CN111635755B - 一种近红外吸收的钙钛矿纳米材料及其制备方法与应用 - Google Patents

一种近红外吸收的钙钛矿纳米材料及其制备方法与应用 Download PDF

Info

Publication number
CN111635755B
CN111635755B CN202010402202.4A CN202010402202A CN111635755B CN 111635755 B CN111635755 B CN 111635755B CN 202010402202 A CN202010402202 A CN 202010402202A CN 111635755 B CN111635755 B CN 111635755B
Authority
CN
China
Prior art keywords
pdx
doped
valent manganese
nano material
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010402202.4A
Other languages
English (en)
Other versions
CN111635755A (zh
Inventor
孟鸿
刘铭
陈经伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University Shenzhen Graduate School
Original Assignee
Peking University Shenzhen Graduate School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Shenzhen Graduate School filed Critical Peking University Shenzhen Graduate School
Priority to CN202010402202.4A priority Critical patent/CN111635755B/zh
Publication of CN111635755A publication Critical patent/CN111635755A/zh
Application granted granted Critical
Publication of CN111635755B publication Critical patent/CN111635755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/615Halogenides
    • C09K11/616Halogenides with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种近红外吸收的钙钛矿纳米材料及其制备方法与应用。所述钙钛矿纳米材料为2价锰离子掺杂的Cs2PdX6纳米材料,其中X为Br、I、SCN或者它们的组合。本发明采用简单连贯的反溶剂法首次合成2价锰离子掺杂的Cs2PdX6纳米材料,利用Mn2+对Cs2PdX6进行掺杂来扩大其在近红外区域的吸收范围。该方法操作简单,耗时少,制得的2价锰离子掺杂的Cs2PdX6纳米材料在近红外区域有着显著的吸收。并且2价锰离子掺杂的Cs2PdX6纳米材料具有优良的稳定性,带隙可调谐性以及粒径尺寸可控性。该钙钛矿纳米材料在太阳能电池、光电探测、记忆存储、医学药物检测等方面具有广阔的应用前景。

Description

一种近红外吸收的钙钛矿纳米材料及其制备方法与应用
技术领域
本发明涉及纳米材料领域,尤其涉及一种近红外吸收的钙钛矿纳米材料及其制备方法与应用。
背景技术
近红外吸收材料是指材料的吸收光谱的范围位于近红外区域,可以吸收光子,用于能量转换功能。由于Cs2PdBr6光学带隙比较窄,粒径尺寸可控,空气中稳定,非常适合作为近红外吸收材料。但是Cs2PdBr6纳米颗粒在近红外区域吸收范围小。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种近红外吸收的钙钛矿纳米材料及其制备方法与应用,旨在解决现有Cs2PdBr6纳米颗粒在近红外区域吸收范围小的问题。
本发明的技术方案如下:
一种近红外吸收的钙钛矿纳米材料,其中,所述钙钛矿纳米材料为2价锰离子掺杂的Cs2PdX6纳米材料,其中X为Br、I、SCN或者它们的组合。
进一步地,所述钙钛矿纳米材料为2价锰离子掺杂的Cs2PdBr6纳米材料。
一种本发明所述的近红外吸收的钙钛矿纳米材料的制备方法,其中,包括步骤:
首先将CsX、PdX2和MnX2溶于HX水溶液中,加热搅拌形成前驱体溶液;
然后升温至120℃后,向所述前驱体溶液中加入氧化试剂进行氧化反应;
接着进行冷却,加入反溶剂和去离子水进行离心,干燥,得到2价锰离子掺杂的Cs2PdX6微米材料;
最后将所述2价锰离子掺杂的Cs2PdX6微米材料转变为2价锰离子掺杂的Cs2PdX6纳米材料;其中X为Br、I、SCN或者它们的组合。
进一步地,所述CsX与PdX2的摩尔比为2:1。
进一步地,所述加热搅拌的温度为80-85℃,所述加热搅拌的时间为5-10min。
进一步地,所述氧化试剂为二甲基亚砜、过氧甲酸、过氧化二苯甲酰、过氧化甲乙酮和过氧化环己酮中的一种或多种。
进一步地,所述氧化试剂的用量为HX水溶液体积的10%。
进一步地,所述反溶剂为甲苯、丙酸、四氯化碳、乙酸乙酯、二乙醚、丁醇和氯仿中的一种或多种。
进一步地,所述加入反溶剂和去离子水进行离心,干燥的步骤中,所述干燥具体为在70℃下干燥12小时。
进一步地,所述将所述2价锰离子掺杂的Cs2PdX6微米材料转变为2价锰离子掺杂的Cs2PdX6纳米材料的步骤,包括:
将所述2价锰离子掺杂的Cs2PdX6微米材料分散于第一溶剂中,得到2价锰离子掺杂的Cs2PdX6微米材料溶液,将所述2价锰离子掺杂的Cs2PdX6微米材料溶液加入到第二溶剂中,经离心、干燥,得到2价锰离子掺杂的Cs2PdX6纳米材料;
所述第一溶剂为N,N-二甲基甲酰胺、二甲基亚砜、过氧甲酸、过氧化二苯甲酰、过氧化甲乙酮和过氧化环己酮中的一种或多种;
所述第二溶剂为丙酸、异丁醇、乙酸乙酯、甲苯、四氯化碳、二乙醚和氯仿中的一种或多种。
一种本发明所述的近红外吸收的钙钛矿纳米材料在太阳能电池、光电探测、记忆存储、医学药物检测中的应用。
有益效果:本发明提供了一种近红外吸收的钙钛矿纳米材料及其制备方法与应用,通过采用简单连贯的反溶剂法首次合成2价锰离子掺杂的Cs2PdX6纳米材料,利用Mn2+对Cs2PdX6进行掺杂来扩大其在近红外区域的吸收范围。该方法操作简单,耗时少,制得的2价锰离子掺杂的Cs2PdX6纳米材料在近红外区域有着显著的吸收。并且2价锰离子掺杂的Cs2PdX6纳米材料具有优良的稳定性,带隙可调谐性以及粒径尺寸可控性。该钙钛矿纳米材料在太阳能电池、光电探测、记忆存储、医学药物检测等方面具有广阔的应用前景。
附图说明
图1为本发明实施例1中Cs2PdBr6和Cs2PdBr6:Mn2+(2价锰离子掺杂的Cs2PdBr6)钙钛矿纳米颗粒的XRD图;
图2为本发明实施例1中Cs2PdBr6:Mn2+钙钛矿纳米颗粒的XPS图;
图3为本发明实施例1中Cs2PdBr6:Mn2+钙钛矿纳米颗粒的TEM图;
图4为本发明实施例1中Cs2PdBr6:Mn2+钙钛矿纳米颗粒的吸收光谱图。
具体实施方式
本发明提供一种近红外吸收的钙钛矿纳米材料及其制备方法与应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明人研究发现,Cs2PdX6的晶格中空位缺陷较多,因此可以采用其他类似的离子进行掺杂来达到所需的需求。
具体地,本发明实施例提供一种近红外吸收的钙钛矿纳米材料,其中,所述钙钛矿纳米材料为2价锰离子掺杂的Cs2PdX6纳米材料,其中X为Br、I、SCN或者它们的组合。
在一种实施方式中,所述钙钛矿纳米材料为2价锰离子掺杂的Cs2PdBr6纳米材料。
本发明实施例2价锰离子掺杂的Cs2PdX6纳米材料在近红外区域有着显著的吸收。并且2价锰离子掺杂的Cs2PdX6纳米材料具有优良的稳定性,带隙可调谐性以及粒径尺寸可控性。该纳米材料在光电探测、太阳能电池、记忆存储、医学药物检测等方面具有广阔的应用前景。
在一种实施方式中,2价锰离子与Cs2PdX6的摩尔比为0~0.5,且摩尔比不取0,在这个范围下可以更加充分利用原料,节约成本,并且产品更加稳定,性能更加优越。
本发明实施例提供一种近红外吸收的钙钛矿纳米材料的制备方法,其中,包括步骤:
S10、首先将CsX、PdX2和MnX2溶于HX水溶液中,加热搅拌形成前驱体溶液;
S20、然后升温至120℃后,向所述前驱体溶液中加入氧化试剂进行氧化反应;
S30、接着进行冷却,加入反溶剂和去离子水进行离心,干燥,得到2价锰离子掺杂的Cs2PdX6微米材料;
S40、最后将所述2价锰离子掺杂的Cs2PdX6微米材料转变为2价锰离子掺杂的Cs2PdX6纳米材料;其中X为Br、I、SCN或者它们的组合。
本发明实施例采用一种简单连贯的反溶剂法制备掺杂的钙钛矿微米材料,具体将原料和掺杂剂在高温下充分溶解混合形成前驱体溶液,并注入氧化试剂使原料发生氧化反应得到掺杂的钙钛矿微米材料,最后用反溶剂处理,将掺杂的钙钛矿微米材料溶液与反溶剂迅速混合,迅速形成的浓度差使得掺杂的钙钛矿微米材料瞬间析出,得到掺杂的钙钛矿微米材料。最后将所述掺杂的钙钛矿微米材料转变为掺杂的钙钛矿纳米材料。
本发明实施例通过采用简单连贯的反溶剂法首次合成2价锰离子掺杂的Cs2PdX6纳米材料,利用Mn2+对Cs2PdX6进行掺杂来扩大其在近红外区域的吸收范围。该方法操作简单,耗时少,制得的2价锰离子掺杂的Cs2PdX6纳米材料在近红外区域有着显著的吸收。并且2价锰离子掺杂的Cs2PdX6纳米材料具有优良的稳定性,带隙可调谐性以及粒径尺寸可控性。该纳米材料在光电探测、太阳能电池、记忆存储、医学药物检测等方面具有广阔的应用前景。
步骤S10中,在一种实施方式中,所述CsX与PdX2的摩尔比为2:1。
在一种实施方式中,所述加热搅拌的温度为80-85℃,所述加热搅拌的时间为5-10min。
步骤S20中,所述氧化试剂作为离子价态调节试剂,使原料发生氧化反应得到目标产物。在一种实施方式中,所述氧化试剂为二甲基亚砜(DMSO)、过氧甲酸、过氧化二苯甲酰、过氧化甲乙酮和过氧化环己酮等不限于此中的一种或多种。
在一种实施方式中,所述氧化试剂的用量为HX水溶液体积的10%。
步骤S30中,在一种实施方式中,所述反溶剂为甲苯、丙酸、四氯化碳、乙酸乙酯、二乙醚、丁醇和氯仿等不限于此中的一种或多种。
在一种实施方式中,所述加入反溶剂和去离子水进行离心,干燥的步骤中,所述干燥具体为在70℃下干燥12小时。
在一种实施方式中,步骤S40具体包括:将所述2价锰离子掺杂的Cs2PdX6微米材料分散于第一溶剂中,加热得到2价锰离子掺杂的Cs2PdX6微米材料溶液,将所述2价锰离子掺杂的Cs2PdX6微米材料溶液加入到高速搅拌的低极性、弱相互作用的第二溶剂中,再次经离心、干燥,得到2价锰离子掺杂的Cs2PdX6纳米材料。
在一种实施方式中,所述第一溶剂为强氧化溶剂,例如可以为N,N-二甲基甲酰胺(DMF)、二甲基亚砜、过氧甲酸、过氧化二苯甲酰、过氧化甲乙酮和过氧化环己酮等中的一种或多种;
在一种实施方式中,所述第二溶剂为低极性、弱相互作用的溶剂,例如可以为丙酸、异丁醇、乙酸乙酯、甲苯、四氯化碳、二乙醚和氯仿等中的一种或多种。
本发明实施例提供一种本发明实施例所述的近红外吸收的钙钛矿纳米材料在太阳能电池、光电探测、记忆存储、医学药物检测中的应用。具体如下方面:
(1)太阳能电池方面:该钙钛矿纳米材料在近红外及可见光区域具有优秀的吸收,可作为太阳能电池的吸收层材料。
(2)光电探测方面:该钙钛矿纳米材料对外界光源环境具有快速响应性能,可用于光电探测器的制备。
(3)记忆存储方面:该钙钛矿纳米材料可用于记忆存储器件的开发与制造。
(4)医学药物检测方面:该钙钛矿纳米材料也可以用于生物医学和药物检测的材料和器件。
下面通过具体的实施例对本发明作进一步地说明。
实施例1
1、一种近红外吸收的钙钛矿纳米材料Cs2PdBr6:Mn2+的制备方法,具体包括以下步骤:
(1)Cs2PdBr6:Mn2+钙钛矿微米材料的制备:准确称量0.213g CsBr(纯度为99.99%)、0.133g PdBr2(纯度为99%)和0.011g MnBr2(纯度为99%),溶于5ml质量分数为48%的氢溴酸水溶液中,在85℃下加热搅拌使其完全溶解形成均一稳定的前驱体溶液,当前驱体在氢溴酸水溶液中完全溶解形成清晰溶液时,升高温度至120℃并向前驱体溶液中加入10%二甲基亚砜试剂。在溶液加入二甲基亚砜后,产生黑色的晶体沉淀下来,冷却至室温,使用反溶剂甲苯和去离子水多次洗涤离心,并在70℃烘箱中烘干12小时得到Cs2PdBr6:Mn2+的微米材料。
(2)取步骤(1)所得的10mg微米材料溶解到2ml N,N-二甲基甲酰胺(DMF)中,加热至60℃形成红色的清晰溶液,从中取出20μL红色的清晰溶液加入到高速搅拌的低极性、弱相互作用的溶剂中,立即得到灰黑色的分散均一稳定的纳米颗粒溶液,并且再次离心获得Cs2PdBr6:Mn2+的纳米材料。
2、表征测试:
图1为Cs2PdBr6和Cs2PdBr6:Mn2+钙钛矿纳米颗粒的XRD图。图1显示了掺杂了锰离子的Cs2PdBr6与未掺杂Cs2PdBr6之间XRD衍射峰,两组XRD的峰的位置相近,但在高角度可以看到掺杂锰离子的Cs2PdBr6发生一点向低角度偏移,说明掺杂并未改变晶格形状,但影响了晶面间距。
图2为Cs2PdBr6:Mn2+钙钛矿纳米颗粒的XPS图。图2的XPS说明合成的Cs2PdBr6:Mn2+样品中明显含有铯、钯、溴和锰这四种元素。
图3为Cs2PdBr6:Mn2+钙钛矿纳米颗粒的TEM图。图3的TEM清晰的展示了Cs2PdBr6:Mn2+纳米颗粒的形貌和尺寸,即形貌为颗粒状,尺寸大约为5nm。
图4为Cs2PdBr6:Mn2+钙钛矿纳米颗粒的吸收光谱图。图4表明制备的Cs2PdBr6:Mn2+与未掺杂的Cs2PdBr6相比,吸收区域发生红移,并且Cs2PdBr6:Mn2+的近红外吸收钙钛矿纳米材料的吸收边在876nm。
综上所述,本发明提供的一种近红外吸收的钙钛矿纳米材料及其制备方法与应用,通过采用简单连贯的反溶剂法首次合成2价锰离子掺杂的Cs2PdX6纳米材料,利用Mn2+对Cs2PdX6进行掺杂来扩大其在近红外区域的吸收范围。该方法操作简单,耗时少,制得的2价锰离子掺杂的Cs2PdX6纳米材料在近红外区域有着显著的吸收。并且2价锰离子掺杂的Cs2PdX6纳米材料具有优良的稳定性,带隙可调谐性以及粒径尺寸可控性。该钙钛矿纳米材料在太阳能电池、光电探测、记忆存储、医学药物检测等方面具有广阔的应用前景。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (7)

1.一种近红外吸收的钙钛矿纳米材料,其特征在于,所述钙钛矿纳米材料为2价锰离子掺杂的Cs2PdX6纳米材料,其中X为Br、I或者它们的组合。
2.根据权利要求1所述的近红外吸收的钙钛矿纳米材料,其特征在于,所述钙钛矿纳米材料为2价锰离子掺杂的Cs2PdBr6纳米材料。
3.一种权利要求1-2任一项所述的近红外吸收的钙钛矿纳米材料的制备方法,其特征在于,包括步骤:
首先将CsX、PdX2和MnX2溶于HX水溶液中,加热搅拌形成前驱体溶液;
然后升温至120℃后,向所述前驱体溶液中加入氧化试剂进行氧化反应;所述氧化试剂为二甲基亚砜、过氧甲酸、过氧化二苯甲酰、过氧化甲乙酮和过氧化环己酮中的一种或多种;
接着进行冷却,加入反溶剂和去离子水进行离心,干燥,得到2价锰离子掺杂的Cs2PdX6微米材料;所述反溶剂为甲苯、丙酸、四氯化碳、乙酸乙酯、二乙醚、丁醇和氯仿中的一种或多种;
最后将所述2价锰离子掺杂的Cs2PdX6微米材料转变为2价锰离子掺杂的Cs2PdX6纳米材料:将所述2价锰离子掺杂的Cs2PdX6微米材料分散于第一溶剂中,加热得到2价锰离子掺杂的Cs2PdX6微米材料溶液,将所述2价锰离子掺杂的Cs2PdX6微米材料溶液加入到第二溶剂中,经离心、干燥,得到2价锰离子掺杂的Cs2PdX6纳米材料;
所述第一溶剂为N,N-二甲基甲酰胺、二甲基亚砜、过氧甲酸、过氧化二苯甲酰、过氧化甲乙酮和过氧化环己酮中的一种或多种;
所述第二溶剂为丙酸、异丁醇、乙酸乙酯、甲苯、四氯化碳、二乙醚和氯仿中的一种或多种;其中X为Br、I或者它们的组合。
4.根据权利要求3所述的近红外吸收的钙钛矿纳米材料的制备方法,其特征在于,所述CsX与PdX2的摩尔比为2:1。
5.根据权利要求3所述的近红外吸收的钙钛矿纳米材料的制备方法,其特征在于,所述加热搅拌的温度为80-85℃,所述加热搅拌的时间为5-10min。
6.根据权利要求3所述的近红外吸收的钙钛矿纳米材料的制备方法,其特征在于,所述氧化试剂的用量为HX水溶液体积的10%。
7.一种权利要求1-2任一项所述的近红外吸收的钙钛矿纳米材料在太阳能电池、光电探测、记忆存储、医学药物检测中的应用。
CN202010402202.4A 2020-05-13 2020-05-13 一种近红外吸收的钙钛矿纳米材料及其制备方法与应用 Active CN111635755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010402202.4A CN111635755B (zh) 2020-05-13 2020-05-13 一种近红外吸收的钙钛矿纳米材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010402202.4A CN111635755B (zh) 2020-05-13 2020-05-13 一种近红外吸收的钙钛矿纳米材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111635755A CN111635755A (zh) 2020-09-08
CN111635755B true CN111635755B (zh) 2022-11-04

Family

ID=72330049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010402202.4A Active CN111635755B (zh) 2020-05-13 2020-05-13 一种近红外吸收的钙钛矿纳米材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111635755B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321300A (zh) * 2018-02-06 2018-07-24 杭州纤纳光电科技有限公司 一种掺杂添加剂的钙钛矿薄膜及其制备方法和应用
CN108726583B (zh) * 2018-07-17 2020-05-19 中山大学 一种稳定无铅低带隙的全无机钙钛矿A2PdX6纳米晶及其制备方法

Also Published As

Publication number Publication date
CN111635755A (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
Xiong et al. Polyether-grafted ZnO nanoparticles with tunable and stable photoluminescence at room temperature
Guo et al. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property
Zhang et al. Formation of hollow upconversion rare-earth fluoride nanospheres: nanoscale kirkendall effect during ion exchange
El-kader et al. Effect of Li 4 Ti 5 O 12 nanoparticles on structural, optical and thermal properties of PVDF/PEO blend
CN103073942B (zh) 一种二氧化钒复合粉体及其制备方法
CN103073941B (zh) 一种二氧化钒粉体浆料及其制备方法
TW201910406A (zh) 電磁波吸收粒子分散體、電磁波吸收層合透明基材
CN104312588B (zh) 一种硒掺杂碳量子点的制备方法
CN102924718A (zh) 一种具有纳米结构的聚吡咯的制备方法
CN103949274B (zh) 一种Co0.85Se催化剂材料及制备方法
CN102389788B (zh) 一种多孔二氧化钛-碳复合纳米空心微球的制备方法
Li et al. Selective photochromism in a self-coated WO3/WO3− x homojunction: enhanced solar modulation efficiency, high luminous transmittance and fast self-bleaching rate
Selim et al. Controlled-synthesis of β-MnO2 nanorods through a γ-manganite precursor route
Zhang et al. Uniform hollow TiO2: Sm3+ spheres: Solvothermal synthesis and luminescence properties
Zhang et al. Preparation, crystallization and properties of Bi2WO6 nanoparticles
Li et al. A strategy for breaking the MOF template to obtain small-sized and highly dispersive polyoxometalate clusters loaded on solid films
CN103496744A (zh) 还原态铵钨青铜纳米粒子的制备方法
Manibalan et al. Novel chemical route for synthesis of CeO 2–ZnO nanocomposite towards high electrochemical supercapacitor application
Saheeda et al. Investigation on the pH‐independent photoluminescence emission from carbon dots impregnated on polymer matrix
CN114772640A (zh) 一种无铅稳定的双钙钛矿纳米晶的制备方法及其产品和应用
Ghosh et al. Influence of surface coating on physical properties of TiO2/Eu3+ nanocrystals
CN111635755B (zh) 一种近红外吸收的钙钛矿纳米材料及其制备方法与应用
Yang et al. Submicrometer-sized hierarchical hollow spheres of heavy lanthanide orthovanadates: sacrificial template synthesis, formation mechanism, and luminescent properties
Reséndiz López et al. Bandgap modification of titanium dioxide doped with rare earth ions for luminescent processes
CN105712401A (zh) 钒酸钙微米球材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant