CN112121842A - 氮化碳量子点/三氧化钨复合光催化材料及其制备方法 - Google Patents

氮化碳量子点/三氧化钨复合光催化材料及其制备方法 Download PDF

Info

Publication number
CN112121842A
CN112121842A CN202011088147.2A CN202011088147A CN112121842A CN 112121842 A CN112121842 A CN 112121842A CN 202011088147 A CN202011088147 A CN 202011088147A CN 112121842 A CN112121842 A CN 112121842A
Authority
CN
China
Prior art keywords
carbon nitride
tungsten trioxide
nitride quantum
quantum dot
photocatalytic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011088147.2A
Other languages
English (en)
Inventor
周杰
朱蓓蓓
吴斌
姜敏
丁邦琴
张海滨
周道
高建敏
高子琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Vocational College
Original Assignee
Nantong Vocational College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Vocational College filed Critical Nantong Vocational College
Priority to CN202011088147.2A priority Critical patent/CN112121842A/zh
Publication of CN112121842A publication Critical patent/CN112121842A/zh
Priority to PCT/CN2021/074887 priority patent/WO2022077811A1/zh
Priority to LU102781A priority patent/LU102781B1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种氮化碳量子点/三氧化钨复合光催化材料及其制备方法,采用水热法分别制备氮化碳量子点和三氧化钨,再通过水热沉积将氮化碳量子点沉积于三氧化钨表面,制备步骤简单,成本低廉,使得氮化碳量子点和三氧化钨形成致密的异质结结构,实现电荷空间的定向分离,提高三氧化钨光生载流子的分离效率,减少空穴‑光生电子的复合几率,同时可实现三氧化钨光响应区间的可调控性,扩展光催化材料的光响应区间,提高了光催化剂的光催化活性。制备的光催化剂对罗丹明B和甲基橙均有较高的降解活性,同时也可实现Cr(VI)高效还原为Cr(III)。

Description

氮化碳量子点/三氧化钨复合光催化材料及其制备方法
技术领域
本发明属于半导体光催化材料制备方法技术领域,具体涉及一种氮化碳量子点/三氧化钨复合光催化材料及其制备方法。
背景技术
光催化技术作为一种化学处理方法中的新兴技术,采用绿色环保并且取之不尽用之不竭的太阳能作为反应的能量来源,不需要外加能量,能够有效地降低能耗,节约资源,在降解有机物、光解水制氢、二氧化碳还原及有机反应等领域得到广泛的研究,具有广阔的应用前景和重要的研究价值。
三氧化钨作为一种重要的过渡金属半导体材料,具有灵敏度高、气敏性好和热稳定性好等优异性能,且原料来源广泛、价格低、绿色无污染,在众多领域有着广泛的应用。然而三氧化钨也存在一些缺点,主要是因为三氧化钨的导带较低而且禁带宽度较大。导带位置较低会导致光生空穴在光氧化过程中受到了抑制,同时,三氧化钨对太阳光的利用不高。另外,三氧化钨中光生空穴-电子的复合机率高,导致其量子产率较低。所以在三氧化钨的研究过程中,需要进行改性以提高其光催化性能。
石墨相氮化碳作为一种无金属材料,具有成本低廉,绿色环保,具有可调控的化学组成和能带结构和化学稳定性,在光解水制氢、光催化降解有机物以及光催化反应等领域表现出优异的性能,成为光催化领域的一大研究热点。虽然石墨相氮化碳作为催化剂备受关注,但由于宏观尺寸较大,光生电子-空穴对的复合率较高,量子产率和导电率较低,限制了其在各领域的广泛应用。而氮化碳量子点,不仅具有块状氮化碳的性质,还具有量子点独特的物化性质,可以提供大量的活性位点,还能有效地与其他材料复合或掺杂在一些特殊结构的材料里面。
中国专利201810037542.4公开了一种石墨烯碳化氮量子点修饰的ZnS微米复合材料及其制备方法和应用,属半导体复合材料技术领域,提供了一种解决g-C3N4量子点容易团聚、且制备方法复杂的问题。中国专利201810764098.6公开了一种氮化碳量子点/二氧化钛溶胶的制备方法,该材料对甲基橙的降解率是市售P25的2.53倍。
江苏大学的Wang Tao等(Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy 213 (2019) 19–27)以氮化碳量子点修饰Bi2Ti2O7,对环丙沙星表现出极高的光催化活性。南昌航空大学的Ruobin Guo等(International Journalof Hydrogen Energy 45 ( 2020) 22534-22544)制备了氮化碳量子点修饰的二氧化碳纳米粒子异质结光催化材料,该材料可高效降解双酚A且能高效产氢。东莞理工学院的Weiqian Kong等(Adv. Mater. Interfaces 2018, 1801653)以N掺杂的碳点改性三氧化钨纳米片,提高了材料的导电性和电化学性能。
迄今为止,尚未见以氮化碳量子点修饰三氧化钨制备氮化碳量子点/三氧化钨复合光催化材料的报道。
发明内容
本发明要解决的技术问题是提供一种氮化碳量子点/三氧化钨复合光催化材料及其制备方法,以零维量子点修饰一维三氧化钨纳米棒,实现电荷空间的定向分离,提高三氧化钨光生载流子的分离效率,减少空穴-光生电子的复合几率,同时可实现三氧化钨光响应区间的可调控性,扩展光催化材料的光相应区间,提高了光催化剂的光催化活性。
为解决上述技术问题,本发明的实施例提供一种氮化碳量子点/三氧化钨复合光催化材料,为由氮化碳量子点负载于三氧化钨表面形成的致密的异质结结构。
本发明实施例还提供一种氮化碳量子点/三氧化钨复合光催化材料的制备方法,包括如下步骤:
(1)制备氮化碳量子点:称取一定摩尔比的柠檬酸钠和尿素,研磨后溶于去离子水中,超声分散,转入水热釜中反应,冷却后经0.22μm微滤膜过滤,透析,冻干后得到氮化碳量子点;
(2)制备三氧化钨纳米棒:称取一定量的偏钨酸铵,研磨后溶于去离子水中,超声分散后,加入一定量的酸调节溶液为酸性,转入水热釜中反应,冷却后经水洗、醇洗各3次,干燥后得到三氧化钨纳米棒;
(3)称取一定量由步骤(1)所得的氮化碳量子点并配成溶液,加入步骤(2)所得的三氧化钨纳米棒,搅拌,超声分散后置入水热釜中反应,冷却,样品经冷冻干燥,真空干燥后得到氮化碳量子点/三氧化钨复合光催化材料。
其中,步骤(1)中,柠檬酸钠和尿素的摩尔比为2-8:1。
其中,步骤(1)中,水热釜中反应温度为160-200℃,反应时间为0.5-4h。
其中,步骤(1)中,透析时间为12-48h。
其中,步骤(2)中所用酸调节溶液的pH值为1-3。
其中,步骤(2)中,水热釜中反应温度为160-200℃,反应时间为12-48h。
其中,步骤(2)中,干燥温度为80-160℃,干燥时间为24-48h。
其中,步骤(3)中,氮化碳量子点和三氧化钨纳米棒的质量比为1-20:100。
其中,步骤(3)中,水热釜中反应温度为80-120℃,反应时间为1-12h。
其中,步骤(3)中,真空干燥温度为50-60℃,真空干燥时间为12-24h。
本发明的上述技术方案的有益效果如下:本发明以零维量子点修饰一维三氧化钨纳米棒,实现电荷空间的定向分离,提高三氧化钨光生载流子的分离效率,减少空穴-光生电子的复合几率,同时可实现三氧化钨光响应区间的可调控性,扩展光催化材料的光相应区间,提高了光催化剂的光催化活性。
附图说明
图1为本发明实施例1所得样品的XRD图;
图2为本发明实施例1所得样品的TEM图;
图3为本发明实施例1所得样品的XPS谱图;
图4为本发明实施例1所得样品的UV–visDRS谱图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明提供一种氮化碳量子点/三氧化钨复合光催化材料及其制备方法,氮化碳量子点/三氧化钨复合光催化材料为由氮化碳量子点负载于三氧化钨表面形成的致密的异质结结构,其制备方法包括如下步骤:
(1)制备氮化碳量子点:称取一定摩尔比的柠檬酸钠和尿素,研磨后溶于去离子水中,超声分散,转入水热釜中反应,反应温度为160-200℃,反应时间为0.5-4h,然后冷却后经0.22μm微滤膜过滤,透析12-48h,冻干后得到氮化碳量子点;
其中,柠檬酸钠和尿素的摩尔比为2-8:1。
(2)制备三氧化钨纳米棒:称取一定量的偏钨酸铵,研磨后溶于去离子水中,超声分散后,加入一定量的酸调节溶液为酸性,转入水热釜中反应,反应温度为160-200℃,反应时间为12-48h,然后冷却后经水洗、醇洗各3次,80-160℃环境下干燥24-48h后得到三氧化钨纳米棒;
其中,本步骤中所用酸调节溶液的pH值为1-3。
(3)称取一定量由步骤(1)所得的氮化碳量子点并配成溶液,加入步骤(2)所得的三氧化钨纳米棒,氮化碳量子点和三氧化钨纳米棒的质量比为1-20:100,搅拌,超声分散后置入水热釜中反应,反应温度为80-120℃,反应时间为1-12h,反应后冷却,样品经冷冻干燥,50-60℃环境下真空干燥12-24h后得到氮化碳量子点/三氧化钨复合光催化材料。
本发明所使用的试剂和原料如下文表1所示:
表1本发明所使用的试剂和原料
Figure 742256DEST_PATH_IMAGE001
下面结合具体实施例进一步阐述本发明的技术方案。
实施例1
称取1.01g柠檬酸钠和0.81g尿素,研磨30分钟后溶于60mL去离子水中,超声分散,转入水热釜中,180℃反应2h,冷却后经0.22μm微滤膜过滤,透析24h,冷冻干燥后得到氮化碳量子点。
称取3.5g偏钨酸铵,研磨后溶于50mL去离子水中,超声分散后,加入一定量的酸调节溶液pH为2,转入水热釜中180℃反应24h,冷却后经水洗、醇洗各3次,60℃下干燥后得到三氧化钨纳米棒。
称取0.05g氮化碳量子点加入100mL去离子水中,加入1g三氧化钨纳米棒,搅拌30min,超声分散后置入水热釜中120℃反应2h,冷却,样品经冷冻干燥,50℃下真空干燥后得到氮化碳量子点/三氧化钨复合光催化材料。
取制备的催化剂0.1g,置于含有100mL、10mg/L的罗丹明B溶液的烧杯中,超声处理2min,暗吸附30min后,搅拌状态下由300W氙灯光源距离液面20cm处光照30min,降解后溶液经离心后由紫外-可见分光光度计测定其在554nm处的吸光度,经计算降解率C/C0为97.5%。
实施例2
称取1.01g柠檬酸钠和0.81g尿素,研磨30分钟后溶于60mL去离子水中,超声分散,转入水热釜中,180℃反应2h,冷却后经0.22μm微滤膜过滤,透析24h,冷冻干燥后得到氮化碳量子点。
称取3.5g偏钨酸铵,研磨后溶于50mL去离子水中,超声分散后,加入一定量的酸调节溶液pH为2,转入水热釜中180℃反应24h,冷却后经水洗、醇洗各3次,60℃下干燥后得到三氧化钨纳米棒。
称取0.05g氮化碳量子点加入100mL去离子水中,加入1g三氧化钨纳米棒,搅拌30min,超声分散后置入水热釜中120℃反应2h,冷却,样品经冷冻干燥,50℃下真空干燥后得到氮化碳量子点/三氧化钨复合光催化材料。
取制备的催化剂0.1g,置于含有100mL、10mg/L的甲基橙溶液的烧杯中,超声处理2min,暗吸附30min后,搅拌状态下由300W氙灯光源距离液面20cm处光照30min,降解后溶液经离心后由紫外-可见分光光度计测定其在463nm处的吸光度,经计算降解率C/C0为86.3%。
实施例3
称取1.01g柠檬酸钠和0.81g尿素,研磨30分钟后溶于60mL去离子水中,超声分散,转入水热釜中,180℃反应2h,冷却后经0.22μm微滤膜过滤,透析24h,冷冻干燥后得到氮化碳量子点。
称取3.5g偏钨酸铵,研磨后溶于50mL去离子水中,超声分散后,加入一定量的酸调节溶液pH为2,转入水热釜中180℃反应24h,冷却后经水洗、醇洗各3次,60℃下干燥后得到三氧化钨纳米棒。
称取0.05g氮化碳量子点加入100mL去离子水中,加入1g三氧化钨纳米棒,搅拌30min,超声分散后置入水热釜中120℃反应2h,冷却,样品经冷冻干燥,50℃下真空干燥后得到氮化碳量子点/三氧化钨复合光催化材料。
取制备的催化剂0.1g,置于含有100mL、20mg/L的Cr(VI)溶液的烧杯中,超声处理2min,暗吸附30min后,搅拌状态下由300W氙灯光源距离液面20cm处光照30min,降解后溶液经离心后根据二苯基碳酰肼法测定其在540nm处的吸光度,经计算Cr(VI)转化为Cr(III)的转化率为90.6%。
实施例4
称取1.01g柠檬酸钠和0.81g尿素,研磨30分钟后溶于60mL去离子水中,超声分散,转入水热釜中,180℃反应2h,冷却后经0.22μm微滤膜过滤,透析24h,冷冻干燥后得到氮化碳量子点。
称取3.5g偏钨酸铵,研磨后溶于50mL去离子水中,超声分散后,加入一定量的酸调节溶液pH为2,转入水热釜中180℃反应24h,冷却后经水洗、醇洗各3次,60℃下干燥后得到三氧化钨纳米棒。
称取0.03g氮化碳量子点加入100mL去离子水中,加入1g三氧化钨纳米棒,搅拌30min,超声分散后置入水热釜中120℃反应2h,冷却,样品经冷冻干燥,50℃下真空干燥后得到氮化碳量子点/三氧化钨复合光催化材料。
取制备的催化剂0.1g,置于含有100mL 10mg/L的罗丹明B溶液的烧杯中,超声处理2min,暗吸附30min后,搅拌状态下由300W氙灯光源距离液面20cm处光照30min,降解后溶液经离心后由紫外-可见分光光度计测定其在554nm处的吸光度,经计算降解率C/C0为93.1%。
氮化碳量子点/三氧化钨复合光催化剂的表征
本发明采用德国Bruker光谱仪器公司D8 Advance型X射线衍射仪对本发明制备的氮化碳量子点/三氧化钨复合光催化剂进行X-射线衍射分析测试,得到XRD衍射图如图1所示,测试条件为:Cu靶Kα线,λ= 0.15406nm,2θ为10°~70°,扫描速度为5(°)/min。图1中衍射峰与六方晶型三氧化钨的标准PDF卡片(JCPDS Card No.85-2459)一致,衍射峰在13.8°、23.4°、24.2°、27.3°、28.0°、33.9°和36.8°分别对应(100)、(002)、(110)、(102)、(200)、(112)和(202)晶面,而氮化碳量子点的(002)晶面对应的衍射峰与三氧化钨的(101)晶面所对应的衍射峰重合,且氮化碳量子点的含量较低,其峰值并不明显。
本发明采用日本电子株式会社高分辨场发射透射电子显微镜 JEM-2100F测试材料的显微结构和晶体结构,得到的照片如图2所示。图2a显示所制备的三氧化钨为短棒状结构;图2b为制备的氮化碳量子点的TEM照片,量子点的主要尺寸为3~8nm之间;图2c为氮化碳量子点/三氧化钨的TEM照片,从照片可以看出,氮化碳量子点成功负载于三氧化钨表面,形成致密的异质结结构;图2d为氮化碳量子点/三氧化钨的FETEM照片,照片中清晰显示氮化碳量子点的晶格间距为0.34nm,对应其(002)晶面,三氧化钨晶格间距为0.31nm,对应其(110)晶面。
本发明采用美国赛默飞EscaLab 250Xi X射线光电子能谱仪对元素组成和元素的化学态进行分析。样品出现了W 4f、O 1s、C 1s和N 1s的衍射峰,说明了复合材料主要组成元素为W、O、C和N。图3 a-d分别为W 4f、O 1s、C 1s和N 1s的轨道图谱。从图3 a可以看出,W元素在34.9 eV和37.1 eV结合能处有两个峰值,分别对应W6+的W 4f7/2和W 4f5/2。从图3b可以看出,O元素在529.7 eV和531.0 eV结合能处的两个峰值,分别对应WO3的W-O键和H2O的H-O键。从图3c可以看出,C元素在284.5 eV、286.0 eV、288.0 eV和289.8 eV结合能处的四个峰值,分别对应sp2杂化的C-N键,sp3杂化C-N键,C-O键和C=O。从图3d可以看出,N元素在39834 eV、399.5 eV和400.8 eV结合能处的三个峰值,分别对应氨基的N-H键,三嗪环的C-N=C键和N-(C)3。综合XPS分析结果可知,氮化碳量子点已经成功沉积在三氧化钨表面形成氮化碳量子点/三氧化钨复合物。
本发明采用美国PE公司的Lambda 650S紫外可见分光光度计(光学聚四氟乙烯涂层)测试紫外-可见漫反射吸收光谱,得到的谱图如图4所示。图4中,纯三氧化钨和氮化碳量子点在可见光区均有吸收,经复合后,三氧化钨的吸收光区间进一步得到拓展,从而增加了复合材料对光区间的相应范围,提高了光的吸收率。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种氮化碳量子点/三氧化钨复合光催化材料,其特征在于,为由氮化碳量子点负载于三氧化钨表面形成的致密的异质结结构。
2.一种氮化碳量子点/三氧化钨复合光催化材料的制备方法,其特征在于,包括如下步骤:
(1)制备氮化碳量子点:称取一定摩尔比的柠檬酸钠和尿素,研磨后溶于去离子水中,超声分散,转入水热釜中反应,冷却后经0.22μm微滤膜过滤,透析,冻干后得到氮化碳量子点;
(2)制备三氧化钨纳米棒:称取一定量的偏钨酸铵,研磨后溶于去离子水中,超声分散后,加入一定量的酸调节溶液为酸性,转入水热釜中反应,冷却后经水洗、醇洗各3次,干燥后得到三氧化钨纳米棒;
(3)称取一定量由步骤(1)所得的氮化碳量子点并配成溶液,加入步骤(2)所得的三氧化钨纳米棒,搅拌,超声分散后置入水热釜中反应,冷却,样品经冷冻干燥,真空干燥后得到氮化碳量子点/三氧化钨复合光催化材料。
3.根据权利要求2所述的氮化碳量子点/三氧化钨复合光催化材料的制备方法,其特征在于,步骤(1)中,柠檬酸钠和尿素的摩尔比为2-8:1。
4.根据权利要求2所述的氮化碳量子点/三氧化钨复合光催化材料的制备方法,其特征在于,步骤(1)中,水热釜中反应温度为160-200℃,反应时间为0.5-4h。
5.根据权利要求2所述的氮化碳量子点/三氧化钨复合光催化材料的制备方法,其特征在于,步骤(1)中,透析时间为12-48h。
6.根据权利要求2所述的氮化碳量子点/三氧化钨复合光催化材料的制备方法,其特征在于,步骤(2)中所用酸调节溶液的pH值为1-3。
7.根据权利要求2所述的氮化碳量子点/三氧化钨复合光催化材料的制备方法,其特征在于,步骤(2)中,水热釜中反应温度为160-200℃,反应时间为12-48h。
8.根据权利要求2所述的氮化碳量子点/三氧化钨复合光催化材料的制备方法,其特征在于,步骤(2)中,干燥温度为80-160℃,干燥时间为24-48h。
9.根据权利要求2所述的氮化碳量子点/三氧化钨复合光催化材料的制备方法,其特征在于,步骤(3)中,氮化碳量子点和三氧化钨纳米棒的质量比为1-20:100。
10.根据权利要求2所述的氮化碳量子点/三氧化钨复合光催化材料的制备方法,其特征在于,步骤(3)中,水热釜中反应温度为80-120℃,反应时间为1-12h;
步骤(3)中,真空干燥温度为50-60℃,真空干燥时间为12-24h。
CN202011088147.2A 2020-10-13 2020-10-13 氮化碳量子点/三氧化钨复合光催化材料及其制备方法 Pending CN112121842A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011088147.2A CN112121842A (zh) 2020-10-13 2020-10-13 氮化碳量子点/三氧化钨复合光催化材料及其制备方法
PCT/CN2021/074887 WO2022077811A1 (zh) 2020-10-13 2021-02-02 氮化碳量子点/三氧化钨复合光催化材料及其制备方法
LU102781A LU102781B1 (en) 2020-10-13 2021-02-02 Carbon nitride quantum dot/tungsten trioxide composite photocatalytic material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011088147.2A CN112121842A (zh) 2020-10-13 2020-10-13 氮化碳量子点/三氧化钨复合光催化材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112121842A true CN112121842A (zh) 2020-12-25

Family

ID=73853928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011088147.2A Pending CN112121842A (zh) 2020-10-13 2020-10-13 氮化碳量子点/三氧化钨复合光催化材料及其制备方法

Country Status (3)

Country Link
CN (1) CN112121842A (zh)
LU (1) LU102781B1 (zh)
WO (1) WO2022077811A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275028A (zh) * 2021-04-20 2021-08-20 广东石油化工学院 一种氮化碳量子点/亚氧化钛纳米棒复合光催化剂及其制备方法和应用
CN113694951A (zh) * 2021-08-19 2021-11-26 五邑大学 一种TiO2复合材料及其制备方法
CN114225954A (zh) * 2021-12-16 2022-03-25 济南大学 一种氧空位和酸性位协同光催化碳碳键偶联制备安息香异丙醚的方法
WO2022077811A1 (zh) * 2020-10-13 2022-04-21 南通职业大学 氮化碳量子点/三氧化钨复合光催化材料及其制备方法
CN115193468A (zh) * 2022-07-06 2022-10-18 厦门稀土材料研究所 光催化剂、制备方法及应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114904550B (zh) * 2022-05-18 2024-03-19 安徽大学 一种制备三聚氰胺自组装超分子材料的方法
CN115090314A (zh) * 2022-05-26 2022-09-23 南京林业大学 一种0D/2D量子点/g-C3N4光催化剂及其制备方法和应用
CN115090333A (zh) * 2022-07-06 2022-09-23 肇庆市华师大光电产业研究院 一种s型复合光催化剂及其制备方法和应用
CN115504539B (zh) * 2022-09-08 2024-03-15 湖南大学 利用中空管状氮化碳/硼掺杂氮缺陷氮化碳纳米片z型异质结材料处理环丙沙星废水的方法
CN115608397B (zh) * 2022-09-26 2024-03-29 南京工业大学 一种可见光驱动的高效光热协同催化剂及制备方法和应用
CN115465891B (zh) * 2022-09-30 2023-11-10 云南师范大学 一种应用球磨机制备纳米Cs2AgBiBr6/TiO2复合材料的方法
CN115872393A (zh) * 2023-01-03 2023-03-31 重庆大学 以有机固废为碳源制备高附加值碳量子点的方法及系统
CN116273117B (zh) * 2023-02-13 2024-04-09 嘉兴学院 一种微塑料基碳量子点/石墨相氮化碳光催化剂、制备方法及其应用
CN116161751B (zh) * 2023-02-15 2024-06-25 西安建筑科技大学 碳量子点/纳米TiO2/活性半焦复合材料、制备方法及应用
CN116747896A (zh) * 2023-06-16 2023-09-15 电子科技大学长三角研究院(湖州) 一种新型坞酸镧/石墨相氮化碳纳米复合光催化剂及其制备方法
CN116588917B (zh) * 2023-06-30 2024-05-14 苏州擎动动力科技有限公司 一种载体及其制备方法和应用
CN117599776B (zh) * 2023-12-20 2024-08-20 昆明理工大学 一种NCDs/WOx类芬顿光催化剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107456991A (zh) * 2017-08-30 2017-12-12 江苏大学 一种g‑C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
CN110052242A (zh) * 2019-04-26 2019-07-26 黑龙江大学 一种负载碳量子点/w18o49光催化可再生多孔碳吸附剂的制备方法
CN110252381A (zh) * 2019-07-31 2019-09-20 泉州师范学院 一种2d-2d三氧化钨/类石墨相氮化碳异质结构光催化剂的制备和应用
CN110479345A (zh) * 2019-09-02 2019-11-22 中建材蚌埠玻璃工业设计研究院有限公司 一种g-C3N4量子点修饰的氧化铁光催化剂的制备方法
CN111715255A (zh) * 2020-05-25 2020-09-29 黑龙江大学 一种z型光催化剂制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112121842A (zh) * 2020-10-13 2020-12-25 南通职业大学 氮化碳量子点/三氧化钨复合光催化材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107456991A (zh) * 2017-08-30 2017-12-12 江苏大学 一种g‑C3N4量子点负载钨酸铋纳米片光催化剂的制备方法
CN110052242A (zh) * 2019-04-26 2019-07-26 黑龙江大学 一种负载碳量子点/w18o49光催化可再生多孔碳吸附剂的制备方法
CN110252381A (zh) * 2019-07-31 2019-09-20 泉州师范学院 一种2d-2d三氧化钨/类石墨相氮化碳异质结构光催化剂的制备和应用
CN110479345A (zh) * 2019-09-02 2019-11-22 中建材蚌埠玻璃工业设计研究院有限公司 一种g-C3N4量子点修饰的氧化铁光催化剂的制备方法
CN111715255A (zh) * 2020-05-25 2020-09-29 黑龙江大学 一种z型光催化剂制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIAN ZHU等: "Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity", 《CHEM. COMMUN.,》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022077811A1 (zh) * 2020-10-13 2022-04-21 南通职业大学 氮化碳量子点/三氧化钨复合光催化材料及其制备方法
CN113275028A (zh) * 2021-04-20 2021-08-20 广东石油化工学院 一种氮化碳量子点/亚氧化钛纳米棒复合光催化剂及其制备方法和应用
CN113694951A (zh) * 2021-08-19 2021-11-26 五邑大学 一种TiO2复合材料及其制备方法
CN114225954A (zh) * 2021-12-16 2022-03-25 济南大学 一种氧空位和酸性位协同光催化碳碳键偶联制备安息香异丙醚的方法
CN114225954B (zh) * 2021-12-16 2023-06-27 济南大学 一种氧空位和酸性位协同光催化碳碳键偶联制备安息香异丙醚的方法
CN115193468A (zh) * 2022-07-06 2022-10-18 厦门稀土材料研究所 光催化剂、制备方法及应用

Also Published As

Publication number Publication date
WO2022077811A1 (zh) 2022-04-21
LU102781B1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
CN112121842A (zh) 氮化碳量子点/三氧化钨复合光催化材料及其制备方法
You et al. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity
Samsudin et al. Tailoring the morphological structure of BiVO4 photocatalyst for enhanced photoelectrochemical solar hydrogen production from natural lake water
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
CN108927178B (zh) 一种金属有机框架材料原位硫化法制备NiS/CdS复合催化剂的方法及应用
CN110665527B (zh) 海胆状g-C3N4/NiAl-LDH半导体异质结的制备方法
CN106984337B (zh) CdS-MoS2纳米颗粒共同掺杂黑色多孔二氧化钛光催化剂
CN105195144B (zh) 一种合成Au/ZnO棒状异质结光催化剂的方法
CN110240148B (zh) 金属结构二硒化钨/氧化还原石墨烯复合结构及其制备方法
CN110746631A (zh) 一种太阳能光热转换复合薄膜及其制备方法
CN107519903B (zh) 一种溴氧化铋-硫化镉纳米复合光催化剂及其制备方法
CN109225217B (zh) 一种碳化植物叶片@ZnO/Au异质结多级结构组装体催化剂及其制备方法
CN110586166A (zh) 一种氧化钼纳米片的制备及其在光催化固氮的应用
CN107349951B (zh) 一种CuO/g-C3N4毛细血管状纳米复合物的制备方法
CN107537520B (zh) 一种溴氧化铋-氧化铜纳米复合光催化剂及其制备方法
CN112023947A (zh) 一种复合材料及其制备方法、应用
CN113769764B (zh) 一种CdS/Cu7S4/CdMoO4纳米异质结构的制备方法及应用
CN109382088B (zh) SnO2/α~Bi2O3/β~Bi2O3复合材料及其制备方法
CN106268887A (zh) 一种复合光催化剂CdS/LaPO4及其制备方法和应用
CN108892170A (zh) 一种“两相法”制备形貌可控的BiVO4纳米晶的方法
CN114835163B (zh) 一种面向水质净化的新型硫化钨光热材料及其制备和应用
CN111437857A (zh) 一种基于氮化钛和氧化钛的新型光催化薄膜及其制备方法
CN112547097A (zh) CoWO4-CdS一维纳米复合光催化剂的制备方法及光催化剂的应用
Wu et al. Fabrication of nitrogen-doped graphene quantum dots-Cu2O catalysts for enhanced photocatalytic hydrogen evolution
Wang et al. High performance of visible-light driven hydrogen production over graphdiyne (gC n H 2n− 2)/MOF S-scheme heterojunction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201225