CN111829866A - 一种循环式电化学萃取装置及其应用 - Google Patents

一种循环式电化学萃取装置及其应用 Download PDF

Info

Publication number
CN111829866A
CN111829866A CN202010703923.9A CN202010703923A CN111829866A CN 111829866 A CN111829866 A CN 111829866A CN 202010703923 A CN202010703923 A CN 202010703923A CN 111829866 A CN111829866 A CN 111829866A
Authority
CN
China
Prior art keywords
extraction
electrochemical
enrichment
time
eluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010703923.9A
Other languages
English (en)
Inventor
申贵隽
丁利葳
于蕾
季杨杨
马超凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Chengze Test Co ltd
Original Assignee
Dalian Chengze Test Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Chengze Test Co ltd filed Critical Dalian Chengze Test Co ltd
Priority to CN202010703923.9A priority Critical patent/CN111829866A/zh
Publication of CN111829866A publication Critical patent/CN111829866A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4044Concentrating samples by chemical techniques; Digestion; Chemical decomposition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N2001/4038Concentrating samples electric methods, e.g. electromigration, electrophoresis, ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • G01N2001/4061Solvent extraction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

发明了一种电化学萃取装置。该装置可以在溶出伏安模式下完成复杂样品中目标物的电化学萃取或测定。该电化学萃取装置由电化学工作站、电化学萃取池、蠕动泵、输液导管、三通式流量控制阀和储液池等部件构成。随着样品溶液在微流电解池中的循环流动,该工作电极在富集电位下开始富集样品溶液中的目标物。达到所设置的时间后,通过流路切换使优化后的洗脱液在目标物溶出电位下流经该微池,这时电极上的富集物便会释放到微池中、最后经管路进入到洗脱液中完成微萃取。该发明有效地提高了萃取的选择性、萃取率,降低了样品处理成本和萃取产生的环境污染程度。

Description

一种循环式电化学萃取装置及其应用
技术领域
本发明涉及分析检测技术领域,具体涉及一种循环式电化学萃取装置及其使用方法。
背景技术
目前样品萃取的方法大多需要昂贵的仪器[1~3]、操作过程复杂繁琐、消耗长,且萃取率低不能满足检测的要求[4~10]。近年来,电化学方法在样品前处理过程的应用有了相关报道[11、12]。所报道的技术是利用电极的富集作用进行萃取,其方法简单有效。但选择性不够,并且也只是将目标物富集到电极表面、不能定量溶出。
发展富集倍数高、准确度和精密度好、简便快速、环境污染小、在线自动化操作的样品前处理技术已成为当今分析化学研究的前沿和热点。本发明集分子印迹、微萃取与电化学富集方法的优势,将选择性萃取电极与可交替进行富集/洗脱的循环式电解池联用,在溶出循环伏安模式下来完成复杂样品中选择性电化学萃取。这将在有效地解决单纯液、固相萃取法中目标物回收困难的问题,提高萃取的选择性、萃取率,降低样品处理成本和萃取产生的环境污染程度。
研究高效、快速、适于普及和推广的检测方法是保障食品、药品安全的关键,选择性萃取系统是目前最具发展前景的样品前处理方法。目前,灵敏度高、选择性好、简便迅速、价格低廉、适合现场检测的便携式、微型化、商品化的检测仪器目前还为数不多。为此,该发明对有效控制β-肾上腺素能激动剂类药物使用,保障食品、药品安全,具有十分重要的应用价值。
发明内容
本发明基于传统萃取装置和方法中,实验步骤繁琐、灵敏度和精密度不高、样品和试剂消耗量大以及容易产生误差等不足,制备了一种循环式电化学萃取装置。该发明可以应用于在线或即时分析条件下的样品前处理技术。
该装置由电化学工作站、电化学萃取池、蠕动泵、输液导管、三通式流量控制阀和储液池等部件构成。
1 电化学富集流程
样品溶液加入到待萃取溶液瓶3中,经三通式流量控制阀5 ,通过蠕动泵4定量输入到电化学萃取池7中在线性溶出伏安模式下进行动态电化学富集。流出液经8再次返回到3中。此时流体的流经路线是3-4-7-8-3。如此循环往复,直到所设置的富集时间为止。
2萃取电极表面电化学富集物的溶出或洗脱流程
待上述富集过程结束后,在设置的静置时间内将三通阀5换向,使洗脱液2流经5,由蠕动泵4定量输入7中。在所设置的的溶出电位下洗脱,洗脱液再经过三通控制阀8返回到2。洗脱过程流体流经路线是:2-5-4-7-8-2。如此循环往复,直到所设置的富集时间为止。该过程中同时由工作站1即时测定洗脱液中被萃取物的浓度、工作站6记录电化学萃取池中发生氧化还原反应的伏安曲线,当没有峰时停止溶出洗脱。溶出过程亦可实施对萃取物的在线含量测定。
3萃取过程的电化学实验条件
富集电位:由被萃取物电极电位确定。所设置电位比该萃取物的峰值电位低0.3~0.4V;溶出电位改变区间:0~2V;富集时间:总循环富集时间为1~10 min。具体时间取决于被萃取物质种类、浓度和电性状;静置时间:静置时间为富集与溶出操作的时间间隔设置为:30s~60s,并且每个萃取过程中静置时间保持一致。(静置时间过长峰电流会降低);电压扫描速率:电压扫描速率以0~50mV/s。
图3示意了电化学富集和溶出过程。图中
Figure DEST_PATH_IMAGE001
Figure DEST_PATH_IMAGE002
分别为富集和溶出电位。随着样品溶液在微流电解池中的循环流动,该工作电极在富集电位下开始富集样品溶液中的目标物。达到所设置的时间后,通过流路切换使优化后的洗脱液在目标物溶出电位下流经该微池,这时电极上的富集物便会释放到微池中、最后经管路进入到洗脱液中完成微萃取。
选择性萃取机制。如图4所示,在含有干扰物的待测溶液中,各种极性组分都会在静电场向萃取电极表面扩散。但由于该电极表面已经印迹有待测目标物(如廋肉精成分之一的盐酸克伦特罗)的空穴,所以只有分子或离子构型与其表面匹配的极性粒子才能稳定地吸附在电极表面、进而发生氧化还原反应。对于构型有微小差异的粒子,即使有表面吸附行为、但其稳定性差,很快就会被构型匹配的粒子所替换。从而使该分子印迹萃取电极对目标物具有选择性。
附图说明
图1 循环式电化学萃取装置的萃取过程示意图
1、6-电化学工作站;2-洗脱溶液储备池;3-待萃取溶液储备池;4-蠕动泵;5、8-三通控制阀;7-电化学萃取池;
图2 萃取装置7中的外观示意图;
图3 富集与洗脱过程示意图;
A 在装置7中的电化学富集过程;B 在装置7中的电化学溶出及洗脱过程。图中
Figure 237728DEST_PATH_IMAGE001
Figure 154869DEST_PATH_IMAGE002
分别为富集和溶出电位;
图4 萃取前盐酸克伦特罗标准品的线性扫描伏安曲线;
图5 第一次溶出后盐酸克伦特罗标准品的线性扫描伏安曲线;
图6 萃取结束时盐酸克伦特罗标准品的线性扫描伏安曲线。
具体实施方式
盐酸克伦特罗标准品溶液配制:取上述标准品10微升、用上述缓冲液定容至10毫升。该测试液初始浓度为1×10-10克/微升。
萃取状态工作站6(图1)的运行模式:线性扫描溶出伏安法。对应的三电极系统为:工作电极-自制萃取电极[13];辅助电极-铂丝电极;参考电极-银/氯化银电极。电解池体积:100微升。标准品:盐酸克伦特罗(100 μg/mL,0.5 mL)。缓冲溶液:0.1 mol/L的酒石酸钾钠缓冲液(pH 7)。
测定方法工作站运行模式。图1工作站1中的三电极系统为循环伏安法。
三电极系统:工作电极-玻碳电极;辅助电极-铂丝电极;参考电极-银/氯化银电极。
扫描速度100mv/s,最高电位1.5v,最低电位-1.5v,初始电位-1.5v,循环次数1圈。在上述优化条件下所建立的标准曲线方程为:Y=0.00002X+0.0002(R2=0.9734)。
电化学萃取的实验条件与实施方法
萃取的电化学实验条件。电化学工作站运行萃取模式:线性溶出伏安法;富集时间:300秒;富集电位:1v;扫描速度0.5mv/s;起始溶出电位1.0v、终止溶出电位2.0v。
实施步骤:
1)电化学工作站窗口中选择循环伏安模式,在两个体积相同的一个微型电解池中用玻碳电极做工作电极、测定萃取前配制的原溶液-盐酸克伦特罗标准溶液(pH 7酒石酸钾钠缓冲液做溶剂)中的的循环伏安图(如图4所示)并记录峰电流值为2.1826×10-4A/I、换算其在该系统中的测试浓度;
2)将自制的萃取电极置入上述电解池7中,将电化学工作站6设置为:“线性扫描溶出伏安”工作模式。富集时间设置为 5min,在该富集模式下电解池中的盐酸克伦特罗逐渐吸附到萃取电极表面,当到达预设时间后、再将该萃取电极切换到装有空白缓冲溶液的另一个体积相同的微电解池中进行电化学溶出。此时,萃取电极表面被富集的目标物便开始溶出。当溶出曲线接近平稳后,停止扫描。完成了第一次电化学萃取;
3)将步骤2中的工作站6及电极切换成工作站1及其配套电极系统、在循环伏安模式下测定该溶出池的电化学相应曲线(如图5所示)、记录峰电流值。完成第一次萃取过程的萃取率测定。
萃取结果:
在电化学循环伏安法和线性溶出伏安法模式下、该电极萃取效果良好。经标准品池(图4)和单次萃取后的电解池的循环伏安曲线(图5)对比表明,单次萃取前微池与溶出池后微池的峰电流有明显改变,其溶出池浓度是萃取前初使浓度的60 %,既单次萃取率为60 %。当累计循环次数5次后,在富集池中经检测已经无峰电流(图6),而溶出池CV曲线类似与萃取前的图4,其峰电流值为2.1846×10-4A/I)。
5次循环后溶出池中盐酸克伦特罗的浓度Ct=9.128×10-11微克/毫升;萃取前标准溶液的浓度测定值Ct=9.239×10-11微克/毫升(与配制浓度相比,该系统的测定相对负误差为7.61 %)。总萃取率计算的结果为:100×Ct/C0=98.79 %。
参考文献
[1]M. M. Jimenez-Carmona, M. T. Tena, and M. L. de Castro.Ion-pair—supercritical fluid extraction of clenbuterol from food samples[J].J.Chromatogr. A, 1995,711(2):269-276.
[2]P. Gonzalez, B. Kroll, and C. R. Vargas.Tropical rainforestbiodiversity and aboveground carbon changes and uncertainties in the SelvaCentral, Peru[J]. For. Ecol. Manag,2014,(312):78-91.
[3]B. A. Rashid, P. Kwasowski, and D. Stevenson.Solid phase extraction ofclenbuterol from plasma using immunoaffinity followed by HPLC[J]. J. Pharm.Biomed. Anal, 1999,21(3):635-639.
[4]S. Kramer and G. Blaschke.High-performance liquid chromatographicdeter
mination of the β 2-selective adrenergic agonist fenoterol in humanplasma after fluorescence derivatization[J].J. Chromatogr. B. Biomed. Sci.App., 2001,751(1):169–175.
[5]M. K. Henze, G. Opfermann, H. Spahn-Langguth, and W. Schänzer.Screening of β-2 agonists and confirmation of fenoterol, orciprenaline,reproterol and terbutaline with gas chromatography–mass spectrometry astetrahydroisoquinoline derivatives[J].J. Chromatogr. B. Biomed. Sci. App,2001,751(1):93–105.
[6]C. Berggren, S. Bayoudh, D. Sherrington, and K. Ensing.Use ofmolecularly imprinted solid-phase extraction for the selective clean-up ofclenbuterol from calf urine[J]. J. Chromatogr. A,2000,889(1):105-110.
[7]A. Blomgren, C. Berggren, A. Holmberg, F. Larsson, B. Sellergren, andK. Ensing.Extraction of clenbuterol from calf urine using a molecularlyimprinted polymer followed by quantitation by high-performance liquidchromatography with UV detection[J].J. Chromatogr. A, 2002,975(1):157-164.
[8]A. Aresta, C. D. Calvano, F. Palmisano, and C. G.Zambonin.Determination of clenbuterol in human urine and serum by solid-phasemicroextraction coupled to liquid chromatography[J].J. Pharm. Biomed. Anal,2008,47(3):641-645.
[9]E. H. Koster, C. Crescenzi, W. den Hoedt, K. Ensing, and G. J. deJong.Fibers coated with molecularly imprinted polymers for solid-phasemicroextraction[J].Anal. Chem, 2001,73(13):3140-3145.
[10]E. Van der Vlis, M. Mazereeuw, U. R. Tjaden, H. Irth, and J. Van derGreef.Combined liquid-liquid electroextraction and isotachophoresis as a faston-line focusing step in capillary electrophoresisJ].J. Chromatogr. A, 1994,687(2):333-341.
[11] 沈浩,陈德芳,叶蕾等。碳毡电极对痕量金属离子的富集[J]。分析化学,1984,12(10):940-942.
[12] 彭图治,杨忠萍,吕荣山。碳糊电极溶出伏安法测定奋乃静等抗精神病药物[J]。药学学报,1990,25(04):277-283.
[13]杜宇。Β-兴奋剂分子印迹电化学传感器的研究,大连大学硕士毕业论文。2013年7月.

Claims (3)

1.本发明涉及一种循环式电化学萃取装置,该装置由电化学工作站、电化学萃取池、蠕动泵、输液导管、三通式流量控制阀和储液池所构成。
2.根据权利要求1所述的构造方法,其萃取过程的技术特征是:
样品溶液加入到待萃取溶液储备瓶中,经三通式流量控制阀 ,通过蠕动泵定量输入到电化学萃取池中,由电化学工作站在线性溶出伏安模式下进行动态电化学富集,直到所设置的富集时间为止;待上述富集过程结束后,在设置的静置时间内将三通阀换向,使洗脱液经由蠕动泵流入电化学萃取池中;在所设置的的溶出电位下洗脱,其洗脱液再经过三通控制阀返回到洗脱液储液瓶中;该过程中同时由工作站1即时测定洗脱液中被萃取物的浓度、工作站6记录电化学萃取池中发生氧化还原反应的伏安曲线,当没有峰时停止溶出洗脱。
3.根据权利要求2所述的萃取过程特征,其电化学条件的技术特征在于:所设置富集电位比该萃取物的标准电极电位低0.3~0.4V;溶出电位改变区间:0~2V;富集时间:总循环富集时间为1~10 min,具体时间取决于被萃取物质种类、浓度和电性状;静置时间:静置时间为富集与溶出操作的时间间隔设置为:30s~60s,并且每个萃取过程中静置时间保持一致;电压扫描速率:电压扫描速率以0~50mV/s。
CN202010703923.9A 2020-07-21 2020-07-21 一种循环式电化学萃取装置及其应用 Pending CN111829866A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010703923.9A CN111829866A (zh) 2020-07-21 2020-07-21 一种循环式电化学萃取装置及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010703923.9A CN111829866A (zh) 2020-07-21 2020-07-21 一种循环式电化学萃取装置及其应用

Publications (1)

Publication Number Publication Date
CN111829866A true CN111829866A (zh) 2020-10-27

Family

ID=72923634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010703923.9A Pending CN111829866A (zh) 2020-07-21 2020-07-21 一种循环式电化学萃取装置及其应用

Country Status (1)

Country Link
CN (1) CN111829866A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316502A (zh) * 2012-03-22 2013-09-25 宁波大学 一种基于离子液体萃取剂的管内循环流液液微萃取方法
CN103792270A (zh) * 2014-02-25 2014-05-14 浙江大学 一种基于n-辛基吡啶六氟磷酸盐电极的甲基对硫磷萃取及检测方法
CN104792769A (zh) * 2015-04-09 2015-07-22 宁波大学 水溶液样品中化合物的动态微萃取、检测联合装置及方法
EP3308419A1 (en) * 2015-06-12 2018-04-18 Imperial Innovations Ltd Electrochemical recycling of lead-based materials
CN208060264U (zh) * 2018-04-17 2018-11-06 大连诚泽检测有限公司 一种流动式电化学萃取/测定池
CN110146561A (zh) * 2019-05-16 2019-08-20 大连诚泽检测有限公司 一种15微升可流通电解池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103316502A (zh) * 2012-03-22 2013-09-25 宁波大学 一种基于离子液体萃取剂的管内循环流液液微萃取方法
CN103792270A (zh) * 2014-02-25 2014-05-14 浙江大学 一种基于n-辛基吡啶六氟磷酸盐电极的甲基对硫磷萃取及检测方法
CN104792769A (zh) * 2015-04-09 2015-07-22 宁波大学 水溶液样品中化合物的动态微萃取、检测联合装置及方法
EP3308419A1 (en) * 2015-06-12 2018-04-18 Imperial Innovations Ltd Electrochemical recycling of lead-based materials
CN208060264U (zh) * 2018-04-17 2018-11-06 大连诚泽检测有限公司 一种流动式电化学萃取/测定池
CN110146561A (zh) * 2019-05-16 2019-08-20 大连诚泽检测有限公司 一种15微升可流通电解池

Similar Documents

Publication Publication Date Title
Jin et al. Determination of diclofenac sodium by capillary zone electrophoresis with electrochemical detection
Kissinger et al. Electrochemical detection of selected organic components in the eluate from high-performance liquid-chromatography
Baldwin Recent advances in electrochemical detection in capillary electrophoresis
Holland et al. Capillary electrophoresis in pharmaceutical analysis
Asiabi et al. Preparation and evaluation of a novel molecularly imprinted polymer coating for selective extraction of indomethacin from biological samples by electrochemically controlled in-tube solid phase microextraction
Vrouwe et al. Microchip capillary electrophoresis for point-of-care analysis of lithium
Gunasingham et al. Hydrodynamic voltammetry in continuous-flow analysis
US6573106B1 (en) Method of treating carbon or graphite to increase porosity and pore uniformity
Pedersen-Bjergaard et al. Electrical potential can drive liquid-liquid extraction for sample preparation in chromatography
CN104792769B (zh) 水溶液样品中化合物的动态微萃取、检测联合装置及方法
Dvořák et al. Semi-automated set-up for exhaustive micro-electromembrane extractions of basic drugs from biological fluids
von Heeren et al. Capillary electrophoresis in clinical and forensic analysis
Šlampová et al. Direct analysis of free aqueous and organic operational solutions as a tool for understanding fundamental principles of electromembrane extraction
Pihlar et al. Amperometric determination of cyanide by use of a flow-through electrode
Izadyar Stripping voltammetry at the interface between two immiscible electrolyte solutions: A review paper
Pacheco et al. Fast batch injection analysis of H2O2 using an array of Pt-modified gold microelectrodes obtained from split electronic chips
Djane et al. Supported liquid membrane coupled on-line to potentiometric stripping analysis at a mercury-coated reticulated vitreous carbon electrode for trace metal determinations in urine
CN111829866A (zh) 一种循环式电化学萃取装置及其应用
Weng et al. Assay of amino acids in individual human lymphocytes by capillary zone electrophoresis with electrochemical detection
Jin et al. Quantitation of caffeine by capillary zone electrophoresis with end-column amperometric detection at a carbon microdisk array electrode
Dewey Flow injection potentiometric and voltammetric stripping analysis using a dialysis membrane covered mercury film electrode
Blaedel et al. Turbulent tubular electrode
Yarnitzky Automated cell: a new approach to polarographic analyzers
Liao et al. Development of a method for total plasma thiols measurement using a disposable screen-printed carbon electrode coupled with a MnO2 reactor
Koster et al. Electrochemical flow cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201027

WD01 Invention patent application deemed withdrawn after publication