CN111523218B - Multi-target parameter optimization method based on dynamic multi-target evolution - Google Patents
Multi-target parameter optimization method based on dynamic multi-target evolution Download PDFInfo
- Publication number
- CN111523218B CN111523218B CN202010297673.3A CN202010297673A CN111523218B CN 111523218 B CN111523218 B CN 111523218B CN 202010297673 A CN202010297673 A CN 202010297673A CN 111523218 B CN111523218 B CN 111523218B
- Authority
- CN
- China
- Prior art keywords
- time
- sub
- region
- individual
- objective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- 238000005457 optimization Methods 0.000 title claims abstract description 62
- 238000003860 storage Methods 0.000 claims abstract description 24
- 230000008569 process Effects 0.000 claims description 23
- 230000006870 function Effects 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 238000005097 cold rolling Methods 0.000 claims description 6
- 230000007613 environmental effect Effects 0.000 claims description 5
- 238000005265 energy consumption Methods 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 abstract description 32
- 238000012423 maintenance Methods 0.000 description 13
- 230000014509 gene expression Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/06—Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Hardware Design (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Geometry (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算机技术领域,尤其涉及一种基于动态多目标进化的多目标参数优化方法、一种基于动态多目标进化的多目标参数优化装置、存储介质和电子设备。The invention relates to the field of computer technology, in particular to a multi-objective parameter optimization method based on dynamic multi-objective evolution, a multi-objective parameter optimization device based on dynamic multi-objective evolution, a storage medium and electronic equipment.
背景技术Background technique
在工程工业等领域中,例如冶金、航空等行业中,在解决工程问题或科研问题时,解决方案期望达到最优。而在面对一个待解决的技术问题时,该技术问题可能由多个目标组成。例如,对于动态路径规划的技术问题,在规划路径时,一般需要考虑路程最短,时间最短,道路状况良好等目标;而在车辆行进过程中,交通事故、交通管制等情况都是随机发生的,这就要求优化算法根据实时信息对优化结果作出调整,进行动态的在线优化,使行车路线最优。In the engineering industry and other fields, such as metallurgy, aviation and other industries, when solving engineering problems or scientific research problems, the solution is expected to be optimal. However, when faced with a technical problem to be solved, the technical problem may consist of multiple objectives. For example, for the technical problem of dynamic path planning, when planning the path, it is generally necessary to consider the goals of the shortest distance, the shortest time, and good road conditions; while in the process of vehicle travel, traffic accidents, traffic control, etc. occur randomly. This requires the optimization algorithm to adjust the optimization results according to real-time information, and perform dynamic online optimization to optimize the driving route.
针对上述的情形,可以利用动态多目标优化进化算法来解决。举例来说,现有的动态多目标优化进化算法大多针对离散时间变量设计算法,或者把一些静态多目标优化算法直接用于DMOP(DynamicMulti-objectiveOptimization Problem,动态多目标优化问题)的求解。然而,对于DMOP而言,因其具有多个依赖时间(环境)的相互冲突的目标,加之其Pareto最优解随时间的变化会发生改变,因此,对DMOP的优化显得比较困难。In view of the above situation, dynamic multi-objective optimization evolutionary algorithm can be used to solve it. For example, most of the existing dynamic multi-objective optimization evolutionary algorithms are designed for discrete time variables, or some static multi-objective optimization algorithms are directly used to solve DMOP (Dynamic Multi-objective Optimization Problem, dynamic multi-objective optimization problem). However, for DMOP, because it has multiple time-dependent (environment) conflicting goals, and its Pareto optimal solution will change with time, the optimization of DMOP is more difficult.
而对于动态优化问题,目前主要分为下面3种类型:1)保持种群的多样性:如Grefenstette提出的随机迁移进化策略、Morrison提出的超变异法及GanRuan等人提出的多样性维持策略都是用来提高种群多样性的有效方法;2)基于记忆的方法:对于动态进化算法,增加历史获得的较好解,并在需要的时候重新启动这些解将其用于进化,在环境变化的情况下,这样会大大提高算法对问题求解的效率和搜索能力。记忆通常分为2种:利用冗余表示的隐式记忆和通过引入额外记忆集存储的显式记忆。如Ryan提出的利用额外二倍体隐式记忆方法,Collins提出的基因分级结构记忆方法等。尽管上述各种隐式记忆的方法能够使进化算法间接地存储一些有效信息,但并不确定算法能否有效地使用这些信息。As for the dynamic optimization problem, it is mainly divided into the following three types: 1) Maintain the diversity of the population: such as the random migration evolution strategy proposed by Grefenstette, the hypervariation method proposed by Morrison, and the diversity maintenance strategy proposed by GanRuan et al. An effective method to improve population diversity; 2) Memory-based method: For dynamic evolutionary algorithms, add better solutions obtained in history, and restart these solutions when needed to use them for evolution, in the case of environmental changes This will greatly improve the efficiency and search ability of the algorithm for solving problems. Memory is usually divided into two types: implicit memory utilizing redundant representations and explicit memory stored by introducing additional memory sets. For example, the use of additional diploid implicit memory method proposed by Ryan, the gene hierarchical structure memory method proposed by Collins, etc. Although the above-mentioned various implicit memory methods can enable the evolutionary algorithm to indirectly store some effective information, it is not sure whether the algorithm can effectively use this information.
发明内容Contents of the invention
为解决上述技术问题,本发明实施例期望提供一种基于动态多目标进化的多目标参数优化方法、一种基于动态多目标进化的多目标参数优化装置、存储介质和电子设备。In order to solve the above technical problems, the embodiments of the present invention expect to provide a dynamic multi-objective evolution-based multi-objective parameter optimization method, a dynamic multi-objective evolution-based multi-objective parameter optimization device, storage media and electronic equipment.
本发明的技术方案是这样实现的:根据第一方面,提供一种基于动态多目标进化的多目标参数优化方法,包括:The technical solution of the present invention is achieved as follows: according to the first aspect, a multi-objective parameter optimization method based on dynamic multi-objective evolution is provided, including:
获取待优化对象在t时刻的Pareto解集,以及t-1时刻的Pareto解集,以根据t时刻的Pareto解集以及t-1时刻的Pareto解集中各子区域的中心点位置获取t时刻的进化步长;其中Pareto解集中包括多个子区域;t≥1;Obtain the Pareto solution set of the object to be optimized at time t and the Pareto solution set at time t-1, so as to obtain the Pareto solution set at time t according to the Pareto solution set at time t and the center point position of each sub-region in the Pareto solution set at time t-1. Evolution step length; where Pareto solution set includes multiple sub-regions; t≥1;
根据所述t时刻的进化步长和所述t时刻的Pareto解集中各子区域的中心点的位置,获取t+1时刻各所述子区域的中心点的预测解;以及According to the evolution step at the time t and the position of the center point of each sub-region in the Pareto solution set at the time t, obtain a predicted solution of the center point of each sub-region at time t+1; and
根据所述t时刻各所述子区域的最大点和最小点,利用预设随机函数获取t+1时刻各所述子区域的随机值;其中,各所述子区域的所述随机值的数量与该子区域的原始解数量相关;According to the maximum point and minimum point of each of the sub-regions at the time t, use a preset random function to obtain the random value of each of the sub-regions at time t+1; wherein, the number of random values of each of the sub-regions is related to the number of raw solutions in this subregion;
基于所述t+1时刻各所述子区域的中心点的预测解,和t+1时刻各所述子区域的随机值生成所述t+1时刻的初始种群,以利用该t+1时刻的初始种群获取所述t+1时刻的多目标参数优化结果。Generate the initial population at the time t+1 based on the predicted solution of the central point of each sub-region at the time t+1, and the random value of each sub-region at the time t+1, so as to utilize the time t+1 The initial population of is to obtain the multi-objective parameter optimization result at the time t+1.
根据第二方面,提供一种基于动态多目标进化的多目标参数优化系统,包括:According to the second aspect, a multi-objective parameter optimization system based on dynamic multi-objective evolution is provided, including:
进化步长计算模块,用于获取待优化对象在t时刻的Pareto解集,以及t-1时刻的Pareto解集,以根据t时刻的Pareto解集以及t-1时刻的Pareto解集中各子区域的中心点位置获取t时刻的进化步长;其中Pareto解集中包括多个子区域;t≥1;The evolution step calculation module is used to obtain the Pareto solution set of the object to be optimized at time t and the Pareto solution set of t-1 time, so as to obtain the Pareto solution set of the object at time t and the Pareto solution set of t-1 time for each sub-region The position of the center point of the center point obtains the evolution step at time t; where the Pareto solution set includes multiple sub-regions; t≥1;
中心点预测解获取模块,用于根据所述t时刻的进化步长和所述t时刻的Pareto解集中各子区域的中心点的位置,获取t+1时刻各所述子区域的中心点的预测解;以及The central point prediction solution acquisition module is used to obtain the position of the central point of each sub-region at t+1 time according to the evolution step size at the time t and the position of the central point of each sub-region in the Pareto solution set at the time t. predictive solutions; and
随机值计算模块,用于根据所述t时刻各所述子区域的最大点和最小点,利用预设随机函数获取t+1时刻各所述子区域的随机值;其中,各所述子区域的所述随机值的数量与该子区域的原始解数量相关;The random value calculation module is used to obtain the random value of each sub-area at time t+1 according to the maximum point and minimum point of each sub-area at time t, using a preset random function; wherein, each of the sub-areas The number of random values of is related to the number of original solutions in this sub-region;
优化结果生成模块,用于基于所述t+1时刻各所述子区域的中心点的预测解,和t+1时刻各所述子区域的随机值生成所述t+1时刻的初始种群,以利用该t+1时刻的初始种群获取所述t+1时刻的多目标参数优化结果。An optimization result generating module, configured to generate the initial population at the time t+1 based on the predicted solution of the central point of each sub-region at the time t+1, and the random value of each sub-region at the time t+1, The multi-objective parameter optimization result at time t+1 is obtained by using the initial population at time t+1.
根据第三方面,提供一种存储介质,其上存储有计算机程序,所述程序被处理器执行时实现根据上述实施例的基于动态多目标进化的多目标参数优化方法。According to a third aspect, there is provided a storage medium on which a computer program is stored, and when the program is executed by a processor, the multi-objective parameter optimization method based on dynamic multi-objective evolution according to the above-mentioned embodiments is implemented.
根据第四方面,提供一种电子终端,包括:According to a fourth aspect, an electronic terminal is provided, including:
处理器;以及processor; and
存储器,用于存储所述处理器的可执行指令;a memory for storing executable instructions of the processor;
其中,所述处理器配置为经由执行所述可执行指令来执行根据上述实施例的基于动态多目标进化的多目标参数优化方法。Wherein, the processor is configured to execute the multi-objective parameter optimization method based on dynamic multi-objective evolution according to the above-mentioned embodiments by executing the executable instructions.
本发明实施例提供了一种基于动态多目标进化的多目标参数优化方法,通过根据当前时刻Pareto解集的多个子区域的中心点,实现对新环境下Pareto解集多个子区域中心点的准确预测;采用多区域多样性维持策略在下一时刻可能的解集范围随机产生其他个体,增加种群多样性。采用算法优化得到下一时刻初始种群,使得新环境下的初始种群更加接近真实Pareto解集,达到加快算法收敛速度的目的。The embodiment of the present invention provides a multi-objective parameter optimization method based on dynamic multi-objective evolution. By using the center points of multiple sub-regions of the Pareto solution at the current moment, the accurate calculation of the center points of the multiple sub-regions of the Pareto solution in the new environment is realized. Prediction: Using a multi-regional diversity maintenance strategy to randomly generate other individuals in the range of possible solution sets at the next moment, increasing the diversity of the population. The algorithm optimization is used to obtain the initial population at the next moment, so that the initial population in the new environment is closer to the real Pareto solution set, and the purpose of speeding up the convergence of the algorithm is achieved.
附图说明Description of drawings
图1示意出多区域多中心点预测策略的展示示意图;Figure 1 shows a schematic diagram of a multi-region multi-center point prediction strategy;
图2示意出存在无个体子区域时不同情况下的多区域多中心点预测策略的展示示意图;Figure 2 shows a schematic diagram of the multi-region multi-center point prediction strategy in different situations when there is no individual sub-region;
图3示意出多区域多样性维持策略的展示示意图;Fig. 3 shows a schematic diagram of a multi-regional diversity maintenance strategy;
图4a、图4b分别示意出测试函数DF2、HE2的反向世代距离评价指标(IGD)变化趋势示意图;Figure 4a and Figure 4b respectively illustrate the change trend of the reverse generation distance evaluation index (IGD) of the test functions DF2 and HE2;
图5a、图5b分别示意出DF2、Fun9真实前沿与获得前沿对比示意图;Figure 5a and Figure 5b respectively show the comparison diagrams of the real frontier and the obtained frontier of DF2 and Fun9;
图6示意出一种基于动态多目标进化的多目标参数优化方法的流程示意图;Fig. 6 shows a schematic flow chart of a multi-objective parameter optimization method based on dynamic multi-objective evolution;
图7示意出一种基于动态多目标进化的多目标参数优化装置的组成示意图;Fig. 7 shows a schematic diagram of the composition of a multi-objective parameter optimization device based on dynamic multi-objective evolution;
图8示意出一种电子设备的框图;Fig. 8 schematically shows a block diagram of an electronic device;
图9示意性示一种程序产品示意图。Fig. 9 schematically shows a schematic diagram of a program product.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention.
目前,不论是工程问题还是科研问题,解决方案都希望达到最优,从而达到提高效率、降低能耗的目的。而大多数优化问题都是由多个目标组成的,这一系列目标函数的解往往是相互矛盾、此消彼长的。在某些工程实践中,甚至包括各种各样的不确定或动态因素,使问题变的更加复杂。如动态路径规划,在规划方案中,优化目标一般要考虑路程最短,时间最短,道路状况良好等,而在车辆行进过程中,交通事故、交通管制等情况都是随机发生的,这就要求优化算法根据实时信息对优化结果作出调整,进行动态的在线优化,使行车路线最优。这类动态多目标优化问题普遍存在于各个领域,而最终这类问题均可抽象为以下数学模型(以最小化为例):At present, whether it is an engineering problem or a scientific research problem, the solution is hoped to be optimal, so as to achieve the purpose of improving efficiency and reducing energy consumption. However, most optimization problems are composed of multiple objectives, and the solutions of this series of objective functions are often contradictory and mutually reinforcing. In some engineering practices, it even includes various uncertain or dynamic factors, making the problem more complicated. For example, in dynamic route planning, in the planning scheme, the optimization goal generally considers the shortest distance, the shortest time, and good road conditions, etc., but in the process of vehicle travel, traffic accidents, traffic control and other situations occur randomly, which requires optimization. The algorithm adjusts the optimization results based on real-time information, and performs dynamic online optimization to optimize the driving route. This kind of dynamic multi-objective optimization problem exists in various fields, and finally this kind of problem can be abstracted into the following mathematical model (take minimization as an example):
其中,F(x,t)为目标函数,t∈[t0,ts]为时间变量,x=(x1,x2,···,xn)∈Rn为n维决策向量,aibi为决策变量x在第i维的上下限,i=1,2,…,n。Among them, F(x,t) is the objective function, t∈[t 0 ,t s ] is the time variable, x=(x 1 ,x 2 ,···,x n )∈R n is the n-dimensional decision vector, a i b i is the upper and lower limits of the i-th dimension of the decision variable x, i=1,2,...,n.
在动态多目标优化算法中,其关键在于当环境变化后,算法如何应对环境变化所带来的目标函数以及最优Pareto解集的变化。为解决现有技术中存在的问题,提供了一种能够实现多区域协同进化的基于动态多目标进化的多目标参数优化方法。具体的,参考以下的实施例进行说明。In the dynamic multi-objective optimization algorithm, the key lies in how the algorithm responds to changes in the objective function and the optimal Pareto solution set brought about by environmental changes when the environment changes. In order to solve the problems existing in the prior art, a multi-objective parameter optimization method based on dynamic multi-objective evolution that can realize multi-region co-evolution is provided. Specifically, it will be described with reference to the following examples.
对于本发明方法对应的动态多目标进化算法基本框架,可以包括:The basic framework of the dynamic multi-objective evolutionary algorithm corresponding to the method of the present invention may include:
1 设定时间参数t=0;1 Set the time parameter t=0;
2 初始化种群P0,计算目标函数值F0,定义一组权重向量λ(t)=λ1(t),λ2(t),...,λN(t)(t);2 Initialize the population P 0 , calculate the objective function value F 0 , define a set of weight vectors λ(t)=λ 1 (t), λ 2 (t),...,λ N(t) (t);
3 while终止指令==0do3 while termination instruction == 0do
4 ifChange()then4 ifChange()then
5 设置t=t+1;5 Set t=t+1;
6 利用多区域中心点策略,产生PMRP;6 Use the multi-region central point strategy to generate PMRP ;
7 利用多区域多样性维持策略,产生PRDM;7 Utilize multi-regional diversity maintenance strategies to generate PRDM ;
8 Parchive=PMRP∪PRDM;8 P archive = P MRP ∪ P RDM ;
9 else9 else
10 以最新产生的种群Parchive为初始种群,采用MOEA/D-DE算法优化时间t下的多目标问题;10 Use the newly generated population P archive as the initial population, and use the MOEA/D-DE algorithm to optimize the multi-objective problem at time t;
11 end11 end
12 end12 end
在此框架下,根据当前时刻Pareto解集的多个子区域的中心点,实现对新环境下Pareto解集多个子区域中心点的准确预测;采用多区域多样性维持策略在下一时刻可能的解集范围随机产生其他个体,增加种群多样性。采用MOEA/D算法优化得到下一时刻初始种群,框架中提到的MOEA/D算法为已有算法,这里不做过多叙述。Under this framework, according to the center points of multiple sub-regions of the Pareto solution set at the current moment, the accurate prediction of the center points of the multiple sub-regions of the Pareto solution set in the new environment is realized; the possible solution set at the next moment is adopted using the multi-region diversity maintenance strategy The scope randomly generates other individuals, increasing population diversity. The MOEA/D algorithm is used to optimize the initial population at the next moment. The MOEA/D algorithm mentioned in the framework is an existing algorithm and will not be described here.
本方法主要方面为多区域多中心点预测策略和多区域多样性维持策略。The main aspects of this method are the multi-region multi-center point prediction strategy and the multi-region diversity maintenance strategy.
对于多区域多中心点预测策略来说,具体可以包括以下内容。For the multi-region multi-center point prediction strategy, it may specifically include the following contents.
步骤S11,获取待优化对象在t时刻的Pareto解集,以及t-1时刻的Pareto解集,以根据t时刻的Pareto解集以及t-1时刻的Pareto解集中各子区域的中心点位置获取t时刻的进化步长;其中Pareto解集中包括多个子区域;t≥1。Step S11, obtain the Pareto solution set of the object to be optimized at time t and the Pareto solution set at time t-1, and obtain the center point position of each sub-region according to the Pareto solution set at time t and the Pareto solution set at time t-1 The evolution step at time t; where the Pareto solution set includes multiple sub-regions; t≥1.
本实施例中,如图6所示方法流程,可以首先确定进化步长。具体来说,可以包括:In this embodiment, as shown in the method flow shown in FIG. 6 , the evolution step size may be determined first. Specifically, it can include:
假设每个子区域的解具有与中心点相似的运动,通过前两个时刻中每个子区域的中心点的位置来确定进化步长令/>和/> 分别表示t时刻t-1时刻的中心点,进化步长/>表达式如下:The evolution step size is determined by the position of the center point of each subregion in the previous two moments, assuming that the solution of each subregion has a similar motion to the center point order /> and /> Respectively represent the center point at time t-1 time, evolution step size /> The expression is as follows:
其中,k表示子区域的数目。where k represents the number of sub-regions.
步骤S12,根据所述t时刻的进化步长和所述t时刻的Pareto解集中各子区域的中心点的位置,获取t+1时刻各所述子区域的中心点的预测解。Step S12, according to the evolution step at time t and the position of the center point of each sub-region in the Pareto solution set at time t, a prediction solution of the center point of each sub-region at time t+1 is obtained.
本实施例中,产生预测解:In this example, a predicted solution is generated:
确定各区域解在t时刻的进化步长后,可以预测产生t+1时刻解,具体表达式如下:After determining the evolution step size of each region solution at time t, the solution at time t+1 can be predicted, and the specific expression is as follows:
其中,i=1,2,…,k,是在t时刻环境变化后获得的解,/>是t+1时刻环境变化后的预测解;Among them, i=1,2,...,k, is the solution obtained after the environment changes at time t, /> is the predicted solution after the environment changes at time t+1;
多区域多中心点预测策略如图1所示。The multi-region multi-center point prediction strategy is shown in Figure 1.
多区域中心点预测可能出现某些区域无关联个体的现象,具体的:In multi-area central point prediction, there may be a phenomenon of unrelated individuals in some areas, specifically:
可以利用所述无个体子区域的至少一个最邻近个体确定所述无个体子区域的进化步长;其中,所述无个体子区域包括:无个体边界子区域和/或无个体中心子区域。The evolution step of the individual-free sub-area can be determined by using at least one nearest individual of the individual-free sub-area; wherein, the individual-free sub-area includes: an individual-free boundary sub-area and/or an individual-free central sub-area.
所述无个体子区域在t-1时刻存在个体、t时刻不存在个体时,则根据t-1时刻的无个体区域的中心点位置和所述t时刻的进化步长获取该所述无个体子区域在t+1时刻的中心点预测解。When there is an individual in the no-individual sub-region at time t-1 and no individual at time t, the no-individual sub-region is obtained according to the position of the center point of the no-individual area at time t-1 and the evolution step at time t. The center point of the sub-region at time t+1 predicts the solution.
或者,所述无个体子区域在t-1时刻、t时刻不存在个体时;对于无个体边界子区域,根据Pareto解集中的第一序列子区域在t+1时刻的中心位置预测解与t时刻的进化步长,以及最后序列子区域在t-1时刻的中心位置预测解与t时刻的进化步长获取该所述无个体子区域在t+1时刻的预测解;或者Or, when there is no individual in the no-individual sub-region at time t-1 and time t; for the no-individual boundary sub-region, according to the central position of the first sequence sub-region in the Pareto solution set at time t+1, the prediction solution and t The evolution step at time, and the predicted solution of the central position of the final sequence sub-region at time t-1 and the evolution step at time t obtain the predicted solution of the said no-individual sub-region at time t+1; or
对于无个体中心子区域,根据第一相邻子区域在t时刻的中心位置,以及第一最邻近个体在t时刻和t-1时刻的位置获取t+1时刻的中心点预测解;根据第二相邻子区域在t时刻的中心位置,以及第二最近邻个体在t时刻和t-1时刻的位置获取t+1时刻的中心点预测解。For the center sub-area without individuals, according to the center position of the first adjacent sub-area at time t, and the position of the first nearest individual at time t and time t-1, the center point prediction solution at time t+1 is obtained; according to the first The center position of the two adjacent sub-regions at time t, and the position of the second nearest neighbor individual at time t and time t-1 obtain the center point prediction solution at time t+1.
本实施例中,首先,确定无个体区域进化步长:In this embodiment, first, determine the evolution step size of the individual-free region:
出现无关联个体现象时,可以分为2种情况:边界区域无个体和中间区域无个体,由于相邻区域的个体进化步长差异较小,所以对于无个体区域的进化步长可以通过相邻区域的个体得到,对于无个体的子区域,相对应的区域边界也可以确定,多区域中心点预测策略首先计算其他个体与边界L的欧氏距离,并找到离边界L最近的个体xnear,如果无个体区域位于边界区域,只有一个xnear用来确定进化步长,如果无区域个体位于中间区域,会有两个相邻边界,因此会找到两个最近个体xnear1和xnear2,对于无个体区域位于边界区域进化步长确定表达式如下:When the phenomenon of unrelated individuals occurs, it can be divided into two cases: no individual in the boundary area and no individual in the middle area. Since the individual evolutionary step size difference in adjacent areas is small, the evolutionary step size of the unindividual area can be passed through the adjacent Individuals in the area are obtained. For sub-areas without individuals, the corresponding area boundaries can also be determined. The multi-area central point prediction strategy first calculates the Euclidean distance between other individuals and the boundary L, and finds the individual x near closest to the boundary L, If the no-individual area is located in the boundary area, only one x near is used to determine the evolution step size. If the no-area individual is located in the middle area, there will be two adjacent boundaries, so two nearest individuals x near1 and x near2 will be found. For no The individual area is located in the boundary area and the evolution step determination expression is as follows:
对于无个体区域位于中间区域进化步长确定表达式如下:For the no-individual area located in the middle area, the evolution step determination expression is as follows:
其中,Fp是步长调节参数,由实验对比分析,Fp=0.4时效果较好Among them, F p is the step size adjustment parameter. According to the comparative analysis of the experiment, the effect is better when F p = 0.4
无个体区域产生解:Individual-free regions yield solutions:
出现无个体区域的情况可能发生在当前代,也可能出现在之前代,可以分为3种情况:a本代有个体,之前代无个体,这种情况下产生解的方式通过式8产生;b本代无个体,之前代有个体,这种情况下产生解的方式如下所示:The case of no-individual regions may occur in the current generation or in the previous generation, which can be divided into three cases: a. There are individuals in this generation, but there are no individuals in the previous generation. In this case, the solution is generated by formula 8; b There is no individual in this generation, and there are individuals in the previous generation. In this case, the way to generate a solution is as follows:
C本代和之前代均无个体,这种情况下对于边界区域而言,产生解的方式如下:C has no individuals in this generation and the previous generation. In this case, for the boundary area, the solution is generated as follows:
对于中间个体而言,产生解的方式如下:For intermediate individuals, the solution is generated as follows:
对于以上实施例,可以参考图2所示。For the above embodiments, reference may be made to what is shown in FIG. 2 .
举例来说,基于多区域多中心点预测策略实现流程可以包括以下内容:For example, the implementation process based on multi-region and multi-center point forecasting strategy may include the following:
1 fori=1,2,…,kdo1 fori=1,2,...,kdo
2 2
3 根据公式6计算中心点 3 Calculate the center point according to formula 6
4 ifi=1ori=kthen4 ifi=1ori=kthen
5 根据公式7计算进化步长;5 Calculate the evolution step size according to formula 7;
6 else6 else
7 根据公式10计算进化步长;7 Calculate the evolution step size according to formula 10;
8 end8 end
9 根据公式8产生新解;9 Generate a new solution according to formula 8;
10 end10 end
11 end11 end
步骤S13,根据所述t时刻各所述子区域的最大点和最小点,利用预设随机函数获取t+1时刻各所述子区域的随机值;其中,各所述子区域的所述随机值的数量与该子区域的原始解数量相关。Step S13, according to the maximum point and minimum point of each sub-region at the time t, use a preset random function to obtain the random value of each sub-region at time t+1; wherein, the random value of each sub-region The number of values is related to the number of raw solutions for that subregion.
步骤S14,基于所述t+1时刻各所述子区域的中心点的预测解,和t+1时刻各所述子区域的随机值生成所述t+1时刻的初始种群,以利用该t+1时刻的初始种群获取所述t+1时刻的多目标参数优化结果。Step S14, based on the prediction solution of the central point of each sub-region at the time t+1, and the random value of each sub-region at the time t+1, generate the initial population at the time t+1, so as to use the t+1 time The initial population at time +1 obtains the multi-objective parameter optimization result at time t+1.
本实施例中,可以基于多区域多样性维持策略随机产生其他个体PRDM,具体来说:In this embodiment, other individual P RDMs can be randomly generated based on the multi-region diversity maintenance strategy, specifically:
多区域多样性维持策略在每个子区域产生随机解来维持种群多样性,随机解的产生是通过每个子区域的最小点和最大点,对于t时刻每个子区域的最小点lowit和最大点highit,i=1,2,…,k,具体表达式如下:The multi-region diversity maintenance strategy generates a random solution in each sub-region to maintain population diversity. The random solution is generated through the minimum point and maximum point of each sub-region. For the minimum point lowi t and maximum point highi of each sub-region at time t t , i=1,2,...,k, the specific expression is as follows:
其中,i=1,2,…,k;j=1,2,..,n;k是子区域的个数,n是决策空间的维数,对于最小点和最大点的第i个元素和/>具体定义式如下:Among them, i=1,2,...,k; j=1,2,...,n; k is the number of sub-regions, n is the dimension of the decision space, for the i-th element of the minimum point and maximum point and /> The specific definition is as follows:
其中P是第i个子区域解的个数,t时刻最小点和最大点的移动方向lowiDt和highiDt的表达式如下:Where P is the number of solutions in the i-th sub-region, and the expressions of the moving directions lowiD t and highiD t of the minimum point and maximum point at time t are as follows:
其中,i=1,2,…,k;j=1,2,..,n;k是子区域的个数,n是决策空间的维数,最小点和最大点移动方向的第i个元素和/>表达式如下:Among them, i=1,2,...,k; j=1,2,..,n; k is the number of sub-regions, n is the dimension of the decision space, the i-th direction of the minimum point and maximum point movement direction element and /> The expression is as follows:
其中i=1,2,…,k,则采用多区域多样性维持策略每个区域解的产生方式如下:Where i=1, 2,...,k, then the multi-region diversity maintenance strategy is used to generate the solutions for each region as follows:
xt+1=random(lowt+1,hight+1) (19)x t+1 = random(low t+1 ,high t+1 ) (19)
其中random(a,b)是一个产生随机数的函数,可以产生a和b的一个随机数,每个子区域产生随机解的个数等于该子区域原始解的个数,对于某些子区域出现无个体的情况,多区域多样性维持策略解的产生方式如下:Among them, random(a,b) is a function that generates random numbers, which can generate a random number of a and b. The number of random solutions generated by each sub-area is equal to the number of original solutions of the sub-area. For some sub-areas, In the case of no individual, the multi-region diversity maintenance strategy solution is generated as follows:
其中,Δi表示第i个子区域,i=1,2,…,k,k是子区域的个数,uppe饠和lower饠表示决策空间的上边界值和下边界值。Among them, Δ i represents the i-th sub-region, i=1,2,...,k,k is the number of sub-regions, uppe and lower represent the upper and lower boundary values of the decision space.
多区域多样性维持策略如图3所示。The multi-regional diversity maintenance strategy is shown in Figure 3.
举例来说,基于多区域多样性维持策略实现流程可以包括:For example, the implementation process based on multi-regional diversity maintenance strategies may include:
1 fori=1,2,…,kdo1 fori=1,2,...,kdo
2 if没有无个体区域then2 if there is no individual area then
3 根据公式15计算t时刻的最小点和最大点;3 Calculate the minimum point and maximum point at time t according to formula 15;
4 else4 else
5 根据公式20计算t时刻的最小点和最大点;5 Calculate the minimum point and maximum point at time t according to formula 20;
6 end6 end
7 根据公式17计算最小点和最大点的移动方向;7 Calculate the direction of movement of the minimum and maximum points according to formula 17;
8 根据公式18产生t+1时刻的最小点和最大点;8 Generate the minimum point and maximum point at time t+1 according to formula 18;
9 end9 end
10 根据公式19产生个体PRDM 10 Generate individual P RDM according to Equation 19
和现有技术相比,本发明实施例采用多区域中心点预测策略,根据当前时刻Pareto解集的多个子区域的中心点,实现对新环境下Pareto解集多个子区域中心点的准确预测;采用多区域多样性维持策略在下一时刻可能的解集范围随机产生其他个体,增加种群多样性,从而提高算法在新环境下的收敛速度和收敛精度。本发明的方法可以充分捕捉解集的变化情况,实现对新环境下多区域中心点的准确预测,在可能产生解的区域随机产生其他个体,增加种群多样性。Compared with the prior art, the embodiment of the present invention adopts a multi-region center point prediction strategy, and according to the center points of multiple sub-regions of the Pareto solution set at the current moment, the accurate prediction of the center points of the multiple sub-regions of the Pareto solution set under the new environment is realized; The multi-region diversity maintenance strategy is used to randomly generate other individuals in the range of possible solution sets at the next moment to increase the diversity of the population, thereby improving the convergence speed and convergence accuracy of the algorithm in the new environment. The method of the invention can fully capture the change of the solution set, realize accurate prediction of multi-area center points in the new environment, randomly generate other individuals in areas where solutions may be generated, and increase population diversity.
由于本发明专注于普遍的动态多目标优化问题,故以国际通用的测试函数来说明算法的优越性。测试函数的具体表达式见表1。Since the present invention focuses on the general dynamic multi-objective optimization problem, the superiority of the algorithm is illustrated by an internationally used test function. The specific expression of the test function is shown in Table 1.
表1测试函数Table 1 Test function
预测种群越接近环境t下的真实Pareto前沿,则算法就能更快的收敛于真实Pareto前沿。The closer the predicted population is to the real Pareto front under environment t, the faster the algorithm can converge to the real Pareto front.
为定量分析算法的收敛性和分布性两个重要指标,采用动态反向世代距离作为评价准则,表达式如下:In order to quantitatively analyze the two important indicators of convergence and distribution of the algorithm, the dynamic reverse generation distance is used as the evaluation criterion, and the expression is as follows:
其中,为时刻t下的真实Pareto前沿,Pt为时刻t下算法求得的近似Pareto前沿,d(v,Pt)表示真实Pareto前沿上的点v与近似Pareto前沿的最小欧式距离。in, is the real Pareto front at time t, P t is the approximate Pareto front obtained by the algorithm at time t, d(v, P t ) represents the minimum Euclidean distance between point v on the real Pareto front and the approximate Pareto front.
在20次独立运行中,nt=10,τt=10,随即挑选任一次实验结果,测试函数DF2、HE2的反向世代距离评价指标(IGD)变化趋势见图4a、图4b,由图中可以看出,随着环境因子的不断变化,IGD在较小值范围内波动并趋于稳定。In 20 independent runs, n t = 10, τ t = 10, any experimental result was selected at random, and the change trend of the inverse generational distance evaluation index (IGD) of the test functions DF2 and HE2 is shown in Fig. 4a and Fig. 4b. It can be seen that, with the continuous change of environmental factors, IGD fluctuates in a small range of values and tends to be stable.
图5a、图5b给出DF2在环境t=53和Fun9在t=10,17,40和下的Pareto真实前沿和算法求得的近似前沿的对比图,图中深色部分为真实Pareto前沿,浅色部分为近似Pareto前沿。由图中可以清楚的看出,近似前沿几乎和真实前沿重合,说明本专利算法可以达到较高的收敛精度。Figure 5a and Figure 5b show the comparison diagrams of the real Pareto frontier and the approximate frontier obtained by the algorithm of DF2 in the environment t=53 and Fun9 at t=10, 17, 40 and below, the dark part in the figure is the real Pareto frontier, The light colored part is the approximate Pareto front. It can be clearly seen from the figure that the approximate frontier almost coincides with the real frontier, indicating that the patented algorithm can achieve high convergence accuracy.
为定量说明本发明方法的优越性,表2给出了算法不同目标函数的反向世代距离评价指标的平均值(MIGD)值及均方差。算法历经100次环境变化。由表中可以直接看出,专利算法所得MIGD的平均值都很小,并且每个阶段相差很少,说明专利算法具有很高的收敛精度和分布广度,且具有很高的稳定性。In order to quantitatively illustrate the superiority of the method of the present invention, Table 2 provides the mean (MIGD) value and mean square error of the reverse generation distance evaluation index of different objective functions of the algorithm. The algorithm goes through 100 environment changes. It can be seen directly from the table that the average value of MIGD obtained by the patented algorithm is very small, and there is little difference in each stage, indicating that the patented algorithm has high convergence accuracy and distribution breadth, and has high stability.
表2不同目标函数MIGD的平均值及均方差Table 2 The mean value and mean square error of different objective functions MIGD
举例来说,钢铁工业作为最主要的原材料工业之一,最根本的任务,就是以最低的资源和能源消耗,以最低的环境和生态负荷,以最高的效率和劳动生产率向社会提供足够数量且质量优良的高性能钢铁产品,满足社会发展、国家安全、人民生活的需求。冷轧是钢铁生产中的一个重要环节,工艺质量参数多。这些工艺参数的高精度设定与多目标精准控制又是保证产品精度和质量的关键。冷轧非稳态变速过程正处于板材各项轧制条件剧烈变化的阶段,其各项工艺质量参数也会随之改变,所以对这一过程质量参数的优化是典型的动态多目标优化问题。针对不同工况及质量要求,指定不同的多个工艺质量参数,并通过本发明的方法对工艺质量参数进行动态优化,使轧制非稳态变速过程一直处于最优状态,最终可提高此动态过程的控制精度,提高产品质量。For example, as one of the most important raw material industries, the most fundamental task of the iron and steel industry is to provide society with sufficient quantities and High-quality high-performance steel products meet the needs of social development, national security, and people's lives. Cold rolling is an important link in steel production, and there are many process quality parameters. The high-precision setting and multi-objective precise control of these process parameters are the key to ensure product precision and quality. The cold-rolling unsteady-state variable-speed process is in the stage of dramatic changes in the rolling conditions of the plate, and its process quality parameters will also change accordingly. Therefore, the optimization of the process quality parameters is a typical dynamic multi-objective optimization problem. According to different working conditions and quality requirements, different process quality parameters are specified, and the process quality parameters are dynamically optimized through the method of the present invention, so that the rolling unsteady-state speed change process is always in the optimal state, and finally this dynamic can be improved. Process control accuracy, improve product quality.
此外,本发明的应用不但可以应用于上述工业工程,在其他领域也有广泛的应用,如在航空运营中受到恶劣天气、飞机故障、顾客随机意外等影响,航空调度需要考虑旅客滞留时间、运营成本等多个动态因素的影响而重新优化;在生产调度中,订单的先后顺序改变,生产设备的突然故障等因素造成原有计划的改变,调度系统就要动态的调整生产策略,以最优的方式完成生产任务。这些普遍存在于现实世界的动态多目标优化问题迫切需要合适的算法来提高对该问题的求解能力。In addition, the application of the present invention can not only be applied to the above-mentioned industrial engineering, but also has a wide range of applications in other fields. For example, in aviation operations, affected by bad weather, aircraft failures, random accidents of customers, etc., aviation scheduling needs to consider passenger retention time and operating costs In the production scheduling, the sequence of orders changes, the sudden failure of production equipment and other factors cause the original plan to change, and the scheduling system must dynamically adjust the production strategy to optimize the production strategy. way to complete production tasks. These dynamic multi-objective optimization problems that commonly exist in the real world urgently need suitable algorithms to improve the ability to solve the problems.
需要注意的是,上述附图仅是根据本发明示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。It should be noted that the above-mentioned figures are only schematic illustrations of the processing included in the method according to the exemplary embodiment of the present invention, and are not intended to be limiting. It is easy to understand that the processes shown in the above figures do not imply or limit the chronological order of these processes. In addition, it is also easy to understand that these processes may be executed synchronously or asynchronously in multiple modules, for example.
进一步的,参考图7所示,本示例的实施方式中还提供了一种基于动态多目标进化的多目标参数优化系统20,包括:进化步长计算模块201、中心点预测解获取模块202、随机值计算模块203和优化结果生成模块204。其中:Further, as shown in FIG. 7 , the implementation of this example also provides a multi-objective parameter optimization system 20 based on dynamic multi-objective evolution, including: an evolution step calculation module 201, a central point prediction solution acquisition module 202, A random value calculation module 203 and an optimization result generation module 204 . in:
所述进化步长计算模块201可以用于获取待优化对象在t时刻的Pareto解集,以及t-1时刻的Pareto解集,以根据t时刻的Pareto解集以及t-1时刻的Pareto解集中各子区域的中心点位置获取t时刻的进化步长;其中Pareto解集中包括多个子区域;t≥1。The evolution step calculation module 201 can be used to obtain the Pareto solution set of the object to be optimized at time t and the Pareto solution set at time t-1, so as to obtain the Pareto solution set at time t and the Pareto solution set at time t-1 The position of the center point of each sub-region obtains the evolution step at time t; the Pareto solution set includes multiple sub-regions; t≥1.
所述中心点预测解获取模块202可以用于根据所述t时刻的进化步长和所述t时刻的Pareto解集中各子区域的中心点的位置,获取t+1时刻各所述子区域的中心点的预测解。The central point prediction solution acquisition module 202 can be used to obtain the position of the central point of each sub-region in the Pareto solution set at the time t according to the evolution step at the time t and the position of the center point of each sub-region in the Pareto solution set at the time t+1. The predicted solution for the center point.
所述随机值计算模块203可以用于根据所述t时刻各所述子区域的最大点和最小点,利用预设随机函数获取t+1时刻各所述子区域的随机值;其中,各所述子区域的所述随机值的数量与该子区域的原始解数量相关。The random value calculation module 203 can be used to obtain the random value of each sub-region at time t+1 according to the maximum point and minimum point of each sub-region at time t, using a preset random function; wherein, each The number of random values in the sub-area is related to the number of original solutions in the sub-area.
所述优化结果生成模块204可以用于基于所述t+1时刻各所述子区域的中心点的预测解,和t+1时刻各所述子区域的随机值生成所述t+1时刻的初始种群,以利用该t+1时刻的初始种群获取所述t+1时刻的多目标参数优化结果。The optimization result generation module 204 may be configured to generate the predicted solution at the time t+1 based on the predicted solution of the center point of each sub-region at the time t+1, and the random value of each sub-region at the time t+1. The initial population is used to obtain the multi-objective parameter optimization result at the time t+1 by using the initial population at the time t+1.
上述基于动态多目标进化的多目标参数优化系统20中各模块的具体细节已经在对应的基于动态多目标进化的多目标参数优化方法中进行了详细的描述,因此此处不再赘述。The specific details of each module in the above-mentioned dynamic multi-objective evolution-based multi-objective parameter optimization system 20 have been described in detail in the corresponding dynamic multi-objective evolution-based multi-objective parameter optimization method, so details will not be repeated here.
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。It should be noted that although several modules or units of the device for action execution are mentioned in the above detailed description, this division is not mandatory. Actually, according to the embodiment of the present disclosure, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one module or unit described above can be further divided to be embodied by a plurality of modules or units.
在本公开的示例性实施例中,还提供了一种能够实现上述方法的电子设备。In an exemplary embodiment of the present disclosure, an electronic device capable of implementing the above method is also provided.
所属技术领域的技术人员能够理解,本发明的各个方面可以实现为系统、方法或程序产品。因此,本发明的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。Those skilled in the art can understand that various aspects of the present invention can be implemented as systems, methods or program products. Therefore, various aspects of the present invention can be embodied in the following forms, that is: a complete hardware implementation, a complete software implementation (including firmware, microcode, etc.), or a combination of hardware and software implementations, which can be collectively referred to herein as "circuit", "module" or "system".
下面参照图8来描述根据本发明的这种实施方式的电子设备600。图8显示的电子设备600仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。An electronic device 600 according to this embodiment of the present invention is described below with reference to FIG. 8 . The electronic device 600 shown in FIG. 8 is only an example, and should not limit the functions and scope of use of this embodiment of the present invention.
如图8所示,电子设备600以通用计算设备的形式表现。电子设备600的组件可以包括但不限于:上述至少一个处理单元610、上述至少一个存储单元620、连接不同系统组件(包括存储单元620和处理单元610)的总线630、显示单元640。As shown in FIG. 8, electronic device 600 takes the form of a general-purpose computing device. The components of the electronic device 600 may include, but are not limited to: at least one processing unit 610, at least one storage unit 620, a bus 630 connecting different system components (including the storage unit 620 and the processing unit 610), and a display unit 640.
其中,所述存储单元存储有程序代码,所述程序代码可以被所述处理单元610执行,使得所述处理单元610执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。Wherein, the storage unit stores program codes, and the program codes can be executed by the processing unit 610, so that the processing unit 610 executes various exemplary methods according to the present invention described in the "Exemplary Methods" section of this specification. Implementation steps.
存储单元620可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)6201和/或高速缓存存储单元6202,还可以进一步包括只读存储单元(ROM)6203。The storage unit 620 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 6201 and/or a cache storage unit 6202 , and may further include a read-only storage unit (ROM) 6203 .
存储单元620还可以包括具有一组(至少一个)程序模块6205的程序/实用工具6204,这样的程序模块6205包括但不限于:操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。Storage unit 620 may also include a program/utility 6204 having a set (at least one) of program modules 6205, such program modules 6205 including but not limited to: an operating system, one or more application programs, other program modules, and program data, Implementations of networked environments may be included in each or some combination of these examples.
总线630可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。Bus 630 may represent one or more of several types of bus structures, including a memory cell bus or memory cell controller, a peripheral bus, an accelerated graphics port, a processing unit, or a local area using any of a variety of bus structures. bus.
电子设备600也可以与一个或多个外部设备700(例如键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备600交互的设备通信,和/或与使得该电子设备600能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口650进行。并且,电子设备600还可以通过网络适配器660与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器660通过总线630与电子设备600的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备600使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。The electronic device 600 can also communicate with one or more external devices 700 (such as keyboards, pointing devices, Bluetooth devices, etc.), and can also communicate with one or more devices that enable the user to interact with the electronic device 600, and/or communicate with Any device (eg, router, modem, etc.) that enables the electronic device 600 to communicate with one or more other computing devices. Such communication may occur through input/output (I/O) interface 650 . Moreover, the electronic device 600 can also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN) and/or a public network such as the Internet) through the network adapter 660 . As shown, the network adapter 660 communicates with other modules of the electronic device 600 through the bus 630 . It should be appreciated that although not shown, other hardware and/or software modules may be used in conjunction with electronic device 600, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。Through the description of the above implementations, those skilled in the art can easily understand that the example implementations described here can be implemented by software, or by combining software with necessary hardware. Therefore, the technical solutions according to the embodiments of the present disclosure can be embodied in the form of software products, and the software products can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to make a computing device (which may be a personal computer, a server, a terminal device, or a network device, etc.) execute the method according to the embodiments of the present disclosure.
在本公开的示例性实施例中,还提供了一种计算机可读存储介质,其上存储有能够实现本说明书上述方法的程序产品。在一些可能的实施方式中,本发明的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本发明各种示例性实施方式的步骤。In an exemplary embodiment of the present disclosure, there is also provided a computer-readable storage medium on which a program product capable of implementing the above-mentioned method in this specification is stored. In some possible implementations, various aspects of the present invention can also be implemented in the form of a program product, which includes program code, and when the program product is run on a terminal device, the program code is used to make the The terminal device executes the steps according to various exemplary embodiments of the present invention described in the "Exemplary Method" section above in this specification.
参考图9所示,描述了根据本发明的实施方式的用于实现上述方法的程序产品800,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本发明的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。As shown in FIG. 9 , a program product 800 for implementing the above method according to an embodiment of the present invention is described, which can adopt a portable compact disk read-only memory (CD-ROM) and include program codes, and can be used in terminal equipment, For example running on a personal computer. However, the program product of the present invention is not limited thereto. In this document, a readable storage medium may be any tangible medium containing or storing a program, and the program may be used by or in combination with an instruction execution system, apparatus or device.
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。The program product may reside on any combination of one or more readable media. The readable medium may be a readable signal medium or a readable storage medium. The readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。A computer readable signal medium may include a data signal carrying readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A readable signal medium may also be any readable medium other than a readable storage medium that can transmit, propagate, or transport a program for use by or in conjunction with an instruction execution system, apparatus, or device.
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。Program code embodied on a readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
可以以一种或多种程序设计语言的任意组合来编写用于执行本发明操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。Program code for carrying out the operations of the present invention may be written in any combination of one or more programming languages, including object-oriented programming languages—such as Java, C++, etc., as well as conventional procedural programming languages. Programming language - such as "C" or a similar programming language. The program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute. In cases involving a remote computing device, the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device (for example, using an Internet service provider). business to connect via the Internet).
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。Other embodiments of the present disclosure will be readily apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. This application is intended to cover any modification, use or adaptation of the present disclosure, and these modifications, uses or adaptations follow the general principles of the present disclosure and include common knowledge or conventional technical means in the technical field not disclosed in the present disclosure . The specification and examples are to be considered exemplary only, with the true scope and spirit of the disclosure indicated by the appended claims.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010297673.3A CN111523218B (en) | 2020-04-16 | 2020-04-16 | Multi-target parameter optimization method based on dynamic multi-target evolution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010297673.3A CN111523218B (en) | 2020-04-16 | 2020-04-16 | Multi-target parameter optimization method based on dynamic multi-target evolution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111523218A CN111523218A (en) | 2020-08-11 |
CN111523218B true CN111523218B (en) | 2023-08-11 |
Family
ID=71910633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010297673.3A Active CN111523218B (en) | 2020-04-16 | 2020-04-16 | Multi-target parameter optimization method based on dynamic multi-target evolution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111523218B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112595324B (en) * | 2020-12-10 | 2022-03-29 | 安徽工程大学 | Optimal node wheel type mobile robot path planning method under optimal energy consumption |
CN113051861B (en) * | 2021-04-19 | 2022-06-14 | 电子科技大学 | Optimization method of test vector set for digital-analog hybrid circuit based on reverse generation distance |
CN113313330B (en) * | 2021-07-28 | 2021-11-16 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Electromagnetic environment parameter interval prediction method, device and computer equipment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203389946U (en) * | 2013-08-06 | 2014-01-15 | 燕山大学 | High-precision strip elongation measuring system realized on basis of incremental encoders |
CN104156945A (en) * | 2014-07-16 | 2014-11-19 | 西安电子科技大学 | Method for segmenting gray scale image based on multi-objective particle swarm optimization algorithm |
CN204425272U (en) * | 2015-01-05 | 2015-06-24 | 燕山大学 | A kind of solar cell properties testing equipment |
CN107516141A (en) * | 2017-06-24 | 2017-12-26 | 燕山大学 | A Dynamic Multi-objective Evolutionary Algorithm Based on Support Vector Machine Prediction Strategy |
CN109066710A (en) * | 2018-07-13 | 2018-12-21 | 国网安徽省电力有限公司滁州供电公司 | A kind of multi-objective reactive optimization method, apparatus, computer equipment and storage medium |
CN110097088A (en) * | 2019-04-08 | 2019-08-06 | 燕山大学 | A kind of dynamic multi-objective evolvement method based on transfer learning Yu particular point strategy |
CN110126728A (en) * | 2019-05-29 | 2019-08-16 | 燕山大学 | An early warning device for nuclear power equipment transportation acceleration |
CN110380420A (en) * | 2019-07-23 | 2019-10-25 | 广西大学 | A kind of distributed multiple target optimization algorithm of quick self-adapted analytic expression safety |
CN110544268A (en) * | 2019-07-29 | 2019-12-06 | 燕山大学 | A multi-target tracking method based on structured light and SiamMask network |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130218789A1 (en) * | 2012-02-21 | 2013-08-22 | University Of South Carolina | Systematic Approach to Enforcing Contiguity Constraint in Trajectory-based Methods for Combinatorial Optimization |
-
2020
- 2020-04-16 CN CN202010297673.3A patent/CN111523218B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203389946U (en) * | 2013-08-06 | 2014-01-15 | 燕山大学 | High-precision strip elongation measuring system realized on basis of incremental encoders |
CN104156945A (en) * | 2014-07-16 | 2014-11-19 | 西安电子科技大学 | Method for segmenting gray scale image based on multi-objective particle swarm optimization algorithm |
CN204425272U (en) * | 2015-01-05 | 2015-06-24 | 燕山大学 | A kind of solar cell properties testing equipment |
CN107516141A (en) * | 2017-06-24 | 2017-12-26 | 燕山大学 | A Dynamic Multi-objective Evolutionary Algorithm Based on Support Vector Machine Prediction Strategy |
CN109066710A (en) * | 2018-07-13 | 2018-12-21 | 国网安徽省电力有限公司滁州供电公司 | A kind of multi-objective reactive optimization method, apparatus, computer equipment and storage medium |
CN110097088A (en) * | 2019-04-08 | 2019-08-06 | 燕山大学 | A kind of dynamic multi-objective evolvement method based on transfer learning Yu particular point strategy |
CN110126728A (en) * | 2019-05-29 | 2019-08-16 | 燕山大学 | An early warning device for nuclear power equipment transportation acceleration |
CN110380420A (en) * | 2019-07-23 | 2019-10-25 | 广西大学 | A kind of distributed multiple target optimization algorithm of quick self-adapted analytic expression safety |
CN110544268A (en) * | 2019-07-29 | 2019-12-06 | 燕山大学 | A multi-target tracking method based on structured light and SiamMask network |
Non-Patent Citations (1)
Title |
---|
基于遗传算法的混合蚁群算法的冷连轧轧制规程优化设计;杨景明;张青;车海军;张林浩;;钢铁研究学报(第02期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111523218A (en) | 2020-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111523218B (en) | Multi-target parameter optimization method based on dynamic multi-target evolution | |
Deng et al. | Reinforcement learning for industrial process control: A case study in flatness control in steel industry | |
Xu et al. | Real-time road traffic state prediction based on kernel-KNN | |
Luo et al. | Short-term traffic flow prediction based on least square support vector machine with hybrid optimization algorithm | |
US10678196B1 (en) | Soft sensing of a nonlinear and multimode processes based on semi-supervised weighted Gaussian regression | |
Afshin Mansouri et al. | Minimizing energy consumption and makespan in a two-machine flowshop scheduling problem | |
CN115470704B (en) | A dynamic multi-objective optimization method, device, equipment and computer-readable medium | |
Wu et al. | Computational method for optimal machine scheduling problem with maintenance and production | |
CN107516141A (en) | A Dynamic Multi-objective Evolutionary Algorithm Based on Support Vector Machine Prediction Strategy | |
Duan et al. | A Multimode Dynamic Short‐Term Traffic Flow Grey Prediction Model of High‐Dimension Tensors | |
CN115097737B (en) | Multi-level regulation and control method capable of being re-entered into manufacturing system | |
Xiao et al. | An effective simultaneous approach with variable time nodes for dynamic optimization problems | |
Santander et al. | Robust economic model predictive control: disturbance rejection, robustness and periodic operation in chemical reactors | |
Li et al. | Multi-strategy improved sparrow search algorithm for job shop scheduling problem | |
Schulze et al. | Fast computation of binary search tree for PWA functions representation using intersection classification | |
Li et al. | A new grey prediction model for forecasting the automobiles ownership in China | |
Singh et al. | Evolution of Smart Home Energy Management System Using Internet of Things and Machine Learning Algorithms. | |
Bousbia-Salah et al. | Dynamic real-time optimization of a batch polymerization process | |
Maaruf et al. | Adaptive control of continuous polymerization reactor | |
JP2000222377A (en) | Processor that searches for optimal value of cost function using dynamics | |
Yang et al. | Probabilistic modeling and dynamic optimization for performance improvement and risk management of plant-wide operation | |
Mohammadi et al. | A Machine Learning Model for Predicting the Shear Resistance of RC Beams Strengthened with EBR-CFRP Systems | |
Ganesan et al. | Review on recent implementations of multiobjective and multilevel optimization in sustainable energy economics | |
Efrosinin et al. | Simulation-Based Optimization for Resource Allocation Problem in Finite-Source Queue with Heterogeneous Repair Facility | |
Wang et al. | Model checking optimal infinite-horizon control for probabilistic gene regulatory networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |