CN111876576A - 一种模压成型机中下芯连杆的制造及强化方法 - Google Patents

一种模压成型机中下芯连杆的制造及强化方法 Download PDF

Info

Publication number
CN111876576A
CN111876576A CN202010793977.9A CN202010793977A CN111876576A CN 111876576 A CN111876576 A CN 111876576A CN 202010793977 A CN202010793977 A CN 202010793977A CN 111876576 A CN111876576 A CN 111876576A
Authority
CN
China
Prior art keywords
connecting rod
lower core
core connecting
hole
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010793977.9A
Other languages
English (en)
Other versions
CN111876576B (zh
Inventor
魏祥
陈志国
顾娆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Humanities Science and Technology
Original Assignee
Hunan University of Humanities Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Humanities Science and Technology filed Critical Hunan University of Humanities Science and Technology
Priority to CN202010793977.9A priority Critical patent/CN111876576B/zh
Publication of CN111876576A publication Critical patent/CN111876576A/zh
Application granted granted Critical
Publication of CN111876576B publication Critical patent/CN111876576B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种模压成型机中下芯连杆的制造及强化方法,属于模压成型机制造领域。本发明选用35CrMo合金钢作为下芯连杆的用材,下芯连杆的制造和强化过程主要包括:对下芯连杆毛坯进行调质处理、对下芯连杆有径向通孔的一端进行感应加热,随后油冷;对感应加热并冷却后的下芯连杆进行最终整体热处理。本发明采用上述方法对模压成型机中的下芯连杆进行制造与强化,不但能简化其制造工序,降低制造难度,而且还能较大幅度的提高下芯连杆的整体强度以及极大的提高其易失效部位的综合力学性能。

Description

一种模压成型机中下芯连杆的制造及强化方法
技术领域
本发明涉及一种连杆的制造及强化方法,特别是涉及一种模压成型机中35CrMo材质的下芯连杆的制造及强化方法。
背景技术
众所周知,模压成型在粉末冶金制品毛坯、塑料制品成型等领域获得了广泛的应用。模压成型机则是模压成型工艺中最重要的设备之一,该设备中包含较多的连接机构,如下芯连杆。在模压过程中,下芯连杆起传递力的作用,另一方面,由于模压成型大批量生产的工艺特性,使得下芯连杆在生产中持续的承受大的循环载荷,这就要求其必须兼具高的强度和良好的塑韧性。
目前,模压成型机的下芯连杆用材主要为经调质处理的45钢,但是在使用中发现,下芯连杆中销钉孔处在持续大的循环载荷下逐渐被拉长,甚至拉断,表明其强度明显不足,有待进一步提高。由于需频繁的更换失效的下芯连杆,大大的增加了工人的劳动强度并严重的影响了产品的生产进度,降低企业的经济效益。
发明内容
本发明的目的是提供一种用于模压机的高性能、长寿命的下芯连杆的制造及强化方法。
为达到上述目标,本发明采用下述技术方案:
选用35CrMo合金结构钢作为下芯连杆的制造用材,并且,下芯连杆采用如下的步骤进行制造和强化:
(1)对下芯连杆毛坯进行调质处理;
(2)调质处理后,将下芯连杆毛坯机械加工成所设计的尺寸;
(3)对下芯连杆有径向通孔的一端进行感应加热,随后油冷,油冷过程中,下芯连杆有径向通孔一端沿连杆轴向首先垂直进入淬火油中,直至淬火油淹没整个下芯连杆,并保持5-10s,随后提起下芯连杆在空气中保持5-10s,上述过程循环2-5次;
(4)对第(3)步中感应加热并冷却后的下芯连杆进行最终整体热处理。
其中,对下芯连杆有径向通孔的一端进行感应加热的规定是,在有径向通孔一端的端部至其以下15mm的范围内,其加热后的温度分布是均匀的,其加热的温度范围为850℃~890℃,而在有径向通孔一端的端部以下15mm至80mm的范围内,其加热后的温度是呈梯度分布的,其中在有径向通孔一端的端部以下80mm处的温度最低,为200℃,在有径向通孔一端的端部以下15mm处的温度最高,其温度值与下芯连杆在有径向通孔一端的端部至其以下15mm的范围内被感应加热至恒定温度的温度相同;有温度梯度的加热区的温度梯度场为100-106.2℃/cm。感应加热并冷却后的下芯连杆进行最终整体热处理则是指对下芯连杆进行加热和保温,其中加热的气氛为真空或惰性气体气氛,加热的温度为50℃~450℃,保温的时间为5min~120min。
由于采用了上述技术方案,本发明提供的一种模压成型机中下芯连杆的制造及强化方法具有这样的有益效果,选用35CrMo合金结构钢替代普通碳素结构钢45钢,将连杆调质态的屈服强度由400多兆帕提高到800多兆帕,显著的提升了连杆整体的力学性能;在感应加热过程中,同时对连杆的局部进行均匀加热(850℃-890℃)和有温度梯度(200℃-890℃)的加热,使得连杆中形成了较小的温度梯度,因此感应加热冷却后的连杆中不存在变形,无需后续的机加工或矫直,另一方面,对下芯连杆进行感应加热的过程中,销钉孔附近的感应加热温度恒定且大于35CrMo钢的奥氏体化温度,而远离销钉孔部位的连杆的加热温度小于35CrMo钢的奥氏体化温度,从而在油冷后,仅在销钉孔附近形成了细小的马氏体组织,为大大的提高销钉孔附近连杆部位的强度提供了组织结构基础;最后对感应加热后的下芯连杆进行最终整体热处理,由于该热处理在真空或惰性气体气氛中进行,能有效避免连杆表面的脱碳和氧化,并且,由于采用的热处理温度低于35CrMo钢调质处理中高温回火的温度且温度较低,因此,在热处理过程中,连杆未加热或加热温度小于35CrMo奥氏体化温度的部位的组织变化极小,仅销钉孔附近形成的细小马氏体区域发生相转变,进而形成更高强度的组织结构,显著增强销钉孔附近连杆材料的强度;35CrMo钢进行整体调质处理后,首先机加工成下芯连杆的设计尺寸,后感应加热和油冷,以及后续的最终整体热处理,获得高力学性能的下芯连杆,该制造和强化顺序,避免了对最后获得的高硬度、高强度的连杆进行机加工的过程,大大的降低了机加工难度。淬火油冷时,下芯连杆有径向通孔一端沿连杆轴向首先垂直进入淬火油中,并且整个下芯连杆先后在油中保持5-10s,空气中保持5-10s,该过程循环2-5次,整个处理过程将有效的减小下芯连杆中热应力的产生和并可使已产生的热应力得到部分释放。
因此,选用35CrMo钢作为下芯连杆的用材,并将调质态的35CrMo钢加工成下芯连杆后,对其先进行局部感应加热,随后油冷,再进行最终整体热处理,不但能简化其制造工序,降低制造难度,而且还能较大幅度的提高下芯连杆的整体强度以及极大的提高其易失效部位的综合力学性能。
附图说明
图1 为本发明中下芯连杆的示意图。
具体实施方式
下面结合实施例对本发明作进一步的描述。
实施例1
如图1所示,下芯连杆的结构中包括轴向通孔1、径向通孔2和螺纹3,选用35CrMo合金结构钢作为下芯连杆制造用材。
对35CrMo合金结构钢材质的下芯连杆进行调质处理;
调质处理完成后,基于下芯连杆的设计图纸,将下芯连杆毛坯加工成所设计的尺寸;
对下芯连杆有径向通孔的一端进行感应加热,在有径向通孔一端的端部至其以下15mm的范围内均匀的加热至850℃,而在有径向通孔一端的端部以下15mm至80mm的范围内,进行有温度梯度的加热,即在有径向通孔一端的端部以下80mm处的温度最低,为200℃,在有径向通孔一端的端部以下15mm处的温度最高,为850℃,有温度梯度的加热区的温度梯度场为100℃/cm;随后油冷。
油冷过程中,下芯连杆有径向通孔一端沿连杆轴向首先垂直进入淬火油中,直至淬火油淹没整个下芯连杆,并保持5s,随后提起下芯连杆在空气中保持10s,上述过程循环2次。
对感应加热并冷却后的下芯连杆在真空气氛下加热至50℃,并保温60min。
实施例2
选用35CrMo合金结构钢作为下芯连杆制造用材。
对35CrMo合金结构钢材质的下芯连杆进行调质处理;
调质处理完成后,基于下芯连杆的设计图纸,将下芯连杆毛坯加工成所设计的尺寸;
对下芯连杆有径向通孔的一端进行感应加热,在有径向通孔一端的端部至其以下15mm的范围内均匀的加热至865℃,而在有径向通孔一端的端部以下15mm至80mm的范围内,进行有温度梯度的加热,即在有径向通孔一端的端部以下80mm处的温度最低,为200℃,在有径向通孔一端的端部以下15mm处的温度最高,为865℃,有温度梯度的加热区的温度梯度场为102.3℃/cm;随后油冷。
油冷过程中,下芯连杆有径向通孔一端沿连杆轴向首先垂直进入淬火油中,直至淬火油淹没整个下芯连杆,并保持10s,随后提起下芯连杆在空气中保持5s,上述过程循环5次。
对感应加热并冷却后的下芯连杆在氩气气氛下加热至200℃,并保温120min。
实施例3
选用35CrMo合金结构钢作为下芯连杆制造用材。
对35CrMo合金结构钢材质的下芯连杆进行调质处理;
调质处理完成后,基于下芯连杆的设计图纸,将下芯连杆毛坯加工成所设计的尺寸;
对下芯连杆有径向通孔的一端进行感应加热,在有径向通孔一端的端部至其以下15mm的范围内均匀的加热至875℃,而在有径向通孔一端的端部以下15mm至80mm的范围内,进行有温度梯度的加热,即在有径向通孔一端的端部以下80mm处的温度最低,为200℃,在有径向通孔一端的端部以下15mm处的温度最高,为875℃,有温度梯度的加热区的温度梯度场为103.8℃/cm;随后油冷。
油冷过程中,下芯连杆有径向通孔一端沿连杆轴向首先垂直进入淬火油中,直至淬火油淹没整个下芯连杆,并保持7s,随后提起下芯连杆在空气中保持6s,上述过程循环4次。
对感应加热并冷却后的下芯连杆在真空气氛下加热至450℃,并保温30min。
实施例4
选用35CrMo合金结构钢作为下芯连杆制造用材。
对35CrMo合金结构钢材质的下芯连杆进行调质处理;
调质处理完成后,基于下芯连杆的设计图纸,将下芯连杆毛坯加工成所设计的尺寸;
对下芯连杆有径向通孔的一端进行感应加热,在有径向通孔一端的端部至其以下15mm的范围内均匀的加热至890℃,而在有径向通孔一端的端部以下15mm至80mm的范围内,进行有温度梯度的加热,即在有径向通孔一端的端部以下80mm处的温度最低,为200℃,在有径向通孔一端的端部以下15mm处的温度最高,为890℃,有温度梯度的加热区的温度梯度场为106.2℃/cm;随后油冷。
油冷过程中,下芯连杆有径向通孔一端沿连杆轴向首先垂直进入淬火油中,直至淬火油淹没整个下芯连杆,并保持6s,随后提起下芯连杆在空气中保持9s,上述过程循环3次。
对感应加热并冷却后的下芯连杆在氩气气氛下加热至300℃,并保温80min。

Claims (9)

1.一种模压成型机中下芯连杆的制造及强化方法,下芯连杆的结构中包括轴向通孔(1)、径向通孔(2)和螺纹(3),其特征是:径向通孔(2)和螺纹(3)分别位于下芯连杆的两端,下芯连杆采用如下的步骤进行制造和强化:
(1)对下芯连杆毛坯进行调质处理;
(2)调质处理后,将下芯连杆毛坯机械加工成所设计的尺寸;
(3)对下芯连杆有径向通孔的一端进行感应加热,随后油冷,所述感应加热的加热温度为200℃~890℃,感应加热区域分为两部分:一个均匀加热区和一个有温度梯度的加热区;
(4)对第(3)步中感应加热并冷却后的下芯连杆进行最终整体热处理。
2.根据权利要求1所述的一种模压成型机中下芯连杆的制造及强化方法,其特征是:所述的对下芯连杆有径向通孔的一端进行感应加热的加热区域是指有径向通孔一端的端部至其以下80mm处。
3.根据权利要求1或2所述的一种模压成型机中下芯连杆的制造及强化方法,其特征是:所述的对下芯连杆有径向通孔的一端进行感应加热的加热温度为250℃~880℃。
4.根据权利要求3所述的一种模压成型机中下芯连杆的制造及强化方法,其特征是:所述的对下芯连杆有径向通孔的一端进行感应加热的均匀加热区是指有径向通孔一端的端部至其以下15mm的范围内,并且加热的温度范围为850℃~890℃。
5.根据权利要求4所述的一种模压成型机中下芯连杆的制造及强化方法,其特征是:所述的对下芯连杆有径向通孔的一端进行感应加热有温度梯度的加热区是指有径向通孔一端的端部以下15mm至80mm的范围内,其中在有径向通孔一端的端部以下80mm处的温度最低,为200℃,在有径向通孔一端的端部以下15mm处的温度最高,为850℃~890℃。
6.根据权利要求1所述的一种模压成型机中下芯连杆的制造及强化方法,其特征是:所述油冷过程中,下芯连杆有径向通孔一端沿连杆轴向首先垂直进入淬火油中,直至淬火油淹没整个下芯连杆,并保持5-10s,随后提起下芯连杆在空气中保持5-10s,循环2-5次。
7.根据权利要求1所述的一种模压成型机中下芯连杆的制造及强化方法,其特征是:所述的对第(3)步中感应加热并冷却后的下芯连杆进行最终整体热处理是指对下芯连杆进行加热和保温,其中加热的气氛为真空或惰性气体气氛,加热的温度为50℃~450℃,保温的时间为5min~120min。
8.根据权利要求1所述的一种模压成型机中下芯连杆的制造及强化方法,其特征是:选用35CrMo合金结构钢作为下芯连杆的制造用材。
9.根据权利要求1所述的一种模压成型机中下芯连杆的制造及强化方法,其特征是:所述的温度梯度场为100-106.2℃/cm。
CN202010793977.9A 2020-08-10 2020-08-10 一种模压成型机中下芯连杆的制造及强化方法 Active CN111876576B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010793977.9A CN111876576B (zh) 2020-08-10 2020-08-10 一种模压成型机中下芯连杆的制造及强化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010793977.9A CN111876576B (zh) 2020-08-10 2020-08-10 一种模压成型机中下芯连杆的制造及强化方法

Publications (2)

Publication Number Publication Date
CN111876576A true CN111876576A (zh) 2020-11-03
CN111876576B CN111876576B (zh) 2021-04-27

Family

ID=73211573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010793977.9A Active CN111876576B (zh) 2020-08-10 2020-08-10 一种模压成型机中下芯连杆的制造及强化方法

Country Status (1)

Country Link
CN (1) CN111876576B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256746A (ja) * 1999-03-08 2000-09-19 Daido Steel Co Ltd 中空鋼ロッドの熱処理方法
CN101787427A (zh) * 2010-01-23 2010-07-28 桂林福达曲轴有限公司 曲轴圆角淬火方法
CN105821185A (zh) * 2016-05-30 2016-08-03 吉林大学 高强度钢梯度感应加热装置
CN109252097A (zh) * 2018-10-10 2019-01-22 江阴兴澄特种钢铁有限公司 一种高强度胀断连杆的非调质钢及其连铸生产工艺
CN109797273A (zh) * 2019-04-02 2019-05-24 西北工业大学 一种棒状材料梯度热处理装置及热处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256746A (ja) * 1999-03-08 2000-09-19 Daido Steel Co Ltd 中空鋼ロッドの熱処理方法
CN101787427A (zh) * 2010-01-23 2010-07-28 桂林福达曲轴有限公司 曲轴圆角淬火方法
CN105821185A (zh) * 2016-05-30 2016-08-03 吉林大学 高强度钢梯度感应加热装置
CN109252097A (zh) * 2018-10-10 2019-01-22 江阴兴澄特种钢铁有限公司 一种高强度胀断连杆的非调质钢及其连铸生产工艺
CN109797273A (zh) * 2019-04-02 2019-05-24 西北工业大学 一种棒状材料梯度热处理装置及热处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曹鹏军: "《金属材料学》", 30 November 2018, 冶金工业出版社 *
罗湘: "《机器制造五百问答》", 31 October 1986, 机械工业出版社 *

Also Published As

Publication number Publication date
CN111876576B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN100482811C (zh) 模具钢xw42热处理工艺
CN106591543A (zh) 模具的热处理方法
CN111719111A (zh) 一种提高齿轮渗碳用钢综合性能的热处理方法
CN106435332A (zh) 一种低风速风电机组的40CrNiMoA中碳合金钢风电主轴制造方法
CN108018500B (zh) 冷热兼作模具钢及其制造工艺
CN113564317A (zh) 一种控制高温轴承钢组织与性能的热处理方法
CN113046525A (zh) Cr12MoV钢的热处理工艺
CN107442721A (zh) 一种模具的热锻造工艺
CN111876576B (zh) 一种模压成型机中下芯连杆的制造及强化方法
CN111408681B (zh) 发动机非调质钢连杆锻后余热回火的方法
WO2022166038A1 (zh) 非调质钢长杆螺栓及其制造方法
CN117512295A (zh) 一种提高高氮不锈轴承钢组织稳定性的热处理方法
CN111893256B (zh) 一种高性能下芯连杆的制造及强化方法
CN112048678B (zh) 低合金超高强度钢的退火软化方法
CN115637370A (zh) 一种火焰淬火用冷作模具钢
CN115094207A (zh) 一种轴承套圈的热处理方法
CN114058809A (zh) 一种锻件模具热处理方法
CN114438298A (zh) 一种高温扩散方法及一种合金钢
CN116103604B (zh) 一种渗碳齿轮及其制备方法
CN102703666B (zh) 低碳合金钢球化方法
CN108707730B (zh) 一种工模具钢高效连续退火方法
CN115725889A (zh) 一种高碳马氏体不锈钢盘条的生产方法
CN116351996A (zh) 一种新型叶片钢2Cr12Ni4Mo3VNbN热变形方法
CN116377179A (zh) 一种渗碳齿轮的高温回火与淬火匹配方法及渗碳齿轮
CN114941061A (zh) 一种特厚截面热作模具钢锻件的热处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant