CN112038237B - 一种沟槽mosfet的制造方法 - Google Patents

一种沟槽mosfet的制造方法 Download PDF

Info

Publication number
CN112038237B
CN112038237B CN202010947607.6A CN202010947607A CN112038237B CN 112038237 B CN112038237 B CN 112038237B CN 202010947607 A CN202010947607 A CN 202010947607A CN 112038237 B CN112038237 B CN 112038237B
Authority
CN
China
Prior art keywords
diffusion region
epitaxial layer
type
groove
type diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010947607.6A
Other languages
English (en)
Other versions
CN112038237A (zh
Inventor
潘光燃
胡瞳腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Semi One Technology Co ltd
Original Assignee
Shenzhen Semi One Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Semi One Technology Co ltd filed Critical Shenzhen Semi One Technology Co ltd
Priority to CN202010947607.6A priority Critical patent/CN112038237B/zh
Publication of CN112038237A publication Critical patent/CN112038237A/zh
Application granted granted Critical
Publication of CN112038237B publication Critical patent/CN112038237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种沟槽MOSFET的制造方法,包括以下步骤:步骤S1:在N型衬底的表面形成N型外延层;步骤S2:在N型外延层的表面注入硼原子,并在N型外延层上形成沟槽;步骤S3:对沟槽采用高温氧化工艺,硼原子在高温氧化工艺中发生热扩散形成P型扩散区;步骤S4:淀积多晶硅,去除沟槽之外的多晶硅;步骤S5:在P型扩散区的表层之中形成N型扩散区。本发明提供的沟槽MOSFET的制造方法具有更小的单位面积导通电阻、成本更低等优点。

Description

一种沟槽MOSFET的制造方法
技术领域
本发明涉及半导体技术领域,尤其涉及一种沟槽MOSFET的制造方法。
背景技术
MOSFET芯片是一种分立器件,属于半导体功率器件范畴,与集成电路同属于半导体芯片领域,MOSFET的最关键指标参数包括击穿电压(特指漏源击穿电压)、导通电阻和阈值电压(口语中也称之为开启电压),通常情况下,击穿电压越大越好,导通电阻越小越好。为实现其标称的击穿电压,MOSFET芯片内部结构中都采用特定电阻率、特定厚度的外延层来承压,通常所需实现的击穿电压越高,外延层的电阻率或(和)厚度也就越大,芯片的单位面积的导通电阻随之也越大,所以说,单位面积的导通电阻与击穿电压是一对互为矛盾的参数;最大程度的减小MOSFET芯片的导通电阻,是芯片研发工程师最重要的工作之一,为减小MOSFET芯片的导通电阻,最直接的方法是增大芯片的面积,但这种方法也最直接的增加了芯片的成本,所以说,最大程度的改善单位面积的导通电阻,才是芯片研发工程师的职责所在。
现有技术的缺点:工艺流程中至少包含三次高温处理的工艺(高温氧化形成栅氧化层,高温退火形成体区,高温退火形成源),在这些高温处理的工艺过程中,衬底中的掺杂物质因其掺杂浓度比外延层的掺杂浓度更大所以向外延层中扩散,导致外延层的电阻率变小,MOSFET的击穿电压随之变小,这种情况下,为实现目标击穿电压,需提高外延层的初始电阻率或(和)初始厚度来抵消衬底中的掺杂物质向外延层中扩散产生的影响,这种做法导致芯片单位面积的导通电阻随之增大,因此需要更大的芯片面积实现目标导通电阻,芯片成本增加。现需要一种能实现更低的单位面积导通电阻的方法。
发明内容
本发明提供了一种沟槽MOSFET的制造方法,旨在解决芯片单位面积的导通电阻大的问题。
根据本申请实施例,提供了一种沟槽MOSFET的制造方法,包括以下步骤:
步骤S1:在N型衬底的表面形成N型外延层;
步骤S2:在N型外延层的表面注入硼原子,并在N型外延层上形成沟槽;
步骤S3:对沟槽采用高温氧化工艺,硼原子在高温氧化工艺中发生热扩散形成P型扩散区;
步骤S4:淀积多晶硅,去除沟槽之外的多晶硅;
步骤S5:在P型扩散区的表层之中形成N型扩散区。
优选地,所述步骤S5包括:
步骤S51:采用光刻、离子工艺对预设区域注入磷原子和/或砷原子;
步骤S52:采用快速热处理工艺激活所述磷原子和/或砷原子,形成N型扩散区。
优选地,所述快速热处理的工艺温度为800-1000摄氏度,工艺时间为10-30秒。
优选地,在所述快速热处理工艺中,所述硼原子再次热扩散,所述磷原子和/或砷原子再次向N型外延层热扩散。
优选地,所述步骤S3包括:
步骤S31:所述高温氧化的工艺在所述沟槽的表面生成栅氧化层;
步骤S32:所述硼原子在所述高温氧化工艺中发生热扩散以形成P型扩散区;
步骤S33:所述P型扩散区与N型外延层形成PN结;
所述PN结与所述N型外延层的上表面距离小于所述沟槽的深度。
本申请实施例提供的技术方案可以包括以下有益效果:本申请设计了一种沟槽MOSFET的制造方法,利用生成栅氧化层时的高温工艺对硼原子进行热扩散形成P型扩散区作为MOSFET的体区,而现有技术为形成体区需要额外的一步高温退火工艺;本发明在体区的表层之中注入N型掺杂物质(磷原子或/和砷原子)之后采用快速热处理工艺形成N型扩散区作为MOSFET的源,而现有技术为形成源需要额外的一步高温退火工艺。如此,相比现有技术,本发明减少了高温退火工艺,从而减小了高温处理工艺过程中衬底中的掺杂物质向外延层中的扩散,因此可以得到比现有技术更高的击穿电压,或在实现同样击穿电压的情况下可以得到更小的单位面积导通电阻;另一方面,本发明相比现有技术减少了高温退火工艺,因此加工成本更低、加工效率更高。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明沟槽MOSFET的制造方法的流程示意图;
图2是本发明步骤S3的流程示意图;
图3是本发明步骤S3之前的流程示意图;
图4是本发明步骤S5的流程示意图;
图5是本发明步骤S1中MOSFET芯片的结构示意图;
图6是本发明步骤S2中MOSFET芯片的结构示意图;
图7是本发明步骤S2中MOSFET芯片的结构示意图;
图8是本发明步骤S3中MOSFET芯片的结构示意图;
图9是本发明步骤S4中MOSFET芯片的结构示意图;
图10是本发明步骤S4中MOSFET芯片的结构示意图;
图11是本发明步骤S5中MOSFET芯片的结构示意图;
图12是本发明另一实施例中MOSFET芯片的结构示意图。
标号说明:
10、沟槽MOSFET的制造方法;1、N型衬底;2、N型外延层;3、P型扩散区;4、沟槽;5、栅氧化层;6、多晶硅;7、N型扩散区;11、硼原子;100、P型衬底;110、P型外延层;130、N型扩散区;140、P型扩散区。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
还应当理解,在此本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
请参阅图1和图5,本发明公开了一种沟槽MOSFET的制造方法10,提供MOSFET芯片,所述MOSFET芯片包括N型衬底1以及形成在所述N型衬底1上的N型外延层2,所述沟槽MOSFET的制造方法10包括以下步骤:
步骤S1:在N型衬底1的表面形成N型外延层2,参见图5;
步骤S2:在N型外延层2的表面注入硼原子11,并在N型外延层2上形成沟槽4,参见图6和图7;
步骤S3:对沟槽4采用高温氧化工艺,硼原子11在高温氧化工艺中发生热扩散形成P型扩散区3,参见图8;
步骤S4:淀积多晶硅6,去除沟槽4之外的多晶硅6,参见图9和图10;
步骤S5:在P型扩散区3的表层之中形成N型扩散区7,参见图11。
请参阅图2,所述步骤S3包括步骤S31:所述高温氧化的工艺在所述沟槽4的表面生成栅氧化层5,参见图8;
步骤S32:所述硼原子11在所述高温氧化工艺中发生热扩散以形成P型扩散区3,参见图8;
步骤S33:所述P型扩散区3与N型外延层2形成PN结,参见图8;
在本实施例中,所述PN结与所述N型外延层2的上表面距离小于所述沟槽4的深度。
请参阅图3,可选的,在本实施例中,在所述步骤S31之前,包括如下步骤:
S301:采用高温氧化工艺在所述沟槽4的表面生成牺牲氧化层;
S302:采用湿法腐蚀的工艺去除所述牺牲氧化层。
所述高温氧化工艺的温度为850-1150摄氏度,通常为1000-1050摄氏度,工艺时间为10-100分钟。由于形成沟槽的工艺方法为干法刻蚀工艺,干法刻蚀工艺对沟槽4表层的硅会产生轻微的损伤,为了保证后续栅氧化层的质量,有必要将沟槽4表层有损伤的硅除掉。所述步骤S301和步骤S302的目的在于:通过在所述沟槽4的表层生成牺牲氧化层,该牺牲氧化层中氧原子在高温环境下与沟槽4表层的硅原子发生氧化反应形成氧化硅,沟槽4表层的硅经氧化反应被消耗掉。
所述PN结距离N型外延层2的上表面的高度称之为结深,在步骤S301和S31中,所述硼原子11在生成牺牲氧化层和生成栅氧化层这两步高温氧化工艺中都发生热扩散,并在所述生成栅氧化层之后达到预设结深。
请参阅图4,所述步骤S5包括:
步骤S51:采用光刻、离子工艺对预设区域注入磷原子和/或砷原子;
步骤S52:采用快速热处理工艺激活所述磷原子和/或砷原子,形成N型扩散区7。
所述快速热处理的工艺温度为800-1000摄氏度,工艺时间为10-30秒,在此工艺过程中硼原子11再次热扩散、N型衬底1中的磷原子和/或砷原子再次向N型外延层2中热扩散,但由于快速热处理的工艺时间非常短,所述二者的热扩散都可以忽略不计。
请参阅图11,所述N型扩散区7为MOSFET的源,所述N型衬底1的背面为MOSFET的漏,所述多晶硅6为MOSFET的栅,所述P型扩散区3为MOSFET的体区。
本发明提供的沟槽MOSFET的制造方法10,利用生成栅氧化层时的高温工艺对硼原子11进行热扩散形成P型扩散区3作为MOSFET的体区,而现有技术为形成体区需要额外的一步高温退火工艺;本发明在体区的表层之中注入N型掺杂物质(磷原子或/和砷原子)之后采用快速热处理工艺形成N型扩散区7作为MOSFET的源,而现有技术为形成源需要额外的一步高温退火工艺。如此,相比现有技术,本发明减少了高温退火工艺,从而减小了高温处理工艺过程中衬底中的掺杂物质向N型外延层2中的扩散,因此可以得到比现有技术更高的击穿电压,或在实现同样击穿电压的情况下可以得到更小的单位面积导通电阻;另一方面,本发明相比现有技术减少了高温退火工艺,因此加工成本更低、加工效率更高。
必须提出的是,本发明的制造方法,是以N型沟槽MOSFET为实施例阐述的,但本发明同样也适用于P型沟槽MOSFET;以及所有由沟槽MOSFET衍生和演变形成的其它半导体器件(比如SGT),也都视为本发明之保护范围。
请参阅图12,作为本发明的另一实施例,所述MOSFET芯片对应P型MOSFET时,提供P型衬底100和P型外延层110,在所述P型外延层110的表层之中注入磷原子,最终形成N型扩散区130为MOSFET的体区,最终形成的P型扩散区140为MOSFET的源,由预设区域注入硼原子然后快速热处理形成,所述P型衬底100的背面为MOSFET的漏。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (1)

1.一种沟槽MOSFET的制造方法,其特征在于,包括以下步骤:
步骤S1:在N型衬底的表面形成N型外延层;
步骤S2:在N型外延层的表面注入硼原子,并在N型外延层上形成沟槽;
步骤S3:对沟槽采用高温氧化工艺,硼原子在高温氧化工艺中发生热扩散形成P型扩散区;
步骤S4:淀积多晶硅,去除沟槽之外的多晶硅;
步骤S5:在P型扩散区的表层之中形成N型扩散区;
所述衬底、N型外延层、P型扩散区及所述N型扩散区依次叠层设置,所述N型外延层的深度大于所述沟槽的深度;
所述步骤S5包括:步骤S51:采用光刻、离子工艺对预设区域注入磷原子和/或砷原子;
步骤S52:采用快速热处理工艺激活所述磷原子和/或砷原子,形成N型扩散区;
所述快速热处理的工艺温度为800-1000摄氏度,工艺时间为10-30秒;在所述快速热处理工艺中,所述硼原子再次热扩散,所述磷原子和/或砷原子再次向N型外延层热扩散;
所述步骤S3包括:
步骤S31:所述高温氧化的工艺在所述沟槽的表面生成栅氧化层;
步骤S32:所述硼原子在所述高温氧化工艺中发生热扩散以形成P型扩散区;
步骤S33:所述P型扩散区与N型外延层形成PN结;
所述PN结与所述N型外延层的上表面距离小于所述沟槽的深度;
在所述步骤S31之前,包括如下步骤:
S301:采用高温氧化工艺在所述沟槽的表面生成牺牲氧化层;所述高温氧化工艺的温度为1000-1050摄氏度,工艺时间为10-100分钟;
S302:采用湿法腐蚀的工艺去除所述牺牲氧化层。
CN202010947607.6A 2020-09-10 2020-09-10 一种沟槽mosfet的制造方法 Active CN112038237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010947607.6A CN112038237B (zh) 2020-09-10 2020-09-10 一种沟槽mosfet的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010947607.6A CN112038237B (zh) 2020-09-10 2020-09-10 一种沟槽mosfet的制造方法

Publications (2)

Publication Number Publication Date
CN112038237A CN112038237A (zh) 2020-12-04
CN112038237B true CN112038237B (zh) 2023-08-25

Family

ID=73585240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010947607.6A Active CN112038237B (zh) 2020-09-10 2020-09-10 一种沟槽mosfet的制造方法

Country Status (1)

Country Link
CN (1) CN112038237B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114334823A (zh) * 2021-12-31 2022-04-12 上海晶岳电子有限公司 一种改善晶圆翘曲的sgt器件及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165118A (ja) * 2012-02-09 2013-08-22 Fuji Electric Co Ltd ゲート酸化膜の形成方法及び炭化珪素半導体装置の製造方法
CN108615707A (zh) * 2018-02-13 2018-10-02 株洲中车时代电气股份有限公司 一种具有折叠型复合栅结构的igbt芯片的制作方法
CN109326647A (zh) * 2018-09-19 2019-02-12 盛世瑶兰(深圳)科技有限公司 一种vdmos器件及其制作方法
CN109873029A (zh) * 2017-12-04 2019-06-11 贵州恒芯微电子科技有限公司 一种沟槽栅超势垒整流器
CN210575961U (zh) * 2019-06-26 2020-05-19 东莞市纽航电子有限公司 一种降低能耗的肖特基二极管芯片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415173B (zh) * 2011-05-19 2013-11-11 Anpec Electronics Corp 低米勒電容之超級接面功率電晶體製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165118A (ja) * 2012-02-09 2013-08-22 Fuji Electric Co Ltd ゲート酸化膜の形成方法及び炭化珪素半導体装置の製造方法
CN109873029A (zh) * 2017-12-04 2019-06-11 贵州恒芯微电子科技有限公司 一种沟槽栅超势垒整流器
CN108615707A (zh) * 2018-02-13 2018-10-02 株洲中车时代电气股份有限公司 一种具有折叠型复合栅结构的igbt芯片的制作方法
CN109326647A (zh) * 2018-09-19 2019-02-12 盛世瑶兰(深圳)科技有限公司 一种vdmos器件及其制作方法
CN210575961U (zh) * 2019-06-26 2020-05-19 东莞市纽航电子有限公司 一种降低能耗的肖特基二极管芯片

Also Published As

Publication number Publication date
CN112038237A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
JP7487753B2 (ja) 半導体装置および製造方法
US6927137B2 (en) Forming a retrograde well in a transistor to enhance performance of the transistor
CN104637821B (zh) 超级结器件的制造方法
KR20130129342A (ko) 탄화 규소 반도체장치 및 그 제조방법
US9608057B2 (en) Semiconductor device and method for manufacturing semiconductor device
US20200161442A1 (en) Systems and methods for in-situ doped semiconductor gate electrodes for wide bandgap semiconductor power devices
CN112038237B (zh) 一种沟槽mosfet的制造方法
KR19980070332A (ko) 실리콘 장치 내에 매우 얕은 접합부를 형성하기 위한 방법
CN103000499B (zh) 一种锗硅硼外延层生长方法
CN103000501B (zh) Nmos晶体管形成方法
CN112038236B (zh) 一种沟槽mosfet的制造方法
RU2510099C2 (ru) Способ изготовления силового полупроводникового прибора
CN112103185B (zh) 一种沟槽mosfet的制造方法及结构
CN112053957A (zh) 一种沟槽mosfet的制作方法
JP4676708B2 (ja) 半導体装置の製造方法
CN108133894B (zh) 沟槽型垂直双扩散金属氧化物晶体管及其制作方法
CN101752311B (zh) 功率mos晶体管与肖特基二极管的集成方法及结构
CN106257630B (zh) 射频rf ldmos器件的制造方法
US6773977B1 (en) Method of forming a diode for integration with a semiconductor device and method of forming a transistor device having an integrated diode
US20120302026A1 (en) Method for forming a transistor
CN102130003A (zh) 纵向沟槽mos器件的制备方法
CN116646391A (zh) 一种沟槽功率器件及其制造方法
JP2843037B2 (ja) 半導体装置の製造方法
CN110098110B (zh) 半导体器件及其形成方法
CN108155239B (zh) 垂直双扩散金属氧化物晶体管及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant