CN112029739A - 7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用 - Google Patents

7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用 Download PDF

Info

Publication number
CN112029739A
CN112029739A CN202010966569.9A CN202010966569A CN112029739A CN 112029739 A CN112029739 A CN 112029739A CN 202010966569 A CN202010966569 A CN 202010966569A CN 112029739 A CN112029739 A CN 112029739A
Authority
CN
China
Prior art keywords
ala
gly
glu
val
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010966569.9A
Other languages
English (en)
Inventor
宋鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Bontac Green Biocatalysis Ecoindustrial Park Co ltd
Original Assignee
Jiangxi Bontac Green Biocatalysis Ecoindustrial Park Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Bontac Green Biocatalysis Ecoindustrial Park Co ltd filed Critical Jiangxi Bontac Green Biocatalysis Ecoindustrial Park Co ltd
Priority to CN202010966569.9A priority Critical patent/CN112029739A/zh
Publication of CN112029739A publication Critical patent/CN112029739A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/02Dehydrogenating; Dehydroxylating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/012017-Beta-hydroxysteroid dehydrogenase (NADP+) (1.1.1.201)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用,属于酶工程技术领域,通过突变体文库构建及高通量筛选方法获得SEQ ID NO:2所示的氨基酸序列。通过易错PCR确定影响7β‑HSDH活性的关键氨基酸并进行定点饱和突变,筛选得到的7β羟基类固醇脱氢酶突变体SEQ ID NO:2可以将200mmol/L7‑KLCA99%转化为UDCA,基本达到工业化生产要求。

Description

7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用
技术领域
本发明涉及来自梭状芽胞杆菌属(Clostridia)的一种7β-羟基类固醇脱氢酶的突变子、编码这些酶的序列、产生此类酶的方法,以及在熊去氧胆酸(UCDA)酶法合成中的用途。
背景技术
熊去氧胆酸(UDCA)是名贵中药熊胆所含的主要有效成分,在临床上用于治疗各种胆结石疾病,各种急慢性肝病。UCDA的合成方法主要有全化学合成法和化学-酶法结合法,起始原料一般为动物来源的胆酸(CA)或去氧胆酸(CDCA)。
UDCA的经典化学合成方法如下。因为化学氧化是非选择性的,所以必须借助酯化来保护3α-和7α-羟基。此外,7-酮石胆酸(7-KLCA)的还原用到金属钠或Pd/C催化氢化,选择性地,工业放大生产不易控制且不安全。
胆酸→3,7-二乙酰基胆酸甲酯→12酮-3,7-二乙酰基胆酸甲酯→CDCA→7-KLCA→UDCA
PCT/EP2009/002190描述了如下方法。使用12α-类固醇脱氢酶(12α-HSDH)选择性地将CA氧化为12酮-去氧胆酸(12酮-CDCA),避免了两个保护步骤,但仍需要7-KLCA的还原步骤。
胆酸→12-酮-CDCA→CDCA→7-KLCA→UDCA
Monti,D.,等(Advanced synthesis and catalysis 2009,351,1303-1311)描述了另外一种酶促转化方法。通过7α-HSDH(脆弱杆菌)和12α-HSDH(tetra hedron,2006,62:4535-4539)将CA氧化成7,12-二酮-LCA,然后再用梭菌属的7β-HSDH(Biochim biophysActa,1981,665:262-269)还原形成12-酮-UDCA,最后通过wolff-kishner还原反应获得终产物。整个反应需要三个酶,以及辅酶再生系统(乳酸脱氢酶和葡萄糖脱氢酶),过程复杂。因为催化反应的平衡问题,使得底物不可能完全转化,难以工业化应用。
CA→7,12-二酮-LCA→12-酮-UDCA→UDCA
Hirano和Masuda报道了来自产气科林斯菌的NADP+依赖性的7β-HSDH(ApplEnviron Microbiol,1982,43:1057-1063)。2011年Rolf D.Schmid和德国细胞制药公司将此7β-HSDH基因在大肠杆菌中高效表达,鉴定了酶学性质并用于还原7,12-二酮-LCA或者7-KLCA获得12-酮-UDCA或者UDCA(Appl Microbiol Biotechnol,2011,90:127-135),此酶表现出高选择性且不会形成副产物。继续优化后得到活性提高和去除底物抑制的突变子(CN201080062617,CN201180067680),重组酶的高转化率和高专一性使得UDCA酶法大规模生产成为可能。此外,华东理工大学许建和从扭链瘤胃球菌(Ruminococcus torquesATCC35915)克隆表达了其7β-HSDH基因,此酶也具有与产气柯林斯菌来源的7β-HSDH相似的、对底物7-KLCA的高转化率和高特异性。尽管如此,上述不同来源的7β-HSDH催化的UDCA的合成反应,使用低的底物浓度(4~40g/L),而且在40g/L的底物浓度下转化率只有90%,产品收率仅71%;一般情况下,酶转化工艺使用100g/L或者更高底物浓度,且转化率接近100%,才视为具有工业化生产的意义,故表明此酶促反应离工业化大规模生产还有一定的距离。
发明内容
为解决上述问题,本发明以梭状芽胞杆菌(Clostridia)7β-羟基类固醇脱氢酶序列SEQ ID NO.1出发,通过易错PCR,筛选得到7-酮石胆酸(7-KLCA)转化率明显提高的突变体SEQ ID NO.2。
7β羟基类固醇脱氢酶突变体,所述7β羟基类固醇脱氢酶突变体是将氨基酸序列如SEQ ID NO:.1所示的7β-HSDH的第189位氨基酸进行替换得到的。
7β羟基类固醇脱氢酶突变体,所述7β羟基类固醇脱氢酶突变体具有SEQ ID NO:.2所示的氨基酸序列。
SEQ ID NO:.2氨基酸序列的7β羟基类固醇脱氢酶突变体在制备熊去氧胆酸中的应用。
所述的7β羟基类固醇脱氢酶突变体的应用指其催化7-KLCA合成UDCA.
所述的7β羟基类固醇脱氢酶突变体的应用指其与葡萄糖脱氢酶耦合反应实现辅酶NADPH的循环再生。葡萄糖脱氢酶的序列为SEQ ID NO:.3
本发明的目的是提供梭状芽胞杆菌(Clostridia)7β-HSDH的一种或几种突变体与葡萄糖脱氢酶耦合反应实现NADP+的循环利用,将7-KLCA高效专一地转化成UDCA,从而实现酶法UDCA合成工业化生产。
本发明的目的还包括通过7β-HSDH的高转化率实现产物底物的完全转化(>99%),通过高转化率实现体系中产物的单一化,便于产物的分离纯化。
本发明的有益效果
(1)本发明通过易错PCR构建梭状芽胞杆菌7β-HSDH酶的突变子文库,筛选得到的7β羟基类固醇脱氢酶突变体SEQ ID NO.2可以将200mmol/L7-KLCA99%转化为UDCA。基本达到工业化生产要求。
(2)7β羟基类固醇脱氢酶突变体催化反应专一性强,与野生型7β羟基类固醇脱氢酶相比酶活提高了3.4倍,转化率高,较化学法减少了副产物,简化了后续产品提取和精炼工艺。
附图说明
图一为7β-HSDH的突变子结构。
图二为野生型7β-HSDH(SEQ ID NO.1)和枯草芽孢杆菌(Bacillus subtilis)葡萄糖脱氢酶联合使用转化7-KLCA(200mmol/L)高效液相色谱图。
图三为突变型7β-HSDH(SEQ ID NO.2)和枯草芽孢杆菌(Bacillus subtilis)葡萄糖脱氢酶联合使用转化7-KLCA(200mmol/L)高效液相色谱图。
具体实施方式
以下实施例及其说明用于解释本发明,但并不构成对本发明的不当限定。本申请中下述实施例中所使用的方法如无特殊说明均为常规方法,如《分子克隆实验指南》(J.萨姆布鲁克,D.W.拉塞尔著,黄培堂,汪嘉玺,朱厚础,等译。第3版,北京:科学出版社,2002)中所述的方法进行。同时,本发明中的氨基酸无特别说明外均用其缩写或代号标明。
其中7β羟基类固醇脱氢酶简称为7β-HSDH。
实施例1
突变体文库构建及高通量筛选方法:
突变体文库的构建:
为了提高野生型7β-HSDH酶的转化率,以重组表达载体PET28a(+)-RT-7β-HSDH为DNA模板,通过易错PCR的方法构建一个随机突变体文库,并通过调整易错PCR反应体系中Mg2+和Mn2+浓度以及dCTP和dTTP寡核苷酸浓度,使该突变体文库的碱基错配率为千分之五,即保证一个突变体有1到3个氨基酸发生突变,构建突变体文库的具体过程如下。易错PCR反应体系和条件:
易错PCR反应体系:
Figure BDA0002682535730000041
易错PCR反应条件是:先95℃预变性5min;然后94℃变性30s,55℃退火1min,72℃1.5min,共30个循环;最后72℃延伸10min。
将上述得到的易错PCR产物切胶回收纯化,与原核表达载体pET28a(+)连接后转化重组基因工程菌E.coli BL 21(DE3),即得到一个库容量大的突变体文库。筛选突变子库:
将得到的单菌落接种到2mL 96孔板,每孔含200μL LB培养基(100μg/mL卡那霉素),对照为含有野生型7β-HSDH序列的重组菌。在37℃,220rpm下过夜培养,加入终浓度0.1mM的IPTG诱导,在30℃诱导4小时。取50μL菌液同位转移到新的96孔板制备甘油保存液-80℃保存,剩余部分离心收集细胞。每孔加入100μL溶菌酶buffer(1Ⅹbugbuster,71456-3CN,EMD Millipore)常温振荡裂解30分钟。加入50mM PBS缓冲液(pH 8.0)稀释5倍离心的裂解液,10μL裂解液和100μL 7-KLCA(终浓度为200mmol/L),加入NADP+(终浓度为200mmol/L),使用酶标仪测定340nm处吸光值下降(下降值大代表转化率高)。通过两轮筛选得到转化率明显提高的突变子SEQ ID NO.2。突变子在LB平板(包含100μg/mL卡那霉素)上划线纯化测序,药瓶发酵制备酶液,用于活性和转化率测定。
表1突变子氨基酸残基变化和底物转化率比较
Figure BDA0002682535730000051
本发明中7β-HSDH突变体文库的高通量筛选方法是采用NADPH测定法,其在340nm处有最大吸收峰,分别以梯度浓度的7-KLCA(100~200mmol/L)为底物测定该酶的还原活力和氧化活力,其中还原活力测定NADPH的消耗量,通过酶标仪测定其在340nm的吸光值,数值越小,酶活性越高;氧化活力测定NADPH的生成量,通过酶标仪测定其在340nm的吸光值,数值越大,酶活性越高;为了使反应向正方向进行,得到更多的UDCA,因此,还原活力高,氧化活力低即还原氧化活力比值大的突变子为有益突变体。
实施例2
突变子晶体结构模拟
以己报道的来源于C.aerofaciens的7β-HSDH酶(PDB code:ID:5FYD)为模板(Structural and biochemical insights into 7β-hydroxysteroid dehydrogenasestereoselectivity.2016年公开)(两者氨基酸相似度为76%),利用SWISS-MODEL在线服务器(http://www.swissmodel.expasy.org/)构建梭状芽胞杆菌(Clostridia)7β-HSDH突变子(SEQ ID NO.2)三维结构图。运用AutoDock软件将底物7-KLCA和NADPH对接到突变子结构中(图1)。7-KLCA和NADPH三维立体机构由Pubchem数据库下载(https:// pubchem.ncbi.nlm.nih.gov/)。
189位氨基酸虚拟饱和突变
对SEQ ID NO.2中207位氨基酸进行虚拟饱和突变,借助Discovery Studio分析酶蛋白-配体复合物的结合亲和力。
步骤:
蛋白结构导入Discovery Studio→对蛋白进行去水→Prepare protein(重新命名为Ligand)→进入Simulation(依次点击Change Forcefield、Apply Forcefield),赋予蛋白CHARMm力场→Macromolecules→Design Protein→Calculate Mutation Energy(Bingding)。
突变后酶蛋白和配体结合自由能结果如下表所示:
Figure BDA0002682535730000061
Figure BDA0002682535730000071
当V189变为A时,受体和配体之间的亲和力有所提高。这些突变目标的预测,可以指导下一步进行合理的氨基酸突变,从中筛选酶活提高并且保持高转化率的突变子。
实施例3
称取99%的7-KLCA(终浓度200mmol/L),悬浮于100mL 50mmol/L磷酸钾缓冲液(pH8.0),加入等摩尔的NADPH,再分别加入100mL的野生型7β-HSDH和突变子酶液(2000U)。总反应体积500mL,在35℃、200rpm条件下反应8h,野生型7β-HSDH和突变型转化率分别为29.8%和56.8%。
实施例4
7β-HSDH和来自枯草芽孢杆菌(Bacillus subtilis)的葡萄糖脱氢酶SEQ ID NO.3联合使用,转化7-KLCA:
称取99%的7-KLCA(终浓度200mmol/L),悬浮于100mL 50mmol/L磷酸钾缓冲液(pH8.0),加入100mL的野生型7β-HSDH和突变子酶液(2000U),加入100mL葡萄糖脱氢酶液(6000U),加入终浓度400mmol/L葡萄糖。总反应体积500mL,在35℃、200rpm条件下反应8h,野生型7β-HSDH和突变子转化率分别为30.2%(图2)和99.4%(图3)。
野生型7β-HSDH(SEQ ID NO.1)和枯草芽孢杆菌(Bacillus subtilis)葡萄糖脱氢酶联合使用转化7-KLCA(200mmol/L)高效液相色谱图(图2)。
突变型7β-HSDH(SEQ ID NO.2)和枯草芽孢杆菌(Bacillus subtilis)葡萄糖脱氢酶联合使用转化7-KLCA(200mmol/L)高效液相色谱图(图3)。
实施例5
7β-HSDH酶活力的测定:
25℃温浴的2.7mL 50mM磷酸盐缓冲液(pH 8.0)、0.2mL 7-酮石胆酸(7-KLCA)(终浓度200mmol/L)(溶解在buffer中)、50mM磷酸盐缓冲液(pH 8.0)稀释一定倍数的7β-HSDH粗酶液样品0.05mL于比色皿中混匀,置于紫外分光光度计中,吸收值归零。
取0.05ml NAD(P)H(50mg/mL)加入比色皿中,混匀并开始计时2min,读取2min内的340nm波长的吸收变化值,计算△OD/min
空白对照:操作流程同上,但反应体系中的酶用等量的Tris/HCl缓冲液代替,测出结果为阴性对照。
酶活单位定义:
酶活(U/mL)=△OD/min*Vt*df/(6.22*1.0*Vs)
Vt:反应总体积3.05mL
Df::稀释倍数
6.22:NADPH在340nm波长的消光系数
1.0:测量光程
Vs:7β-HSDH酶液体积(0.05mL)
利用全基因合成7β-HSDH突变体基因,与pET-28a(+)载体连接,构建重组表达质粒,将其转化到感受态E.coil JM109,涂布卡那霉素LB平板,挑取阳性菌落。37℃摇床过夜培养后提取质粒,再转入大肠杆菌BL21(DE3),得到定点突变的重组菌株。采用上述方法测得野生型的7β-HSDH酶活性为5.2U/mL;突变型的酶活性为17.7U/mL。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。
序列表
<110> 江西邦泰绿色生物合成生态产业园发展有限公司
<120> 7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 264
<212> PRT
<213> SEQ ID NO .1(人工序列)
<400> 1
Met Asn Leu Arg Glu Lys Tyr Gly Glu Trp Gly Ile Ile Leu Gly Ala
1 5 10 15
Thr Glu Gly Val Gly Lys Ala Phe Ala Glu Lys Ile Ala Ser Glu Gly
20 25 30
Met Ser Val Val Leu Val Gly Arg Arg Glu Glu Lys Leu Gln Glu Leu
35 40 45
Gly Lys Ser Ile Ser Glu Thr Tyr Gly Val Asp His Met Val Ile Arg
50 55 60
Ala Asp Phe Ala Gln Ser Asp Cys Thr Asp Lys Ile Phe Glu Ala Thr
65 70 75 80
Lys Asp Leu Asp Met Gly Phe Met Ser Tyr Val Ala Cys Phe His Thr
85 90 95
Phe Gly Lys Leu Gln Asp Thr Pro Trp Glu Lys His Glu Gln Met Ile
100 105 110
Asn Val Asn Val Met Thr Phe Leu Lys Cys Phe Tyr His Tyr Met Gly
115 120 125
Ile Phe Ala Lys Gln Asp Arg Gly Ala Val Ile Asn Val Ser Ser Leu
130 135 140
Thr Ala Ile Ser Ser Ser Pro Tyr Asn Ala Gln Tyr Gly Ala Gly Lys
145 150 155 160
Ser Tyr Ile Lys Lys Leu Thr Glu Ala Val Ala Ala Glu Cys Glu Ser
165 170 175
Thr Asn Val Asp Val Glu Val Ile Thr Leu Gly Thr Thr Ile Thr Pro
180 185 190
Ser Leu Leu Ser Asn Leu Pro Gly Gly Pro Ala Gly Glu Ala Val Met
195 200 205
Lys Thr Ala Met Thr Pro Glu Ala Cys Val Glu Glu Ala Phe Asp Asn
210 215 220
Leu Gly Lys Ser Leu Ser Val Ile Ala Gly Glu His Asn Lys Ala Asn
225 230 235 240
Val His Asn Trp Gln Ala Asn Lys Thr Asp Asp Glu Tyr Ile Arg Tyr
245 250 255
Met Gly Ser Phe Tyr Ser Asn Asn
260
<210> 2
<211> 264
<212> PRT
<213> SEQ ID NO .2(人工序列)
<400> 2
Met Asn Leu Arg Glu Lys Tyr Gly Glu Trp Gly Ile Ile Leu Gly Ala
1 5 10 15
Thr Glu Gly Val Gly Lys Ala Phe Ala Glu Lys Ile Ala Ser Glu Gly
20 25 30
Met Ser Val Val Leu Val Gly Arg Arg Glu Glu Lys Leu Gln Glu Leu
35 40 45
Gly Lys Ser Ile Ser Glu Thr Tyr Gly Val Asp His Met Val Ile Arg
50 55 60
Ala Asp Phe Ala Gln Ser Asp Cys Thr Asp Lys Ile Phe Glu Ala Thr
65 70 75 80
Lys Asp Leu Asp Met Gly Phe Met Ser Tyr Val Ala Cys Phe His Thr
85 90 95
Phe Gly Lys Leu Gln Asp Thr Pro Trp Glu Lys His Glu Gln Met Ile
100 105 110
Asn Val Asn Val Met Thr Phe Leu Lys Cys Phe Tyr His Tyr Met Gly
115 120 125
Ile Phe Ala Lys Gln Asp Arg Gly Ala Val Ile Asn Val Ser Ser Leu
130 135 140
Thr Ala Ile Ser Ser Ser Pro Tyr Asn Ala Gln Tyr Gly Ala Gly Lys
145 150 155 160
Ser Tyr Ile Lys Lys Leu Thr Glu Ala Val Ala Ala Glu Cys Glu Ser
165 170 175
Thr Asn Val Asp Val Glu Val Ile Thr Leu Gly Thr Val Ile Thr Pro
180 185 190
Ser Leu Leu Ser Asn Leu Pro Gly Gly Pro Ala Gly Glu Ala Val Met
195 200 205
Lys Thr Ala Met Thr Pro Glu Ala Cys Val Glu Glu Ala Phe Asp Asn
210 215 220
Leu Gly Lys Ser Leu Ser Val Ile Ala Gly Glu His Asn Lys Ala Asn
225 230 235 240
Val His Asn Trp Gln Ala Asn Lys Thr Asp Asp Glu Tyr Ile Arg Tyr
245 250 255
Met Gly Ser Phe Tyr Ser Asn Asn
260
<210> 3
<211> 261
<212> PRT
<213> SEQ ID NO .3(人工序列)
<400> 3
Met Tyr Thr Asp Leu Lys Asp Lys Val Val Val Val Thr Gly Gly Ser
1 5 10 15
Lys Gly Leu Gly Arg Ala Met Ala Val Arg Phe Gly Gln Glu Gln Ser
20 25 30
Lys Val Val Val Asn Tyr Arg Ser Asn Glu Glu Glu Ala Leu Glu Val
35 40 45
Lys Lys Glu Ile Glu Gln Ala Gly Gly Gln Ala Ile Ile Val Arg Gly
50 55 60
Asp Val Thr Lys Glu Glu Asp Val Val Asn Leu Val Glu Thr Ala Val
65 70 75 80
Lys Glu Phe Gly Thr Leu Asp Val Met Ile Asn Asn Ala Gly Val Glu
85 90 95
Asn Pro Val Pro Ser His Glu Leu Ser Leu Glu Asn Trp Asn Gln Val
100 105 110
Ile Asp Thr Asn Leu Thr Gly Ala Phe Leu Gly Ser Arg Glu Ala Ile
115 120 125
Lys Tyr Phe Val Glu Asn Asp Ile Lys Gly Asn Val Ile Asn Met Ser
130 135 140
Ser Val His Glu Met Ile Pro Trp Pro Leu Phe Val His Tyr Ala Ala
145 150 155 160
Ser Lys Gly Gly Met Lys Leu Met Thr Glu Thr Leu Ala Leu Glu Tyr
165 170 175
Ala Pro Lys Gly Ile Arg Val Asn Asn Ile Gly Pro Gly Ala Ile Asp
180 185 190
Thr Pro Ile Asn Ala Glu Lys Phe Ala Asp Pro Glu Gln Arg Ala Asp
195 200 205
Val Glu Ser Met Ile Pro Met Gly Tyr Ile Gly Asn Pro Glu Glu Ile
210 215 220
Ala Ser Val Ala Ala Phe Leu Ala Ser Ser Gln Ala Ser Tyr Val Thr
225 230 235 240
Gly Ile Thr Leu Phe Ala Asp Gly Gly Met Thr Lys Tyr Pro Ser Phe
245 250 255
Gln Ala Gly Arg Gly
260

Claims (3)

1.一种7β羟基类固醇脱氢酶突变体,其特征在于:所述7β羟基类固醇脱氢酶突变体是将氨基酸序列如SEQ ID NO:.1所示的7β-HSDH的第189位氨基酸进行替换得到的。
2.根据权利要求1所述的7β羟基类固醇脱氢酶突变体,其特征在于:所述7β羟基类固醇脱氢酶突变体具有SEQ ID NO:.2所示的氨基酸序列。
3.具有权利要求2所示SEQ ID NO:.2氨基酸序列在制备熊去氧胆酸中的应用。
CN202010966569.9A 2020-09-15 2020-09-15 7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用 Pending CN112029739A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010966569.9A CN112029739A (zh) 2020-09-15 2020-09-15 7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010966569.9A CN112029739A (zh) 2020-09-15 2020-09-15 7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用

Publications (1)

Publication Number Publication Date
CN112029739A true CN112029739A (zh) 2020-12-04

Family

ID=73589349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010966569.9A Pending CN112029739A (zh) 2020-09-15 2020-09-15 7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用

Country Status (1)

Country Link
CN (1) CN112029739A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416717A (zh) * 2021-07-14 2021-09-21 江西邦泰绿色生物合成生态产业园发展有限公司 适用于工业生产用的7β羟基类固醇脱氢酶突变体
CN114015712A (zh) * 2021-11-05 2022-02-08 江西邦泰绿色生物合成生态产业园发展有限公司 一种熊去氧胆酸的制备方法
CN114231508A (zh) * 2021-12-28 2022-03-25 宋建芳 一种7β-羟基类固醇脱氢酶突变体及其应用
CN114854707A (zh) * 2022-06-14 2022-08-05 苏州百福安酶技术有限公司 一种7β-羟基甾体脱氢酶突变体
CN114940964A (zh) * 2022-05-20 2022-08-26 中国科学院微生物研究所 工程菌及其高效催化cdca生产udca的方法
CN116694589A (zh) * 2023-06-06 2023-09-05 江南大学 一种7β-羟基类固醇脱氢酶的突变体及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105274070A (zh) * 2015-10-20 2016-01-27 南京普瑞特生物科技有限公司 7β-羟基类固醇脱氢酶突变子及其应用和合成方法
CN109182284A (zh) * 2018-09-28 2019-01-11 湖南福来格生物技术有限公司 一种7β-羟基类固醇脱氢酶突变体、编码序列、重组表达载体、基因工程菌及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105274070A (zh) * 2015-10-20 2016-01-27 南京普瑞特生物科技有限公司 7β-羟基类固醇脱氢酶突变子及其应用和合成方法
CN109182284A (zh) * 2018-09-28 2019-01-11 湖南福来格生物技术有限公司 一种7β-羟基类固醇脱氢酶突变体、编码序列、重组表达载体、基因工程菌及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MING-MIN ZHENG, ET AL.: "Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution" *
MING-MIN ZHENG, ET AL.: "Two-step enzymatic synthesis of ursodeoxycholic acid with a new7 -hydroxysteroid dehydrogenase from Ruminococcus torques" *
PAJON A., ET AL.: "Genbank accession number:CBL26204.1" *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416717A (zh) * 2021-07-14 2021-09-21 江西邦泰绿色生物合成生态产业园发展有限公司 适用于工业生产用的7β羟基类固醇脱氢酶突变体
CN113416717B (zh) * 2021-07-14 2023-12-29 江西邦泰绿色生物合成生态产业园发展有限公司 适用于工业生产用的7β羟基类固醇脱氢酶突变体
CN114015712A (zh) * 2021-11-05 2022-02-08 江西邦泰绿色生物合成生态产业园发展有限公司 一种熊去氧胆酸的制备方法
CN114231508A (zh) * 2021-12-28 2022-03-25 宋建芳 一种7β-羟基类固醇脱氢酶突变体及其应用
CN114231508B (zh) * 2021-12-28 2022-11-11 宋建芳 一种7β-羟基类固醇脱氢酶突变体及其应用
CN114940964A (zh) * 2022-05-20 2022-08-26 中国科学院微生物研究所 工程菌及其高效催化cdca生产udca的方法
CN114940964B (zh) * 2022-05-20 2024-04-05 中国科学院微生物研究所 工程菌及其高效催化cdca生产udca的方法
CN114854707A (zh) * 2022-06-14 2022-08-05 苏州百福安酶技术有限公司 一种7β-羟基甾体脱氢酶突变体
CN114854707B (zh) * 2022-06-14 2023-09-12 苏州百福安酶技术有限公司 一种7β-羟基甾体脱氢酶突变体
CN116694589A (zh) * 2023-06-06 2023-09-05 江南大学 一种7β-羟基类固醇脱氢酶的突变体及其应用

Similar Documents

Publication Publication Date Title
CN112029739A (zh) 7β羟基类固醇脱氢酶突变体及其在制备UDCA中的应用
CN107690482B (zh) 用于2,4-二羟基丁酸的优化生产的经修饰的微生物
Zhang et al. Characterization of a D-psicose 3-epimerase from Dorea sp. CAG317 with an acidic pH optimum and a high specific activity
Gao et al. NADH oxidase from Lactobacillus reuteri: A versatile enzyme for oxidized cofactor regeneration
CN109182284B (zh) 一种7β-羟基类固醇脱氢酶突变体、编码序列、重组表达载体、基因工程菌及应用
Lerchner et al. Crystallographic analysis and structure‐guided engineering of NADPH‐dependent Ralstonia sp. Alcohol dehydrogenase toward NADH cosubstrate specificity
Schneider et al. Replacement of a phenylalanine by a tyrosine in the active site confers fructose-6-phosphate aldolase activity to the transaldolase of Escherichia coli and human origin
Jia et al. Properties of d-allulose 3-epimerase mined from Novibacillus thermophilus and its application to synthesis of d-allulose
CN112029740A (zh) 7β羟基类固醇脱氢酶突变体及其应用
Huang et al. Enhanced activity and substrate tolerance of 7α-hydroxysteroid dehydrogenase by directed evolution for 7-ketolithocholic acid production
CN112063608B (zh) 一种脂肪酸光脱羧酶突变体及其在l-草铵膦合成中的应用
US20140045232A1 (en) Enzyme used in biosynthesis of 1, 4-bdo and screening method of the same
US20220090027A1 (en) Engineered polypeptides that exhibit increased catalytic efficiency for unnatural cofactors and uses thereof
Chueca et al. Chloroplast fructose-1, 6-bisphosphatase: structure and function
Machielsen et al. Laboratory evolution of Pyrococcus furiosus alcohol dehydrogenase to improve the production of (2S, 5S)-hexanediol at moderate temperatures
Wang et al. Enhanced production of D-psicose from D-fructose by a redox-driven multi-enzyme cascade system
US20120021468A1 (en) Production of l-ribose and other rare sugars
US7402419B2 (en) Phosphite dehydrogenase mutants for nicotinamide cofactor regeneration
CA2619488A1 (en) Production of l-ribose and other rare sugars
CN113416717A (zh) 适用于工业生产用的7β羟基类固醇脱氢酶突变体
Duan et al. Efficient 2-O-α-D-glucopyranosyl-sn-glycerol production by single whole-cell biotransformation through combined engineering and expression regulation with novel sucrose phosphorylase from Leuconostoc mesenteroides ATCC 8293
Zhao et al. Protein engineering of thioether monooxygenase to improve its thermostability for enzymatic synthesis of chiral sulfoxide
WO2006074194A2 (en) Engineered phosphite dehydrogenase mutants for nicotinamide cofactor regeneration
Zolghadr et al. UDP-sulfoquinovose formation by Sulfolobus acidocaldarius
Brouns et al. Crystal structure and biochemical properties of the D-arabinose dehydrogenase from Sulfolobus solfataricus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201204