放电和无放电状态,为模型对第i个样本的预测值,根据网络输入参数的计算,将放电状态预测为无放电。
CN202011162020.0A 2020-10-27 2020-10-27 多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法 Active CN112285504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011162020.0A CN112285504B (zh) 2020-10-27 2020-10-27 多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011162020.0A CN112285504B (zh) 2020-10-27 2020-10-27 多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法

Publications (2)

Publication Number Publication Date
CN112285504A CN112285504A (zh) 2021-01-29
CN112285504B true CN112285504B (zh) 2023-11-17

Family

ID=74372204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011162020.0A Active CN112285504B (zh) 2020-10-27 2020-10-27 多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法

Country Status (1)

Country Link
CN (1) CN112285504B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113009294B (zh) * 2021-02-25 2022-05-03 西安交通大学 非透镜的放电定位装置及方法
CN113361631A (zh) * 2021-06-25 2021-09-07 海南电网有限责任公司电力科学研究院 基于迁移学习的绝缘子老化光谱分类方法
CN113838013A (zh) * 2021-09-13 2021-12-24 中国民航大学 基于YOLOv5的航空发动机运维中叶片裂纹实时检测方法及装置
CN114167225A (zh) * 2021-10-07 2022-03-11 国网山东省电力公司潍坊供电公司 输电线路自动识别缺陷的紫外光检测装置和产品
CN113805022A (zh) * 2021-10-14 2021-12-17 山东达驰高压开关有限公司 基于光电联合技术对组合电器绝缘性能检测方法和设备
CN114166852B (zh) * 2021-12-06 2024-03-15 国网宁夏电力有限公司超高压公司 基于多光谱检测的平波电抗器在线监测方法及系统
CN114966472B (zh) * 2022-08-01 2022-10-21 云南电力试验研究院(集团)有限公司 一种电弧光谱识别方法和装置
CN117607636B (zh) * 2023-11-30 2024-05-14 华北电力大学 多光谱融合的感传存算一体化高压放电检测方法
CN117406686B (zh) * 2023-12-15 2024-02-23 上海力兹照明电气有限公司 一种氘灯制备产线制造和质量检测控制方法及装置
CN118334818B (zh) * 2024-06-12 2024-08-16 太原理工大学 一种基于互补成像的远距离火灾预警系统及方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005536A1 (en) * 1998-07-20 2000-02-03 Ofil Ltd. Solar blind uv viewing apparatus and camera
CN201689138U (zh) * 2010-03-25 2010-12-29 浙江红相科技有限公司 基于窄带光谱的日盲型紫外成像仪
CN103018640A (zh) * 2012-11-27 2013-04-03 华北电力大学(保定) 高压绝缘子表面电晕放电强度测试方法
CN103412407A (zh) * 2012-10-20 2013-11-27 江苏五维电子科技有限公司 多谱段图像采集系统
CN104280670A (zh) * 2014-09-26 2015-01-14 北京环境特性研究所 一种基于日盲紫外成像仪的电晕检测方法
CN105467271A (zh) * 2015-11-20 2016-04-06 中国科学院长春光学精密机械与物理研究所 多谱段输电线路故障检测系统
CN106771912A (zh) * 2016-12-10 2017-05-31 中国科学院长春光学精密机械与物理研究所 输电线路故障检测装置及方法
CN206248773U (zh) * 2016-12-20 2017-06-13 南京卓实电气有限责任公司 一种应用于电晕检测的日盲紫外成像仪
CN107015125A (zh) * 2017-02-04 2017-08-04 国网河北省电力公司电力科学研究院 一种基于红外、紫外和可见光的一体化检测方法和装置
CN206832940U (zh) * 2017-06-15 2018-01-02 深圳中科天衢能源安全技术有限公司 具有虹膜识别功能的日盲紫外成像仪
CN208092177U (zh) * 2018-03-30 2018-11-13 中国南方电网有限责任公司超高压输电公司检修试验中心 一种基于紫外光子数校正的新型紫外成像仪
CN109375068A (zh) * 2018-09-26 2019-02-22 北京环境特性研究所 一种基于紫外成像电晕检测的目标识别方法及装置
CN110161374A (zh) * 2019-06-18 2019-08-23 苏州微纳激光光子技术有限公司 一种日盲紫外成像背景光抑制光学系统及方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005536A1 (en) * 1998-07-20 2000-02-03 Ofil Ltd. Solar blind uv viewing apparatus and camera
CN201689138U (zh) * 2010-03-25 2010-12-29 浙江红相科技有限公司 基于窄带光谱的日盲型紫外成像仪
CN103412407A (zh) * 2012-10-20 2013-11-27 江苏五维电子科技有限公司 多谱段图像采集系统
CN103018640A (zh) * 2012-11-27 2013-04-03 华北电力大学(保定) 高压绝缘子表面电晕放电强度测试方法
CN104280670A (zh) * 2014-09-26 2015-01-14 北京环境特性研究所 一种基于日盲紫外成像仪的电晕检测方法
CN105467271A (zh) * 2015-11-20 2016-04-06 中国科学院长春光学精密机械与物理研究所 多谱段输电线路故障检测系统
CN106771912A (zh) * 2016-12-10 2017-05-31 中国科学院长春光学精密机械与物理研究所 输电线路故障检测装置及方法
CN206248773U (zh) * 2016-12-20 2017-06-13 南京卓实电气有限责任公司 一种应用于电晕检测的日盲紫外成像仪
CN107015125A (zh) * 2017-02-04 2017-08-04 国网河北省电力公司电力科学研究院 一种基于红外、紫外和可见光的一体化检测方法和装置
CN206832940U (zh) * 2017-06-15 2018-01-02 深圳中科天衢能源安全技术有限公司 具有虹膜识别功能的日盲紫外成像仪
CN208092177U (zh) * 2018-03-30 2018-11-13 中国南方电网有限责任公司超高压输电公司检修试验中心 一种基于紫外光子数校正的新型紫外成像仪
CN109375068A (zh) * 2018-09-26 2019-02-22 北京环境特性研究所 一种基于紫外成像电晕检测的目标识别方法及装置
CN110161374A (zh) * 2019-06-18 2019-08-23 苏州微纳激光光子技术有限公司 一种日盲紫外成像背景光抑制光学系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AlGaN紫外探器及其应用;黄翌敏 等;《红外与激光工程》;20070630;第36卷(第增刊期);209-213 *
Estimation of discharge magnitude of composite insulator surface corona discharge based on ultraviolet imaging method;Shenghui Wang. et al;《IEEE Transactions on Dielectrics and Electrical Insulation》;20140831;第21卷(第4期);1697-1704 *
基于日盲PMT的绝缘子表面放电光信号检测系统;王胜辉 等;《电测与仪表》;20160225;第53卷(第4期);39-45 *

Also Published As

Publication number Publication date
CN112285504A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN112285504B (zh) 多谱段日盲窄带紫外成像仪及其检测不同放电状态的方法
CN112130316B (zh) 多通道多谱段滤光片结构及其应用、方法
US6181414B1 (en) Infrared spectroscopy for medical imaging
CN102081039A (zh) 一种环境可控的作物营养水分高光谱图像检测装置
CN105372203B (zh) 基于多传感器融合的新鲜苹果损伤敏感度无损检测方法
CN103018640A (zh) 高压绝缘子表面电晕放电强度测试方法
CN112345458A (zh) 一种基于无人机多光谱影像的小麦产量估测方法
CN106290238A (zh) 一种基于高光谱成像的苹果品种快速鉴别方法
CN109557003B (zh) 一种农药沉积量检测方法、装置及数据采集组合装置
CN102252678B (zh) 高动态高更新率星敏感器及其实现方法
CN109738442B (zh) 一种基于大视野x射线可见光配准成像的水稻稻穗性状全自动提取系统
CN111157225A (zh) 一种基于Labview的EMCCD芯片全性能参数测试方法
CN110186566A (zh) 基于光场相机多谱测温的二维真实温度场成像方法及系统
CN115424006A (zh) 应用于作物表型参数反演的多源多层次数据融合方法
CN112730275B (zh) 显微光谱成像系统、农药检测系统及其方法
CN210775225U (zh) 基于拉曼光谱的果实成熟度检测与采摘装置
CN115656202B (zh) 用于绝缘子表面状态的多波段光学检测装置
CN111175239A (zh) 深度学习下的彩绘类文物成像高光谱无损检测与识别系统
CN111398138A (zh) 一种干式血液细胞分析装置的光学检测系统及方法
CN112926702A (zh) 主动光源式物体材质识别系统及方法
CN114414577B (zh) 一种基于太赫兹技术对塑料产品检测的方法及系统
CN206452568U (zh) 具有分析系统的微波炉
CN108593104A (zh) 一种小型高信噪比手持式光谱检测系统
CN111579217B (zh) 检测光纤传像元件的可见光传输效率的方法、装置及系统
CN209605943U (zh) 一种荧光高光谱测试系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant