CN112094117A - 一种铋系高温超导块材的制备方法 - Google Patents

一种铋系高温超导块材的制备方法 Download PDF

Info

Publication number
CN112094117A
CN112094117A CN202010991633.9A CN202010991633A CN112094117A CN 112094117 A CN112094117 A CN 112094117A CN 202010991633 A CN202010991633 A CN 202010991633A CN 112094117 A CN112094117 A CN 112094117A
Authority
CN
China
Prior art keywords
bismuth
powder
block material
block
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010991633.9A
Other languages
English (en)
Inventor
包蕊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innova Superconductor Technology Co Ltd
Original Assignee
Innova Superconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innova Superconductor Technology Co Ltd filed Critical Innova Superconductor Technology Co Ltd
Priority to CN202010991633.9A priority Critical patent/CN112094117A/zh
Publication of CN112094117A publication Critical patent/CN112094117A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/02Methods or machines specially adapted for the production of tubular articles by casting into moulds
    • B28B21/10Methods or machines specially adapted for the production of tubular articles by casting into moulds using compacting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/92Methods or apparatus for treating or reshaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/04Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form with one ram per mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • B28B7/382Devices for treating, e.g. sanding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/38Treating surfaces of moulds, cores, or mandrels to prevent sticking
    • B28B7/388Treating surfaces of moulds, cores, or mandrels to prevent sticking with liquid material, e.g. lubricating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于高温超导材料技术领域,公开一种铋系高温超导块材的制备方法,包括如下步骤,块材用粉体制备;获取块材成型;块材热处理工艺。所述压制成型模具包括有润滑剂喷口、烘干气体喷口、上冲模、操作平台、填粉腔、进料盒、安装于套管内的下模。能够用于满足降低磁悬浮演示实验成本和科学研究。

Description

一种铋系高温超导块材的制备方法
技术领域
本发明属于高温超导材料技术领域,涉及铋系高温超导块材的制备方法。
背景技术
铋系高温超导材料具有高临界温度,高临界电流密度等特点,易被制成线材,现应用于制造各种电机、电缆、磁体、变压器等。如能实现大规模生产,将广泛应用于电力生产,并使电力的传输和利用效率提高,减少不必要的损耗,降低能源的压力,是一种极具开发潜力的新材料。铋系高温超导材料主要利用超导前驱粉和贵金属银管银金管经过粉末装管法制备,北京英纳超导技术有限公司目前已经自主研发了铋系高温超导前驱粉至铋系高温超导带材整套工艺,是目前世界上仅有的两家能够产业化生产铋系高温超导带材的企业之一,目前铋系高温超导带材临界电流可以达到180A.但是受限于主要原材料为贵金属银金管,使得铋系高温超导带材的成本居高不下,为了能够降低成本,扩大铋系超导材料的使用范围,依托于公司铋系高温超导前驱粉的研究成果,研发一种不使用贵金属管的产品,铋系高温超导块材具有现实的迫切性。
超导块材主要应用于磁悬浮演示装置、高温超导电机、高温超导磁悬浮车、高温超导磁悬浮轴承和飞轮储能、高温超导磁分离、高温超导磁力推进装置等。目前市面上同类产品为钇钡铜氧块材,但是钇钡铜氧块材块材属于单晶生长工艺,对于工艺参数要求严苛,成品率较低,价格也较高,因此研发一种低成本的铋系高温超导块材既具有研究意义同时具备市场价值。其中一项为科研教具,目前使用钇钡铜氧块材的价格为1200元/块,占成本70%以上。现有铋系铋系超导粉的研发工艺,可以从源头降低铋系高温超导块材的研发成本和产品成本。低成本铋系高温超导带材,从短期上可以降低磁悬浮教具的成本,从长远看可以投入到磁悬浮列车、磁悬浮轴承等重大项目中。但在原有的Bi2223带材制备工艺由于原材料中有贵金属合金管,所以成本偏高,而钇钡铜氧块材由于相生长工艺属于单晶生长工艺,对于工艺参数要求严苛,成品率较低,价格也较高。为了解决成本偏高的问题,尤其在教学教具领域,让更多的学生接受超导科学的教育,急需研发一种低成本铋系高温超导块材。
发明内容
为解决现有技术中存在的上述技术问题,本发明提供一种铋系高温超导块材的制备方法。本发明块材能够用于满足降低磁悬浮演示实验成本和科学研究。
为实现上述发明目的,本发明的技术方案是:
一种铋系高温超导块材的制备方法,包括如下步骤,步骤1,块材用粉体制备;
步骤2,获取块材成型;
步骤3,块材热处理工艺。
优选地,步骤1,块材用粉体制备,采用铋系超导粉的制备方法进行块材用粉体粉末制备,并调整块材用粉体的元素成分;块材用粉体调整,使用Bi、Sr、Pb、Ca、Cu的硝酸盐配制成前驱液,Bi、Sr、Pb、Ca、Cu的硝酸盐各元素摩尔或原子数配比为Bi:1.8-2.0,Sr:2,Pb:0.35-0.4,Ca:2-2.5,Cu:3-3.5。
优选地,步骤2、块材成型,采用压制成型模具对块材用粉体进行冲压成型,获得成分密度均匀的铋系块材;铋系块材包括块材尺寸和填充密度,以及脱模方式;
其中,在铋系块材冲压成型过程中,块材高度0.5-10cm;原料粉体粉末填充密度控制在0.7-1.3g/cm3
优选地,压制成型模具包括有润滑剂喷口1、烘干气体喷口2、上冲模3、操作平台7、填粉腔4、进料盒5、安装于套管内的下模6;上冲模3安装在机架上,上冲模3设置于下模上方,下模6固定安装有填粉腔4,在机架的操作平台7上安装有进料盒5,机架上固定设有润滑剂喷口1的润滑剂管、设有烘干气体喷口2的进气管,润滑剂喷口1、烘干气体喷口2置于上冲模3、操作平台7之间,上冲模和下模均连接有动力系统;
压制成型模具的工作流程:从润滑剂喷口1向上冲模3和填粉腔4内喷润滑液,烘干气体喷口2向上冲膜3和填粉腔4吹压缩空气使上冲模3、填粉腔4表面干燥,进料盒5向填粉腔前运动填充粉末,上冲模3下降开始压制成型。
优选地,在所述块材冲压成型前,对压制成型模具进行表面脱模处理,压制成型模具的表面脱模处理为在上冲模表面、填粉腔的表面均喷洒润滑剂并即时吹干,块材表面残留的润滑剂采用温度500℃,时间3h通自然空气烧结处理。
优选地,该润滑剂为采用SKZ250型润滑剂与乙醇按照质量百分比比例为5%分散制作而成。
优选地,步骤3,块材热处理工艺,制备出铋系高温超导块材。
优选地,热处理采用温度为840-860℃,处理时间为10-40h,通8.5-9%氧分压的气氛,制备出Bi2223块材。
与现有技术相比较,本发明具有如下的有益效果:
本发明可以明显降低磁悬浮演示用块材成本,制备过程简单,易操作。
附图说明
图1为本发明铋系高温超导块材的制备方法的块材压制成型模具示意图。
图2为本发明铋系高温超导块材的制备方法的块材压制成型模具立体图。
附图标识:润滑剂喷口1,烘干气体喷口2,上冲模3,填粉腔4,进料盒5,下模6,操作平台7;
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
具体实施方式
如在说明书及权利要求当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求当中所提及的“包含”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求所界定者为准。
本发明提供一种铋系高温超导块材的制备方法,包括如下步骤,
步骤1,块材用粉体制备;
块材用粉体制备,采用铋系超导粉的制备方法进行块材用粉体粉末制备,并调整块材用粉体的元素成分;块材用粉体调整,使用Bi、Sr、Pb、Ca、Cu的硝酸盐配制成前驱液,Bi、Sr、Pb、Ca、Cu的硝酸盐各元素摩尔或原子数配比为Bi:1.8-2.0,Sr:2,Pb:0.35-0.4,Ca:2-2.5,Cu:3-3.5。
铋系超导粉的制备方法为申请号ZL201110276160.5的发明专利,超导前驱液在经过喷雾干燥过程后,通过分段控制烧结过程,并配合使用二次机械粉碎法,通过调节工艺参数控制不同阶段的超导粉体粒度,满足不同阶段超导粉成相反应的条件,最终获得高性能的超导粉,其中主要包括对经过喷雾干燥过程后的超导粉进行500℃以上的低温烧结过程,烧结时间在30分钟以上,烧结过程通入干燥的空气作为保护气氛,要求粉层厚度不超过1.5cm,之后对低温烧结后的粉体进行第一次机械粉碎步骤,超导粉体粒度控制在粒度单位D50小于5μm,然后对机械粉碎后获得的粉体采用机械充氧混合的方式以消除不均,再对混合后的粉体进行大于790℃的高温烧结过程,烧结时间大于15小时,烧结过程通入干燥的人造空气,整个烧结过程炉腔内部旋转,以保证温度的均一性,并在高温烧结过程后对粉体进行第二次机械粉碎步骤,经过所述的两次机械粉碎步骤后获得的超导粉粒度单位D50在1-2μm,然后再对超导粉悬浮液下层粉体采用真空烘干的方法获得所述的超导粉。
步骤2、获取块材成型,采用压制成型模具对块材用粉体进行冲压成型,获得成分密度均匀的铋系块材;铋系块材包括块材尺寸和填充密度,以及脱模方式。脱模方式不引入污染并能很好的去除。
其中,在铋系块材冲压成型过程中,块材高度0.5-10cm,优选地高度控制在2cm;原料粉体粉末填充密度控制在0.7-1.3g/cm3,优选地,0.9-1.1g/cm3;块材高度和密度通过装粉量控制。块材高度会影响压制过程中压力的传导并导致粉体在高度方向的不均匀,在后期烧结过程中会发生变形裂纹等现象。
优选地,在块材冲压成型前,对压制成型模具进行表面脱模处理,压制成型模具的表面脱模处理为冲压成型时,在上冲模表面、填粉腔的表面均喷洒润滑剂并即时吹干,块材表面残留的润滑剂采用温度500℃,时间3h通自然空气烧结处理。
由于超导材料对其他杂质的敏感性,该润滑剂为采用SKZ250型润滑剂与乙醇按照质量百分比比例为5%分散制作而成,处理后的块材经测试无润滑剂残留。
参照图1、图2所示,压制成型模具包括有润滑剂喷口1、烘干气体喷口2、上冲模3、操作平台7、填粉腔4、进料盒5、安装于套管内的下模6;上冲模3安装在机架上,上冲模3设置于下模上方,下模6固定安装有填粉腔4,在机架的操作平台7上安装有进料盒5,机架上固定设有润滑剂喷口1的润滑剂管、设有烘干气体喷口2的进气管,润滑剂喷口1、烘干气体喷口2置于上冲模3、操作平台7之间,上冲模和下模均连接有动力系统;动力系统为具有电机的气动装置。进料盒5上安装有轴承,保证进料盒向前运动。
压制成型模具的工作流程:从润滑剂喷口1向上冲模3和填粉腔4内喷润滑液,烘干气体喷口2向上冲膜3和填粉腔4吹压缩空气使上冲模3、填粉腔4表面干燥,进料盒5向填粉腔前运动填充粉末,上冲模3下降开始压制成型。
采用上冲模、下模具冲压成形,保证压力分布均匀,填充密度会影响气体在块材中的流通以及超导性能。
步骤3,块材热处理工艺,块材热处理采用温度为840-860℃,处理时间为10-40h,通8.5-9%氧分压的气氛,制备出Bi2223块材。
实施例1
步骤1,块材粉体成分,使用Bi、Sr、Pb、Ca、Cu的硝酸盐配制成前驱液,元素配比为Bi1.9,Sr2,Pb0.4,Ca2.5,Cu3.5,按照专利201110276160.5中超导粉的制备工艺进行粉末制备。
步骤2,块材成型,粉体用量10g,采用SKZ250与乙醇5%分散液表面喷涂脱模,上模、下模具冲压成形,最终块材尺寸为高度1cm,直径1.75cm圆柱体。润滑剂去除工艺为500℃*3h通自然空气烧结处理。
步骤3,块材热处理工艺。采用840℃*10h热处理工艺,通8.5%氧分压的气氛。
最终产品Bi2223块材可以悬浮直径为Φ5厚度为3mm的永磁体,悬浮高度为4mm。
实施例2
步骤1,块材粉体成分。使用Bi、Sr、Pb、Ca、Cu的硝酸盐配制成前驱液,元素配比为Bi1.8,Sr2,Pb0.35,Ca2.2,Cu3.0,按照专利201110276160.5中超导粉的制备工艺进行粉末制备。
步骤2,块材成型。粉体用量15g,采用SKZ250与乙醇5%分散液表面喷涂脱模,上下模具冲压成形,最终块材尺寸为高度1.3cm,直径1.75cm圆柱体。润滑剂去除工艺为500℃*3h通自然空气烧结处理。
步骤3,块材热处理工艺。采用840℃*40h热处理工艺,通8.5%氧分压的气氛。
最终产品Bi2223块材可以悬浮直径为Φ5厚度为5mm的永磁体,悬浮高度为4mm。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求的保护范围内。

Claims (8)

1.一种铋系高温超导块材的制备方法,其特征在于,包括如下步骤,步骤1,块材用粉体制备;
步骤2,获取块材成型;
步骤3,块材热处理,制备出块材。
2.根据权利要求1所述铋系高温超导块材的制备方法,其特征在于,步骤1,所述块材用粉体制备,采用铋系超导粉的制备方法进行块材用粉体粉末制备,并调整块材用粉体的元素成分;块材用粉体调整,使用Bi、Sr、Pb、Ca、Cu的硝酸盐配制成前驱液,Bi、Sr、Pb、Ca、Cu的硝酸盐各元素摩尔或原子数配比为Bi:1.8-2.0,Sr:2,Pb:0.35-0.4,Ca:2-2.5,Cu:3-3.5。
3.根据权利要求1所述铋系高温超导块材的制备方法,其特征在于,步骤2、所述块材成型,采用压制成型模具对块材用粉体进行冲压成型,获得铋系块材;所述铋系块材包括块材尺寸和填充密度;
其中,在所述铋系块材的冲压成型过程中,所述块材高度0.5-10cm;原料粉体填充的块材密度控制在0.7-1.3g/cm3
4.根据权利要求3所述铋系高温超导块材的制备方法,其特征在于,所述压制成型模具包括有润滑剂喷口、烘干气体喷口、上冲模、操作平台、填粉腔、进料盒、安装于套管内的下模,所述上冲模安装在机架上,所述上冲模设置于下模上方,所述下模固定安装有填粉腔,在所述机架的操作平台上安装有进料盒,所述机架上固定设有润滑剂喷口的润滑剂管、设有烘干气体喷口的进气管,所述润滑剂喷口、烘干气体喷口置于上冲模、操作平台之间,上冲模和下模均连接有动力系统;从润滑剂喷口向上冲模和填粉腔内喷润滑液,烘干气体喷口向上冲膜和填粉腔吹压缩空气使上冲模、填粉腔表面干燥,进料盒向填粉腔前运动填充粉末,上冲模下降开始压制成型。
5.根据权利要求3所述铋系高温超导块材的制备方法,其特征在于,在所述块材冲压成型前,对压制成型模具进行表面脱模处理,压制成型模具的表面脱模处理为在上冲模表面、填粉腔的表面均喷洒润滑剂并即时吹干,块材表面残留的润滑剂采用温度500℃,时间3h通自然空气烧结处理。
6.根据权利要求5所述铋系高温超导块材的制备方法,其特征在于,所述润滑剂为采用SKZ250型润滑剂与乙醇按照质量百分比比例为5%分散制作而成。
7.根据权利要求1所述铋系高温超导块材的制备方法,其特征在于,步骤3,所述块材热处理,采用热处理制备出铋系高温超导块材。
8.根据权利要求7所述铋系高温超导块材的制备方法,其特征在于,所述块材热处理采用温度为840-860℃,处理时间为10-40h,通8.5-9%氧分压的气氛,制备出Bi2223块材。
CN202010991633.9A 2020-09-18 2020-09-18 一种铋系高温超导块材的制备方法 Pending CN112094117A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010991633.9A CN112094117A (zh) 2020-09-18 2020-09-18 一种铋系高温超导块材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010991633.9A CN112094117A (zh) 2020-09-18 2020-09-18 一种铋系高温超导块材的制备方法

Publications (1)

Publication Number Publication Date
CN112094117A true CN112094117A (zh) 2020-12-18

Family

ID=73759083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010991633.9A Pending CN112094117A (zh) 2020-09-18 2020-09-18 一种铋系高温超导块材的制备方法

Country Status (1)

Country Link
CN (1) CN112094117A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044729A (zh) * 1989-02-01 1990-08-15 中国科学院上海冶金研究所 铋锶钙铜氧系超导复合材料的制备方法
CN1253071A (zh) * 1998-11-02 2000-05-17 住友特殊金属株式会社 压制粉末制品的装置以及压制粉末制品的方法
CN105585315A (zh) * 2014-10-21 2016-05-18 兰毅 铋锶钙铜氧系超导复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044729A (zh) * 1989-02-01 1990-08-15 中国科学院上海冶金研究所 铋锶钙铜氧系超导复合材料的制备方法
CN1253071A (zh) * 1998-11-02 2000-05-17 住友特殊金属株式会社 压制粉末制品的装置以及压制粉末制品的方法
CN105585315A (zh) * 2014-10-21 2016-05-18 兰毅 铋锶钙铜氧系超导复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹国辉等: "铋系2223相大块材制备工艺探索", 《低温与超导》 *

Similar Documents

Publication Publication Date Title
CN107445621B (zh) 一种Cu-Te纳米晶/Cu2SnSe3热电复合材料及其制备方法
JP2022550146A (ja) 3dプリントによるイットリウムバリウム銅酸化物の超伝導撚り線の作製方法、および3dプリントによるイットリウムバリウム銅酸化物の超伝導バルク材の作製方法
CN1909143A (zh) 压制型含钪扩散阴极的制备方法
CN111848165A (zh) 一种p型碲化铋热电材料及其制备方法
CN113643854B (zh) 一种石墨烯复合Fe(Se,Te)超导材料的制备方法
CN112094117A (zh) 一种铋系高温超导块材的制备方法
CN106876041A (zh) 一种石墨烯钇钡铜超导材料的制备方法
CN107793155B (zh) 一种超快速制备Cu2Se块体热电材料的方法
CN107326250B (zh) 一步超快速制备高性能ZrNiSn块体热电材料的方法
CN104625050A (zh) 一种环保钎料箔片电磁压制制备方法
CN112063872B (zh) 一种快速构建多尺度纳米复合改性材料的方法
CN110112281B (zh) Al掺杂Cu缺位BiCuSeO基热电材料及制备方法
CN112279652A (zh) 一种关于Mg-Si-Sn-Sb基热电材料的快速非平衡制备方法
CN103296192A (zh) 一种块状热电材料的制备方法
CN112216783A (zh) 一种Ga-Ti掺杂ZnO块体热电材料的制备方法
CN101327518B (zh) CoSb3热电化合物纳米粉体的制备方法
CN111276597A (zh) Ag掺杂Cu2SnSe4热电材料及降低Cu基热电材料热导率的方法
CN109306521B (zh) 电传导型Ca12Al14O32:2e-电子化合物的制造方法
CN216540834U (zh) 一种磁粉芯器件电加热压制机构
WO2024148692A1 (zh) 一种热变形磁体及其制备方法
CN107266040A (zh) 一种快速制备多相复合CaMnO3基氧化物热电材料的方法
CN115159986B (zh) 一种自由锻工艺制备p型碲化铋基热电材料的方法
CN115417660B (zh) 一种Eu2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法
CN107324294A (zh) 一步超快速制备SnSe块体热电材料的方法
CN115064375A (zh) 改善钕铁硼永磁体抗腐蚀性能的方法和钕铁硼永磁体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201218