CN112186051B - 一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法 - Google Patents

一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN112186051B
CN112186051B CN202011093170.0A CN202011093170A CN112186051B CN 112186051 B CN112186051 B CN 112186051B CN 202011093170 A CN202011093170 A CN 202011093170A CN 112186051 B CN112186051 B CN 112186051B
Authority
CN
China
Prior art keywords
cugao
solution
beta
drying
placing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011093170.0A
Other languages
English (en)
Other versions
CN112186051A (zh
Inventor
冯云龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Light Electronic Technology Co ltd
Original Assignee
Hebei Light Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Light Electronic Technology Co ltd filed Critical Hebei Light Electronic Technology Co ltd
Priority to CN202011093170.0A priority Critical patent/CN112186051B/zh
Publication of CN112186051A publication Critical patent/CN112186051A/zh
Application granted granted Critical
Publication of CN112186051B publication Critical patent/CN112186051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明属于光探测器技术领域,具体涉及一种F‑β‑Ga2O3/CuGaO2紫外光电探测器及其制备方法,该制备方法的步骤包括:先用乙酸铜、硝酸镓和NaOH反应制得CuGaO2纳米片,然后以硝酸镓为Ga源,辅以NaF分别制备负载在CuGaO2纳米片上的F‑β‑Ga2O3/CuGaO2和纯的F‑β‑Ga2O3;然后将两张材料先后涂在叉指电极上并用热蒸发在薄膜上制备Au电极,得到F‑β‑Ga2O3/CuGaO2紫外光电探测器。本发明所述紫外光电探测器具备高的的光敏度和响应度,探测器响应速度快。

Description

一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法
技术领域
本发明属于光探测器技术领域,具体涉及一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法。
背景技术
太阳光可以分为三个波段,紫外区、可见区,红外区;小于400nm波段的波段为紫外波段。除了在航空航天及军事领域,如太空中的辐射探测等对紫外探测技术有一定的要求外;在民用领域,由于紫外辐射会对人体内的维生素合成、紫外致癌等产生影响,也对紫外探测有一定的需求。
光电探测器是一种通过光电信号转变而实现感知探测的重要光电器件,光电探测主要通过以下步骤完成检测:首先在外界光辐射的情况下探测器产生光生载流子,然后光生载流子通过扩散和漂移的形式在半导体内部进行输运和倍增,最后光生载流子形成的光电流被两端电极收集,从而实现了对外界光辐射的检测。
传统上,紫外光的检测方式主要有光电倍增管、热探测器和窄带隙半导体光电二极管。光电倍增管虽然是对紫外光子十分敏感,但是它不仅体积和重量大,并且需要很高的工作电压;热探测器虽然检测效果较好,但是响应速度慢,且不具备波长选择性;窄带隙半导体光电二极管的带隙小,需要额外阻挡可见光和红外光子,进而导致系统的有效面积显著损失。因此制备具有高的响应度、量子效率、响应速度以及信噪比的紫外光电探测器十分必要。
发明内容
针对现有紫外光电探测器的光敏度不高、响应度低和响应速度慢的技术缺陷,本发明提供一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法。
为实现上述目的,本发明采用以下技术方案:
一种F-β-Ga2O3/CuGaO2紫外光电探测器的制备方法,包括以下步骤:
步骤一:将一定量的乙酸铜和适量硝酸镓先后加入去离子水中,室温下超声 15-20min后向溶液中缓慢的滴入适量NaOH溶液,并在50-60℃的水浴中搅拌20-30min,然后向混合溶液中滴入适量乙二醇溶液并在同样温度下继续搅拌 10-13min后静置1-2h,静置后将溶液置于反应釜内衬中在190-210℃下反应 36-48h,自然冷却至室温后用稀硝酸将产物离心洗涤至洗涤液呈中性,随后再用无水乙醇和去离子水交替洗涤4次,然后将产物放在65-70℃的真空干燥箱中烘干得到CuGaO2纳米片。
步骤二:将步骤一制备的CuGaO2纳米片和适量硝酸镓加入去离子水中,超声20-25min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9左右,随后向溶液中加入适量的NaF溶液和α-烯烃磺酸钠溶液,并快速搅拌10-15min;搅拌后将混合溶液置于170-190℃的反应釜中保温24-30h,冷却至室温后将产物用去离子水离子洗涤3次,然后放入60-70℃的干燥箱中18-22h,干燥后将产物放入管式炉中,在氩气气氛下以950℃煅烧2-3h制得F-β-Ga2O3/CuGaO2材料。
步骤三:采用步骤二的制备方法,但在硝酸镓的水溶液中不加入CuGaO2纳米片,制得F-β-Ga2O3材料。
步骤四:将F-β-Ga2O3/CuGaO2材料和F-β-Ga2O3材料分别置于无水乙醇中并超声40-50min;将叉指电极用无水乙醇和去离子水交替洗涤5次后置于60-70℃的干燥箱中烘干,然后将F-β-Ga2O3的无水乙醇溶液滴在叉指电极上,干燥后得到均匀的薄膜,然后在薄膜上滴加F-β-Ga2O3/CuGaO2的无水乙醇溶液并用刮刀涂抹均匀,随后把样品置于50-55℃的真空干燥箱中烘干,烘干后通过热蒸发在薄膜一侧制备Au电极,最后得到F-β-Ga2O3/CuGaO2紫外光电探测器。
所述步骤一中乙酸铜的添加量为20-35mmol,乙二醇的添加量为15-20ml;乙酸铜和硝酸镓的物质的量之比为1:0.8-1:1,乙酸铜和NaOH的物质的量之比为 1:6-1:8。
所述步骤二中硝酸镓和CuGaO2的质量比为0.76:1-1.12:1,NaF和硝酸镓的质量比为1:3.9-1:6.2,α-烯烃磺酸钠和CuGaO2的质量比为1:12-1:16。
所述步骤三中硝酸镓的添加量为40-50mmol,其他物质的用量比和步骤二相同。
优选地,所述步骤一中乙酸铜水溶液的浓度为0.08g/ml;NaOH溶液的浓度均为2.5mol/L,滴加速度均为3ml/min。
优选地,所述步骤二中硝酸镓水溶液的浓度为0.1g/ml;NaOH溶液的浓度均为2.5mol/L,滴加速度均为3ml/min;NaF水溶液的浓度为0.06g/ml;α-烯烃磺酸钠水溶液的浓度为0.03g/ml。
优选地,所述步骤二制备的复合材料中F-β-Ga2O3在CuGaO2纳米片上的负载量为28wt%-41wt%;所述步骤二和步骤三中F在β-Ga2O3的掺杂量为 10wt%-16wt%。
本发明的另一方面提供上述F-β-Ga2O3/CuGaO2紫外光电探测器制备方法制得的紫外光电探测器,本探测器在365nm紫外光、0.2mW/cm2的功率下的光敏度在2100以上,外加电压0V和10V下响应度分别最高可达0.27mA/W和32A/W,响应速度快,上升和下降所用时间分别为70ms和15ms左右。
有益效果:
(1)CuGaO2是形状均一的六角片状结构纳米片,属于大尺寸的二维材料,这样的形状提高了涂覆成膜后的取向,有利于异质结的形成。
(2)β-Ga2O3在F掺杂后成为了n型半导体,由于O和F的离子半径很接近,F十分容易取代O的位置;而且F的掺杂可以拓宽β-Ga2O3的占据态,从而提高材料的光学带隙;掺杂后的材料相对于未掺杂,在载流子密度上也有所提升,进而导致了导电性能的上升。
(3)本发明所述复合方法可以提供更多的空穴注入,提高两种半导体的接触面积,形成了许多局域的p-n结;这些局域p-n结及其附带的局域内建电场的存在影响了内部载流子传输,促进了电子-空穴的分离,提高了光电探测器的灵敏度。
附图说明
图1为实施例1中步骤二制得的F-β-Ga2O3/CuGaO2材料的XRD图;
图2为实施例1制得的紫外光电探测器的I-V曲线。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
步骤一:将3.99g乙酸铜和5.1g硝酸镓先后加入49.9ml去离子水中,室温下超声15min后向溶液中缓慢的滴入63.8ml的NaOH溶液,并在60℃的水浴中搅拌20min,然后向混合溶液中滴入15ml乙二醇溶液并在同样温度下继续搅拌 12min后静置1h,静置后将溶液置于反应釜内衬中在190℃下反应48h,自然冷却至室温后用稀硝酸将产物离心洗涤至洗涤液呈中性,随后再用无水乙醇和去离子水交替洗涤4次,然后将产物放在65℃的真空干燥箱中烘干得到CuGaO2纳米片。
步骤二:将3.3g的CuGaO2纳米片和3.69g硝酸镓加入36.9ml去离子水中,超声20min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9左右,随后向溶液中加入15.8ml的NaF溶液和10.2ml的α-烯烃磺酸钠溶液,并快速搅拌 10min;搅拌后将混合溶液置于190℃的反应釜中保温24h,冷却至室温后将产物用去离子水离子洗涤3次,然后放入60℃的干燥箱中18h,干燥后将产物放入管式炉中,在氮气气氛下以950℃煅烧3h制得F-β-Ga2O3/CuGaO2材料。
步骤三:将10.2g硝酸镓加入102ml去离子水中,超声20min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9左右,随后向溶液中加入43.6ml 的NaF溶液和28.3ml的α-烯烃磺酸钠溶液,并快速搅拌10min;搅拌后将混合溶液置于190℃的反应釜中保温24h,冷却至室温后将产物用去离子水离子洗涤3 次,然后放入60℃的干燥箱中18h,干燥后将产物放入管式炉中,在氮气气氛下以950℃煅烧3h制得F-β-Ga2O3材料。
步骤四:将F-β-Ga2O3/CuGaO2材料和F-β-Ga2O3材料分别置于无水乙醇中并超声50min;将叉指电极用无水乙醇和去离子水交替洗涤5次后置于60℃的干燥箱中烘干,然后将F-β-Ga2O3的无水乙醇溶液滴在叉指电极上,干燥后得到均匀的薄膜,然后在薄膜上滴加F-β-Ga2O3/CuGaO2的无水乙醇溶液并用刮刀涂抹均匀,随后把样品置于55℃的真空干燥箱中烘干,烘干后通过热蒸发在薄膜一侧制备Au电极,最后得到F-β-Ga2O3/CuGaO2紫外光电探测器。
实施例2
步骤一:将7g乙酸铜和7.2g硝酸镓先后加入87.5ml去离子水中,室温下超声20min后向溶液中缓慢的滴入84ml的NaOH溶液,并在50℃的水浴中搅拌 30min,然后向混合溶液中滴入20ml乙二醇溶液并在同样温度下继续搅拌13min 后静置2h,静置后将溶液置于反应釜内衬中在210℃下反应36h,自然冷却至室温后用稀硝酸将产物离心洗涤至洗涤液呈中性,随后再用无水乙醇和去离子水交替洗涤4次,然后将产物放在66℃的真空干燥箱中烘干得到CuGaO2纳米片。
步骤二:将5.78g的CuGaO2纳米片和4.39g硝酸镓加入43.9ml去离子水中,超声25min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9左右,随后向溶液中加入11.8ml的NaF溶液和9.1ml的α-烯烃磺酸钠溶液,并快速搅拌 15min;搅拌后将混合溶液置于170℃的反应釜中保温30h,冷却至室温后将产物用去离子水离子洗涤3次,然后放入70℃的干燥箱中21h,干燥后将产物放入管式炉中,在氮气气氛下以950℃煅烧3h制得F-β-Ga2O3/CuGaO2材料。
步骤三:将12.8g硝酸镓加入128ml去离子水中,超声25min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9左右,随后向溶液中加入34.4ml 的NaF溶液和26.6ml的α-烯烃磺酸钠溶液,并快速搅拌15min;搅拌后将混合溶液置于170℃的反应釜中保温30h,冷却至室温后将产物用去离子水离子洗涤3 次,然后放入70℃的干燥箱中21h,干燥后将产物放入管式炉中,在氮气气氛下以950℃煅烧3h制得F-β-Ga2O3材料。
步骤四:将F-β-Ga2O3/CuGaO2材料和F-β-Ga2O3材料分别置于无水乙醇中并超声47min;将叉指电极用无水乙醇和去离子水交替洗涤5次后置于70℃的干燥箱中烘干,然后将F-β-Ga2O3的无水乙醇溶液滴在叉指电极上,干燥后得到均匀的薄膜,然后在薄膜上滴加F-β-Ga2O3/CuGaO2的无水乙醇溶液并用刮刀涂抹均匀,随后把样品置于50℃的真空干燥箱中烘干,烘干后通过热蒸发在薄膜一侧制备Au电极,最后得到F-β-Ga2O3/CuGaO2紫外光电探测器。
实施例3
步骤一:将5.24g乙酸铜和5.76g硝酸镓先后加入65.5ml去离子水中,室温下超声18min后向溶液中缓慢的滴入68.2ml的NaOH溶液,并在53℃的水浴中搅拌28min,然后向混合溶液中滴入16ml乙二醇溶液并在同样温度下继续搅拌 10min后静置2h,静置后将溶液置于反应釜内衬中在200℃下反应40h,自然冷却至室温后用稀硝酸将产物离心洗涤至洗涤液呈中性,随后再用无水乙醇和去离子水交替洗涤4次,然后将产物放在69℃的真空干燥箱中烘干得到CuGaO2纳米片。
步骤二:将4.33g的CuGaO2纳米片和3.46g硝酸镓加入34.6ml去离子水中,超声23min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9左右,随后向溶液中加入12.1ml的NaF溶液和8.7ml的α-烯烃磺酸钠溶液,并快速搅拌 14min;搅拌后将混合溶液置于178℃的反应釜中保温26h,冷却至室温后将产物用去离子水离子洗涤3次,然后放入63℃的干燥箱中19h,干燥后将产物放入管式炉中,在氮气气氛下以950℃煅烧2h制得F-β-Ga2O3/CuGaO2材料。
步骤三:将11.3g硝酸镓加入113ml去离子水中,超声23min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9左右,随后向溶液中加入39.5ml 的NaF溶液和28.4ml的α-烯烃磺酸钠溶液,并快速搅拌14min;搅拌后将混合溶液置于178℃的反应釜中保温26h,冷却至室温后将产物用去离子水离子洗涤3 次,然后放入63℃的干燥箱中19h,干燥后将产物放入管式炉中,在氮气气氛下以950℃煅烧2h制得F-β-Ga2O3材料。
步骤四:将F-β-Ga2O3/CuGaO2材料和F-β-Ga2O3材料分别置于无水乙醇中并超声44min;将叉指电极用无水乙醇和去离子水交替洗涤5次后置于64℃的干燥箱中烘干,然后将F-β-Ga2O3的无水乙醇溶液滴在叉指电极上,干燥后得到均匀的薄膜,然后在薄膜上滴加F-β-Ga2O3/CuGaO2的无水乙醇溶液并用刮刀涂抹均匀,随后把样品置于52℃的真空干燥箱中烘干,烘干后通过热蒸发在薄膜一侧制备Au电极,最后得到F-β-Ga2O3/CuGaO2紫外光电探测器。
实施例4
步骤一:将6.32g乙酸铜和6.64g硝酸镓先后加入79ml去离子水中,室温下超声17min后向溶液中缓慢的滴入75.8ml的NaOH溶液,并在56℃的水浴中搅拌25min,然后向混合溶液中滴入18ml乙二醇溶液并在同样温度下继续搅拌 11min后静置1h,静置后将溶液置于反应釜内衬中在195℃下反应42h,自然冷却至室温后用稀硝酸将产物离心洗涤至洗涤液呈中性,随后再用无水乙醇和去离子水交替洗涤4次,然后将产物放在70℃的真空干燥箱中烘干得到CuGaO2纳米片。
步骤二:将5.22g的CuGaO2纳米片和3.96g硝酸镓加入39.6ml去离子水中,超声21min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9左右,随后向溶液中加入14.1ml的NaF溶液和11ml的α-烯烃磺酸钠溶液,并快速搅拌 12min;搅拌后将混合溶液置于184℃的反应釜中保温28h,冷却至室温后将产物用去离子水离子洗涤3次,然后放入67℃的干燥箱中22h,干燥后将产物放入管式炉中,在氮气气氛下以950℃煅烧2h制得F-β-Ga2O3/CuGaO2材料。
步骤三:将10.8g硝酸镓加入108ml去离子水中,超声21min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9左右,随后向溶液中加入38.5ml 的NaF溶液和30ml的α-烯烃磺酸钠溶液,并快速搅拌12min;搅拌后将混合溶液置于184℃的反应釜中保温28h,冷却至室温后将产物用去离子水离子洗涤3次,然后放入67℃的干燥箱中22h,干燥后将产物放入管式炉中,在氮气气氛下以 950℃煅烧2h制得F-β-Ga2O3材料。
步骤四:将F-β-Ga2O3/CuGaO2材料和F-β-Ga2O3材料分别置于无水乙醇中并超声40min;将叉指电极用无水乙醇和去离子水交替洗涤5次后置于68℃的干燥箱中烘干,然后将F-β-Ga2O3的无水乙醇溶液滴在叉指电极上,干燥后得到均匀的薄膜,然后在薄膜上滴加F-β-Ga2O3/CuGaO2的无水乙醇溶液并用刮刀涂抹均匀,随后把样品置于53℃的真空干燥箱中烘干,烘干后通过热蒸发在薄膜一侧制备Au电极,最后得到F-β-Ga2O3/CuGaO2紫外光电探测器。
表1
Figure BDA0002722852540000071
将实施例1-4制得的探测器置于365nm波长的紫外光、0.2mW/cm2功率下测试得出探测器对于光暗电流的光敏度、探测器的响应度和响应时间四项光电性能测试数据,具体如表1所示。从表1中可以得到本发明制备的F-β-Ga2O3/CuGaO2紫外光电探测器具有高的光敏度,实施例1-4的数值都在2100以上;对于365nm 的紫外光的响应度在0V时最高为0.27mA/W,在10V的外加电压下可达32A/W;探测器的响应时间为毫秒级别,上升时在65-75ms之间,下降时在13-16ms之间。以上数据证明了本发明提供的紫外光电探测器制备方法制得的探测器具有极佳的紫外光电探测性能。
图1是实施例1制备的F-β-Ga2O3/CuGaO2复合材料的XRD图,从图中可以看到F-β-Ga2O3和CuGaO2对应的衍射峰。其中CuGaO2的衍射峰较尖锐,这说明制备的CuGaO2纳米片的结晶性越好、粒径大。
图2是实施例1制得的紫外光电探测器在紫外灯照射和暗态下的I-V曲线。其中紫外灯发出的紫外光波长为300nm,功率密度为0.3mW/cm2。从光照和暗态两种情况下的IV特性曲线相对比可以看出,表现出良好的整流特性。光电流较暗态下电流大,光照下器件展现出显著的光响应。在-4V-0V的反向偏压部分,光电流与暗态下电流的变化更加显著;而在正向偏压的变化不如反向偏压的显著。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。

Claims (8)

1.一种F-β-Ga2O3/CuGaO2紫外光电探测器的制备方法,其特征在于,包括以下步骤:
步骤一:将乙酸铜和硝酸镓先后加入去离子水中,室温下超声15-20min后向溶液中缓慢的滴入NaOH溶液,并在50-60℃的水浴中搅拌20-30min,然后向混合溶液中滴入乙二醇溶液并在同样温度下继续搅拌10-13min后静置1-2h,静置后将溶液置于反应釜内衬中在190-210℃下反应36-48h,自然冷却至室温后用稀硝酸将产物离心洗涤至洗涤液呈中性,随后再用无水乙醇和去离子水交替洗涤4次,然后将产物放在65-70℃的真空干燥箱中烘干得到CuGaO2纳米片;
步骤二:将CuGaO2纳米片和硝酸镓加入去离子水中,超声20-25min,然后在室温下缓慢滴入NaOH溶液将溶液的pH值调至9,随后向溶液中加入NaF溶液和α-烯烃磺酸钠溶液,并快速搅拌10-15min;搅拌后将混合溶液置于170-190℃的反应釜中保温24-30h,冷却至室温后将产物用去离子水洗涤3次,然后放入60-70℃的干燥箱中18-22h,干燥后将产物放入管式炉中,在氩气气氛下以950℃煅烧2-3h制得F-β-Ga2O3/CuGaO2材料;
步骤三:采用步骤二的制备方法,但在硝酸镓的水溶液中不加入CuGaO2纳米片,制得F-β-Ga2O3材料;
步骤四:将F-β-Ga2O3/CuGaO2和F-β-Ga2O3分别置于无水乙醇中并超声40-50min;将叉指电极用无水乙醇和去离子水交替洗涤5次后置于60-70℃的干燥箱中烘干,然后将F-β-Ga2O3的无水乙醇溶液滴在叉指电极上,干燥后得到均匀的薄膜,然后在薄膜上滴加F-β-Ga2O3/CuGaO2的无水乙醇溶液并用刮刀涂抹均匀,随后把样品置于50-55℃的真空干燥箱中烘干,烘干后通过热蒸发在薄膜一侧制备Au电极,最后得到F-β-Ga2O3/CuGaO2紫外光电探测器。
2.根据权利要求1所述的一种F-β-Ga2O3/CuGaO2紫外光电探测器的制备方法,其特征在于,步骤一中乙酸铜的添加量为20-35mmol,乙二醇的添加量为15-20ml;步骤三中硝酸镓的添加量为40-50mmol。
3.根据权利要求1所述的一种F-β-Ga2O3/CuGaO2紫外光电探测器的制备方法,其特征在于,所述步骤一中乙酸铜和硝酸镓的物质的量之比为1:0.8-1:1,乙酸铜和NaOH的物质的量之比为1:6-1:8;所述步骤二中硝酸镓和CuGaO2的质量比为0.76:1-1.12:1,NaF和硝酸镓的质量比为1:3.9-1:6.2,α-烯烃磺酸钠和CuGaO2的质量比为1:12-1:16;所述步骤三中各种物质的用量比和步骤二相同。
4.根据权利要求1所述的一种F-β-Ga2O3/CuGaO2紫外光电探测器的制备方法,其特征在于,所述步骤一中乙酸铜水溶液的浓度为0.08g/ml;NaOH溶液的浓度均为2.5mol/L,滴加速度均为3ml/min。
5.根据权利要求1所述的一种F-β-Ga2O3/CuGaO2紫外光电探测器的制备方法,其特征在于,所述步骤二中硝酸镓水溶液的浓度为0.1g/ml;NaOH溶液的浓度均为2.5mol/L,滴加速度均为3ml/min;NaF水溶液的浓度为0.06g/ml;α-烯烃磺酸钠水溶液的浓度为0.03g/ml。
6.根据权利要求1所述的一种F-β-Ga2O3/CuGaO2紫外光电探测器的制备方法,其特征在于,所述步骤二中F-β-Ga2O3在CuGaO2纳米片上的负载量为28wt%-41wt%。
7.根据权利要求1所述的一种F-β-Ga2O3/CuGaO2紫外光电探测器的制备方法,其特征在于,F在β-Ga2O3的掺杂量为10wt%-16wt%。
8.根据权利要求1-7任一项所述的一种F-β-Ga2O3/CuGaO2紫外光电探测器的制备方法制得的探测器在紫外线探测中的应用。
CN202011093170.0A 2020-10-14 2020-10-14 一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法 Active CN112186051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011093170.0A CN112186051B (zh) 2020-10-14 2020-10-14 一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011093170.0A CN112186051B (zh) 2020-10-14 2020-10-14 一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112186051A CN112186051A (zh) 2021-01-05
CN112186051B true CN112186051B (zh) 2022-05-20

Family

ID=73949846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011093170.0A Active CN112186051B (zh) 2020-10-14 2020-10-14 一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112186051B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437165B (zh) * 2021-06-24 2022-09-09 中国科学技术大学 一种光电探测器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249579A (ja) * 2010-05-27 2011-12-08 Fujifilm Corp 太陽電池およびその製造方法
CN107819045A (zh) * 2017-10-27 2018-03-20 张香丽 基于氧化镓异质结结构的紫外光电探测器及其制备方法
CN108735826A (zh) * 2018-05-30 2018-11-02 陈谦 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
CN108767050A (zh) * 2018-05-30 2018-11-06 张权岳 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN110168741A (zh) * 2016-12-02 2019-08-23 国立大学法人京都大学 具有光电转换功能的电子设备
CN111599890A (zh) * 2020-06-03 2020-08-28 西安电子科技大学 一种基于氧化镓/二硫化钼二维异质结的高速光电探测器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071353A1 (en) * 2012-11-05 2014-05-08 University Of Florida Research Foundation, Inc. Solution-processed ultraviolet light detector based on p-n junctions of metal oxides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249579A (ja) * 2010-05-27 2011-12-08 Fujifilm Corp 太陽電池およびその製造方法
CN110168741A (zh) * 2016-12-02 2019-08-23 国立大学法人京都大学 具有光电转换功能的电子设备
CN107819045A (zh) * 2017-10-27 2018-03-20 张香丽 基于氧化镓异质结结构的紫外光电探测器及其制备方法
CN108735826A (zh) * 2018-05-30 2018-11-02 陈谦 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
CN108767050A (zh) * 2018-05-30 2018-11-06 张权岳 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN111599890A (zh) * 2020-06-03 2020-08-28 西安电子科技大学 一种基于氧化镓/二硫化钼二维异质结的高速光电探测器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Self-powered ultraviolet photodetector based on CuGaO/ZnSO heterojunction";Jiyu Huang;《JOURNAL OF MATERIALS SCIENCE》;20200430;全文 *
"Solution-Growth Strategy for Large-Scale "CuGaO2 Nanoplate/ZnS Microsphere" Heterostructure Arrays with Enhanced UV Adsorption and Optoelectronic Properties";Yanmei Li;《Adv. Funct. Mater. 》;20170620;全文 *
"衬底温度对CuCrO2薄膜结构及光电性能的影响";赵学平;《中国有色金属学报》;20190606;全文 *

Also Published As

Publication number Publication date
CN112186051A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
Wu et al. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe 2/β-Ga 2 O 3 2D/3D Schottky junction with ultrafast speed
Boruah Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors
Zhuo et al. A self-powered solar-blind photodetector based on a MoS 2/β-Ga 2 O 3 heterojunction
Huang et al. A simple, repeatable and highly stable self-powered solar-blind photoelectrochemical-type photodetector using amorphous Ga 2 O 3 films grown on 3D carbon fiber paper
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Zi et al. ZnO photoanodes with different morphologies grown by electrochemical deposition and their dye-sensitized solar cell properties
Chen et al. Solar-blind photodetectors based on MXenes–β-Ga2O3 Schottky junctions
Upadhyay et al. BiFeO 3/CH 3 NH 3 PbI 3 perovskite heterojunction based near-infrared photodetector
Ji et al. Chemo-phototronic effect induced electricity for enhanced self-powered photodetector system based on ZnO nanowires
Yan et al. A spiro-MeOTAD/Ga2O3/Si pin junction featuring enhanced self-powered solar-blind sensing via balancing absorption of photons and separation of photogenerated carriers
CN112186051B (zh) 一种F-β-Ga2O3/CuGaO2紫外光电探测器及其制备方法
CN108735833B (zh) 一种有机/无机pn结纳米阵列的柔性广谱光电探测器及其制备方法
CN108767028A (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
Chan et al. Fabrication of hybrid graphene/CdS quantum dots film with the flexible photo-detecting performance
CN111573632B (zh) 一种带状PbSe/ZnSe异质结纳米材料及其制备方法、应用
CN104332514B (zh) 一种纳米晶量子点薄膜、使用该薄膜改性的晶体硅太阳能电池及其制备方法
CN110416333B (zh) 一种紫外光电探测器及其制备方法
Zhang et al. A high-performance self-powered photodetector based on a concentric annular α-FAPbI 3/MAPbI 3 single crystal lateral heterojunction with broadband detectivity
Huang et al. Modified interfaces of twisted root-like 2D configured ZnO hierarchical nanostructures through surface lattice coating of NiO/graphene and their enhanced UV photodetection properties
Qi et al. A deep-ultraviolet photodetector of a β-Ga2O3/CuBiI4 heterojunction highlighting ultra-high sensitivity and responsivity
Liu et al. High-performance self-driven ultraviolet photodetector based on SnO2 pn homojunction
Lojpur et al. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells
Khun et al. Supramolecules-assisted ZnO nanostructures growth and their UV photodetector application
Chu et al. A high-performance self-powered broadband photodetector based on vertical MAPbBr3/ZnO heterojunction
Wang et al. Fast response and broadband self-powered photodetectors based on CZTS/SiNW core-shell heterojunctions for health monitoring

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220419

Address after: 050000 plant 11-12, Ludao V Valley Science and Technology Industrial Park, Luquan District, Shijiazhuang City, Hebei Province

Applicant after: Hebei Light Electronic Technology Co.,Ltd.

Address before: No. 211, South Chuanhuan Road, Chuansha town, Pudong New Area, Shanghai, 201200

Applicant before: Feng Yunlong

GR01 Patent grant
GR01 Patent grant