CN111646428B - 一种3d微/纳米结构的构筑方法 - Google Patents

一种3d微/纳米结构的构筑方法 Download PDF

Info

Publication number
CN111646428B
CN111646428B CN202010544791.XA CN202010544791A CN111646428B CN 111646428 B CN111646428 B CN 111646428B CN 202010544791 A CN202010544791 A CN 202010544791A CN 111646428 B CN111646428 B CN 111646428B
Authority
CN
China
Prior art keywords
electron beam
micro
focus
nano structure
material source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010544791.XA
Other languages
English (en)
Other versions
CN111646428A (zh
Inventor
杨光红
贾彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202010544791.XA priority Critical patent/CN111646428B/zh
Publication of CN111646428A publication Critical patent/CN111646428A/zh
Priority to US17/597,858 priority patent/US20220258243A1/en
Priority to PCT/CN2021/089102 priority patent/WO2021253978A1/zh
Application granted granted Critical
Publication of CN111646428B publication Critical patent/CN111646428B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00373Selective deposition, e.g. printing or microcontact printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00626Processes for achieving a desired geometry not provided for in groups B81C1/00563 - B81C1/00619
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0183Selective deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本发明公开了一种3D微/纳米结构的构筑方法,包括以下步骤:(1)在基板上固定材料源,抽真空处理;(2)聚焦电子束的焦点在上述步骤(1)的材料源表面0‑100nm的距离处,形成包含有电子束焦点和表层原子的界面局域区;(3)控制电子束的焦点按照设计的3D微/纳米结构逐点移动,实现3D微/纳米结构的构筑。本发明的构筑方法,利用聚焦电子束焦点热辐射调控材料源表层原子,使表面原子动能增加,进而克服表面能的约束,自表面逃逸,同时界面局域区原子密度的不均衡及势能差使材料源的表层原子向低密度区扩散,从而实现在微/纳米尺度下三维结构的实时构筑,对纳米技术及3D打印的融合发展起到推动作用,具有较好的应用推广价值。

Description

一种3D微/纳米结构的构筑方法
技术领域
本发明涉及一种纳米结构的构筑方法,尤其涉及一种3D微/纳米结构的构筑方法。
背景技术
在微/纳米尺度下,材料的电子、光子及声子运动规律受到其微观结构的限制,这种微/纳米结构的限域效应使其具有许多新颖的物理和化学性质,在信息、材料、能源和环境等领域具有广阔的应用前景。因此,微/纳米结构材料的加工制备技术倍受人们的关注。
为了实现对材料尺寸、组成和结构的精确控制,人们开发了一系列的合成和制备方法。大体上可分为自下而上和自上而下两大类。自下向上的方法,如气-液-固化学气相沉积、固-液-固工艺和自组装方法等,可以利用材料的固有属性,如晶体的定向生长,亲水性和疏水性等制备从埃到数百纳米的纳米材料,这类方法成本低,制备方便快捷等,能够为纳米器件构筑提供最基本的材料,但是在对材料结构和尺寸的精确调控方面较为欠缺,而且要形成功能性微/纳米器件,还需要后期复杂的纳米加工组装工艺;自上向下的纳米结构构筑方法以光刻和电子束刻蚀方法为代表,不仅在器件制造、大规模集成和可寻址性等方面具有很大的优势,而且在纳米结构的加工精度方面也取得了巨大的成功。然而,光刻技术的不足之处也是很明显的,如结构加工过程步骤繁琐复杂、需要多步的图形传输过程和严格的实验条件,而且缺乏灵活性,不能实时修改设计方案等,这显然不适用于由多种纳米材料组成的多功能集成器件,纳米系统基本单元之间的电路连接和三维微/纳结构实时的、高精度的加工等。
3D打印技术作为一种快速成型技术,可以实现高纵横比三维结构实时构筑。然而,大部分3D打印技术,如立体光刻(SL),熔融沉积制造工艺(FDM),选域激光烧结(SLS)、选择性沉积叠片等,加工精度都在100微米以上,不适用于微/纳米器件的构筑;Lewis等人采用三维喷射打印方法制备了微米以上级别的银电极。然而,在纳米尺度下,表面能的影响越来越重要,这种喷射打印方法的加工精度受到表面能及仪器喷墨探头孔径大小的影响,也不适用于微纳米器件的构筑。3D激光直写技术,基于多光子聚合反应硬化成型过程,可以实现100/200纳米的加工精度,但是原材料主要限于有机感光单体有机材料,直接结果为三维有机聚合物微纳米结构。要想实现金属氧化物半导体器件,还需要复杂的结构反转复制过程。目前,寻求一种实况的,可以在纳米尺度下对材料成型过程进行精确控制的微制备技术,实现3D半导体微纳米结构的打印构筑,是材料科学与工程和纳米技术学科上的难点之一。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种3D微/纳米结构的构筑方法,实现了3D微/纳米结构的实况打印,对纳米加工技术及3D打印领域的发展具有重要的意义。
本发明的目的采用如下技术方案实现:
一种3D微/纳米结构的构筑方法,包括以下步骤:
(1)在基板上固定材料源,抽真空处理;
(2)聚焦电子束的焦点在上述步骤(1)的材料源表面近邻位置0-100nm距离处,形成包含有电子束焦点和表层原子的界面局域区;
(3)控制电子束的焦点按照设计的3D微/纳米结构逐点移动,实现3D微/纳米结构的构筑。
进一步地,上述步骤(1)中材料源的材质为金属单质、金属原子和其他非金属原子构成的化合物中的一种。
进一步地,所述材料源为块状固体、薄膜、棒材、纳米线组成的粉体、纳米颗粒组成的粉体、纳米带组成的粉体中的一种。
进一步地,上述步骤(1)的基板由导体或者半导体制成。
进一步地,上述步骤(1)中抽真空至真空度为10-3-10-5Pa。
进一步地,上述步骤(2)中加速电压为1-30kV,工作距离3-20mm,电子束束斑1-50nm。
进一步地,上述步骤(3)中结合位移平台和聚焦扫描控制程序,控制电子束的焦点按设计的3D微/纳米结构逐点移动。所述位移平台可以是光栅测量或激光测量定位位移平台。
相比现有技术,本发明的有益效果在于:本发明涉及一种3D微/纳米结构的构筑方法,利用聚焦电子束焦点热辐射调控材料源表层原子,使表面原子动能增加,进而克服表面能的约束,自表面逃逸,同时界面局域区原子密度的不均衡及势能差使材料源的表层原子向低密度区扩散,结合光栅定位位移平台及相应的聚焦扫描程序,从而实现在微/纳米尺度下三维结构的实时构筑,解决了材料加工及3D打印领域3D微/纳米结构的构筑难题,把3D打印技术的加工精度扩展到纳米尺度,对纳米技术及3D打印的融合发展起到推动作用,具有较好的应用推广价值。
附图说明
图1为本发明一种3D微/纳米结构的构筑方法的原理示意图;
图2为构筑过程中,材料源(A)、电子束焦点(B)及界面局域区(C)的位置示意图;
图3为实施例1中在ZnO材料表面构筑的字母“ED”图案;
图4为实施例2中在氧化钴镍纳米线上构筑的植物种子胚芽状结构图;
图5为实施例3中在铜丝顶端构筑的纳米棒的结构图。
图中:1、电子束;11、电子束焦点;2、基板;3、材料源;4、纳米结构。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
实施例1
一种3D微/纳米结构的构筑方法,包括以下步骤:
(1)取长宽均为1cm的硅片依次用超纯水、乙醇、丙酮各超声10分钟后作为基板2,在硅基板上采用磁控溅射镀膜的方法沉积一层厚度100nm的ZnO薄膜,以此ZnO薄膜作为构筑立体结构的材料源3,把沉积ZnO薄膜的硅基板放入电镜真空室抽真空,使真空度达到10- 4Pa;
(2)打开灯丝,调整电子束1状态及光栅位移平台,工作距离7mm,加速电压10kV,电子束束斑10nm,电子束1以70°角斜入射到ZnO表面(如图1所示),使电子束焦点11位于ZnO表面上方的近邻位置,和ZnO表面的距离为10nm(图2中的B区),电子束焦点11和ZnO表层原子形成界面局域区(图2中的C区),聚焦电子束焦点的热辐射活化界面局域区内的表层原子,表面原子动能增加,同时,在界面局域区内原子密度的不均衡及势能差使ZnO表面的活化原子向焦点扩散;
(3)通过光栅测量定位位移平台及聚焦扫描程序,控制聚焦电子束焦点按设计的字母结构逐点移动,形成相应的ZnO 3D字母结构,如图3所示为ZnO原子形成的纳米结构4“ED”字符。
实施例2
一种3D微/纳米结构的构筑方法,包括以下步骤:
(1)采用水热法合成氢氧钴镍多晶纳米线,然后在马弗炉中400摄氏度退火2小时,形成氧化钴镍多晶纳米线粉体,把氧化钴镍多晶纳米线分散到硅片基板上,作为生长纳米胚芽的源材料,把上述硅片基板放入电镜真空室抽真空,使真空度达到10-3Pa;
(2)打开灯丝,调整电子束状态及光栅位移平台,工作距离12mm,加速电压15kV,电子束束斑20nm,聚焦电子束,使电子束焦点位于氧化钴镍多晶纳米线粉体生长点的近邻位置,和氧化钴镍多晶纳米线粉体表面的距离为0nm,使电子束焦点和纳米线表面相切,电子束焦点和氧化钴镍多晶纳米线上的生长点表层形成界面局域区,聚焦电子束焦点的热辐射活化界面局域区内氧化钴镍的表层原子,表面原子动能增加,同时,在界面局域区内原子密度的不均衡使表面的活化原子向焦点扩散;
(3)通过光栅测量定位位移平台及聚焦扫描程序,控制电子束焦点按设计的植物种子胚芽结构逐点移动,形成相应的植物种子胚芽形状,如图4所示,图中a、b、c表示胚芽纳米结构的形成过程,c中可以看到完整的纳米胚芽结构。
实施例3
一种3D微/纳米结构的构筑方法,包括以下步骤:
(1)以铜质样品台作为基板,取一段铜丝,用力拉断,用导电胶带固定到铜质样品台上,以铜丝的断裂端作为纳米棒的生长点,把上述铜质样品台放入电镜真空室抽真空,使真空度达到10-5Pa;
(2)打开灯丝,调整电子束状态及光栅位移平台,工作距离20mm,加速电压30kV,电子束束斑50nm,聚焦电子束,使电子束焦点位于铜丝生长点的近邻位置,和铜丝生长点的距离为50nm,电子束焦点和铜丝生长点附近表层形成界面局域区,聚焦电子束焦点的热辐射活化界面局域区内的表层铜原子,表面铜原子动能增加,同时,在界面局域区内原子密度的不均衡使表面的活化铜原子向焦点扩散;
(3)通过激光测量定位位移平台及聚焦扫描程序,控制电子束焦点按设计的纳米棒形状逐点移动,形成相应的铜纳米棒,如图5所示,纳米棒直径约为25nm。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (6)

1.一种3D微/纳米结构的构筑方法,其特征在于,包括以下步骤:
(1)在基板上固定材料源,抽真空处理;
(2)聚焦电子束的焦点在上述步骤(1)的材料源表面0-100nm的距离处,加速电压为1-30kV,工作距离3-20mm,电子束束斑1-50nm,形成包含有电子束焦点和表层原子的界面局域区;
(3)控制电子束的焦点按照设计的3D微/纳米结构逐点移动,实现3D微/纳米结构的构筑。
2.根据权利要求1所述一种3D微/纳米结构的构筑方法,其特征在于,上述步骤(1)中材料源的材质为金属单质、金属原子和其他非金属原子构成的化合物中的一种。
3.根据权利要求2所述一种3D微/纳米结构的构筑方法,其特征在于,所述材料源为块状固体、薄膜、棒材、纳米线组成的粉体、纳米颗粒组成的粉体、纳米带组成的粉体中的一种。
4.根据权利要求1所述一种3D微/纳米结构的构筑方法,其特征在于,上述步骤(1)的基板为导体或者半导体材质。
5.根据权利要求1所述一种3D微/纳米结构的构筑方法,其特征在于,上述步骤(1)中抽真空至10-3-10-5Pa。
6.根据权利要求1所述一种3D微/纳米结构的构筑方法,其特征在于,上述步骤(3)中结合位移平台和聚焦扫描控制程序,控制电子束的焦点按设计的3D微/纳米结构逐点移动。
CN202010544791.XA 2020-06-15 2020-06-15 一种3d微/纳米结构的构筑方法 Active CN111646428B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010544791.XA CN111646428B (zh) 2020-06-15 2020-06-15 一种3d微/纳米结构的构筑方法
US17/597,858 US20220258243A1 (en) 2020-06-15 2021-04-23 Construction method for 3d micro/nanostructure
PCT/CN2021/089102 WO2021253978A1 (zh) 2020-06-15 2021-04-23 一种3d微/纳米结构的构筑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010544791.XA CN111646428B (zh) 2020-06-15 2020-06-15 一种3d微/纳米结构的构筑方法

Publications (2)

Publication Number Publication Date
CN111646428A CN111646428A (zh) 2020-09-11
CN111646428B true CN111646428B (zh) 2023-03-10

Family

ID=72345112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010544791.XA Active CN111646428B (zh) 2020-06-15 2020-06-15 一种3d微/纳米结构的构筑方法

Country Status (3)

Country Link
US (1) US20220258243A1 (zh)
CN (1) CN111646428B (zh)
WO (1) WO2021253978A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646428B (zh) * 2020-06-15 2023-03-10 河南大学 一种3d微/纳米结构的构筑方法
CN112599419B (zh) * 2020-12-16 2022-10-11 河南大学 一种微纳半导体器件的打印式构筑方法
CN113184801B (zh) * 2021-04-28 2023-07-18 河南大学 一种基于冲量差颗粒脱附的微纳结构与器件的直写方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123150A (ja) * 2004-11-01 2006-05-18 National Institute For Materials Science 電子ビーム誘起蒸着法を用いたナノ構造作成制御方法
JP2007335055A (ja) * 2006-06-19 2007-12-27 Ricoh Co Ltd 電子ビーム描画装置、電子ビーム描画方法、電子ビーム描画プログラムおよび記録媒体
CN102320566A (zh) * 2011-10-14 2012-01-18 中国科学院物理研究所 一种采用自对准成型制备三维纳米空间电极的方法
CN103011064A (zh) * 2012-12-25 2013-04-03 东南大学 一种在纳米材料表面制备10纳米以下亚结构的方法
CN110752157A (zh) * 2019-11-08 2020-02-04 中国科学院物理研究所 三维悬空环栅结构半导体场效应晶体管器件的制备方法及其产品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179900A (ja) * 1997-08-27 1999-03-23 Toyota Motor Corp 微細構造物の形成方法
CN100415636C (zh) * 2003-02-28 2008-09-03 松井真二 利用fib-cvd制造三维纳米结构的方法及绘制系统
CN101665238B (zh) * 2009-09-15 2012-02-15 天津大学 一种微纳放电加工微三维结构的方法和系统
JP2014044829A (ja) * 2012-08-24 2014-03-13 Univ Of Tokyo 微小構造物の製造装置、及び製造方法
DE102016125690A1 (de) * 2016-12-23 2018-06-28 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Verfahren zur Herstellung von Mikrostrukturen
JP7004070B2 (ja) * 2018-05-18 2022-01-21 株式会社Ihi 三次元造形装置及び三次元造形方法
WO2020017405A1 (ja) * 2018-07-19 2020-01-23 株式会社ニコン 造形システム
CN111646428B (zh) * 2020-06-15 2023-03-10 河南大学 一种3d微/纳米结构的构筑方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123150A (ja) * 2004-11-01 2006-05-18 National Institute For Materials Science 電子ビーム誘起蒸着法を用いたナノ構造作成制御方法
JP2007335055A (ja) * 2006-06-19 2007-12-27 Ricoh Co Ltd 電子ビーム描画装置、電子ビーム描画方法、電子ビーム描画プログラムおよび記録媒体
CN102320566A (zh) * 2011-10-14 2012-01-18 中国科学院物理研究所 一种采用自对准成型制备三维纳米空间电极的方法
CN103011064A (zh) * 2012-12-25 2013-04-03 东南大学 一种在纳米材料表面制备10纳米以下亚结构的方法
CN110752157A (zh) * 2019-11-08 2020-02-04 中国科学院物理研究所 三维悬空环栅结构半导体场效应晶体管器件的制备方法及其产品

Also Published As

Publication number Publication date
CN111646428A (zh) 2020-09-11
US20220258243A1 (en) 2022-08-18
WO2021253978A1 (zh) 2021-12-23

Similar Documents

Publication Publication Date Title
CN111646428B (zh) 一种3d微/纳米结构的构筑方法
WO2019154385A1 (zh) 一种高密度三维纳米线沟道阵列及其制备方法
CN101079331A (zh) 一种用于扫描隧道显微镜的隧道探针及其制备方法
KR100799014B1 (ko) 초 미세 입체구조의 제조 방법 및 그 장치
KR102692898B1 (ko) 액체금속 기반 전극 제조방법
JP2001107252A (ja) 微小立体構造物、その製造方法及びその製造装置
CN111496384A (zh) 一种脆性材料表面纳米孔阵列的加工装置及方法
US7767185B2 (en) Method of producing a carbon nanotube and a carbon nanotube structure
CN103030097B (zh) 基于静电场自聚焦的圆片级低维纳米结构的制备方法
US9725801B2 (en) Method for implanted-ion assisted growth of metal oxide nanowires and patterned device fabricated using the method
Lee et al. Focused ion beam-based specimen preparation for atom probe tomography
CN108793067B (zh) 一种平行纳米线的非热融合及其系列结构成形加工方法
Li et al. Controlled Preparation of Inorganic Nanostructures on Substrates by Dip‐Pen Nanolithography
KR101689276B1 (ko) 헤테로 접합 금속 나노 와이어의 제조방법 및 이에 따라 제조되는 헤테로 접합 금속 나노 와이어
Askari et al. Plasma-based processes for planar and 3D surface patterning of functional nanoparticles
Batsanov et al. Electron Microscopy Study of Metal Sulfide Nanocrystals Formed in Langmuir–Blodgett Films
JP2004244649A (ja) 2次元又は3次元ナノ構造物の作製方法
KR101046672B1 (ko) 도파기용 나노로드
Shandyba et al. Modulation of GaAs nanowire growth by pre-treatment of Si substrate using a Ga focused ion beam
CN113184801B (zh) 一种基于冲量差颗粒脱附的微纳结构与器件的直写方法
Yuan et al. Wafer-level site-controlled growth of silicon nanowires by Cu pattern dewetting
CN114031035A (zh) 一种金属纳米针尖的高能电子束原位辐照可控的制备方法
Radha et al. Direct write nanolithography
CN110272016A (zh) 一种固体表面三维纳米结构的构筑方法
KR20170135364A (ko) 나노 와이어 어레이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant