CN111475989B - 一种基于油井示功图获取原油含水量的方法 - Google Patents

一种基于油井示功图获取原油含水量的方法 Download PDF

Info

Publication number
CN111475989B
CN111475989B CN202010235534.8A CN202010235534A CN111475989B CN 111475989 B CN111475989 B CN 111475989B CN 202010235534 A CN202010235534 A CN 202010235534A CN 111475989 B CN111475989 B CN 111475989B
Authority
CN
China
Prior art keywords
sucker rod
oil
suspension point
stroke
load value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010235534.8A
Other languages
English (en)
Other versions
CN111475989A (zh
Inventor
刘涛
甘庆明
陆梅
刘静
刘天宇
姚洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN202010235534.8A priority Critical patent/CN111475989B/zh
Publication of CN111475989A publication Critical patent/CN111475989A/zh
Application granted granted Critical
Publication of CN111475989B publication Critical patent/CN111475989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Earth Drilling (AREA)

Abstract

本发明属于油田采油技术领域,具体涉及一种基于油井示功图获取原油含水量的方法。本发明通过在在示功图中获取数据、获取悬点静载荷值、获取悬点惯性载荷值、获取悬点振动载荷值、获取摩擦载荷值、计算油井含水率和原油含水率监控七个步骤,利用现有数字化油井工况诊断技术,通过含水量公式,实时计算油井含水量,方便的进行油井含水量的计算和监控,有效降低了现场工作人员劳动强度和油田现场人力、物力、财力的投入,达到了油田油井产量波动的精细监控。

Description

一种基于油井示功图获取原油含水量的方法
技术领域
本发明属于油田采油技术领域,具体涉及一种基于油井示功图获取原油含水量的方法。
背景技术
目前,在世界上的所有油田的采油井中,油井产出液中均含有一定比例的采出水,各个油田为了实时监测油井的采出水量,进而精确地掌握油井的产油量,则必须定期测定油井产出液的含水量,由于地层中液体的含水量是变化的,因此对于油井含水量的监控是油田日常生产中的一项重要工作。通常正常生产时,油田油井的含水每10天需要进行进行测量,部分含水波动大的井监测周期更短。通常在各个油田中,油井含水的测量工作需要通过油井井口取样、样品运输和中心化验室进行化验等过程才能获得,监测结果往往比较滞后,不能及时准确的掌握油井产量。同时,由于各油田油井数量巨大,且区块分散,以目前的监测手段,就需要建设更大量的化验中心和投入更多的人力,同时也极大的增加了员工取样、送样和监测含水的工作量和强度,对现场正常生产管理造成很大的困难。
同时,目前油田数字化建设较为完备,油井工况系统涵盖了大部分的油井,这就使得油井每10分钟就能采集一张示功图,每天采集144张示功图,上传于油井工况系统服务器,这也就为应用示功图实时计算油井含水量提供了基础资料保证。
发明内容
本发明提供了一种基于油井示功图获取原油含水量的方法,目的在于提供一种利用现有数字化油井工况诊断技术,在降低油田现场人力、物力、财力投入的同时准确、及时获取原油含水量的方法。
为实现上述目的,本发明采用的技术方案是:
一种基于油井示功图获取原油含水量的方法,包括如下步骤
步骤一:在示功图中获取数据
在油井工况系统中获取示功图中的冲程、冲次数据值及油井静态参数;
步骤二:获取悬点静载荷值
悬点静载荷分为上行程悬点静载荷和下行程悬点静载荷,根据步骤一获取的参数,计算得出上行程悬点静载荷值和下行程悬点静载荷值;
步骤三:获取悬点惯性载荷值
悬点惯性惯性载荷包括上冲程悬点最大惯性载荷和下冲程悬点最大惯性载荷,根据步骤一获取的参数,计算得出上冲程悬点最大惯性载荷值和下冲程悬点最大惯性载荷值;
步骤四:获取悬点振动载荷值
步骤五:获取摩擦载荷值
计算上冲程摩擦载荷值和下冲程摩擦载荷值;
步骤六:计算油井含水率
根据步骤二、步骤三、步骤四和步骤五得到的悬点静载荷值、悬点惯性载荷值、悬点振动载荷值和摩擦载荷值,计算得到油井含水率;
步骤七:原油含水率监控
根据步骤六计算得到的油井含水率,对油井中原油含水率进行监控,用于后续生产性调整注水计划。
所述的步骤二计算上行程悬点静载荷值和下行程悬点静载荷值时,采用的步骤一获取的油井静态参数包括每米抽油杆在液体中的重力、混合液密度、原油密度、底层水水密度、原油含水量、泵深、动液面、柱塞面积、油管压力和套管压力油井静态参数。
所述的步骤二中的获取悬点静载荷值中的上行程悬点静载荷值和下行程悬点静载荷值是采用如下公式进行计算得到的
P静上=9.81qrlL+ApLfρ+106(pt-pc)Ap (1)
P静下=9.81qrlL (2)
ρ=ρo(1-fw)+ρwfw (3)
其中,
P静上——上行程悬点静载荷,kN;
P静下——下行程悬点静载荷,kN;
qrl——每米抽油杆在液体中的重力,组合抽油杆分段计算,kgf/m;
ρ——混合液密度,kg/m3
ρo——原油密度,kg/m3
ρw——地层水水密度,kg/m3
fw——原油含水量;
L——泵深,m;
Lf——动液面,m;
Ap——柱塞面积,m2
pt——油管压力,MPa;
pc——套管压力,MPa。
所述的步骤三计算上冲程悬点最大惯性载荷值和下冲程悬点最大惯性载荷值是采用步骤一获取的冲程、冲次及每米抽油杆在空气中的重力、油管过流断面变化引起液柱加速度变化的系数、油管的流通断面面积和平均抽油杆截面积油井静态参数进行计算的。
所述的步骤三中的上冲程悬点最大惯性载荷值和下冲程悬点最大惯性载荷值采用如下公式计算得到
Figure BDA0002430837440000041
Figure BDA0002430837440000042
其中,
P惯上——上冲程悬点最大惯性载荷,kN;
P惯下——下冲程悬点最大惯性载荷,kN;
S——冲程,m;
N——冲次,min-1
qr——每米抽油杆在空气中的重力,kgf/m;
ε——考虑油管过流断面变化引起液柱加速度变化的系数;
Atf——油管的流通断面面积,m2
Ar——平均抽油杆截面积,组合抽油杆柱取等效面,
Figure BDA0002430837440000043
m2
所述的步骤四中的悬点振动载荷值是采用如下公式得到
Figure BDA0002430837440000051
式中,
P——在抽油杆顶端产生的振动载荷,kN;
k——常数,其值取决于
Figure BDA0002430837440000052
Figure BDA0002430837440000053
值为0~1时,k=0;当
Figure BDA0002430837440000054
值为1~3时k=1,为当
Figure BDA0002430837440000055
值为3~5时k=2;当
Figure BDA0002430837440000056
值为5~7时k=3;
E——油管、抽油杆钢材弹性模量,2.02×108kN/m2
λr——抽油杆变形,m;
λ——油管和抽油杆总变形,m;
υu,d——静变形结束时的悬点速度,υu是上冲程,υd为下冲程,m/s;
C——抽油机游梁前臂长,m;
e——自然对数底数;
c——抽油杆内声波传播速度;其中:单级杆柱c=5000,二级杆柱c=5400,三级杆柱c=5800,m/s;
α——曲柄转角,度;
αu,d——静变形结束时的曲柄转角,度;
所述的步骤五中摩擦载荷由五部分组成:抽油杆与油管的摩擦力F1、柱塞与泵筒之间的半干摩擦力F2、液柱与抽油杆之间的摩擦力F3、液柱与油管之间的摩擦力F4及液柱通过游动阀的摩擦阻力F5,通过F1、F2、F3、F4和F5,得到计算上冲程摩擦载荷值和下冲程摩擦载荷值。
所述的步骤五中的上冲程摩擦载荷值和下冲程摩擦载荷值是通过如下方法得到的
抽油杆与油管的摩擦力F1=1.5%G;
F2=1717N,当抽油泵径不大于70mm时;
Figure BDA0002430837440000061
F4=1.3F3
F5≈0
F摩上=F1+F2+F4
F摩下=F1+F2+F3
其中,
m——油管内径与抽油杆直径之比值;
G——抽油杆重量,kN
μ——混合液粘度,mPa.m。
所述的步骤六中计算油井含水率是采用如下方式得到的:
步骤二中的获取悬点静载荷值中的上行程悬点静载荷值和下行程悬点静载荷值是采用如下公式进行计算得到的
P静上=9.81qrlL+ApLfρ+106(pt-pc)Ap (1)
P静下=9.81qrlL (2)
ρ=ρo(1-fw)+ρwfw (3)
其中,
P静上——上行程悬点静载荷,kN;
P静下——下行程悬点静载荷,kN;
qrl——每米抽油杆在液体中的重力,组合抽油杆分段计算,kgf/m;
ρ——混合液密度,kg/m3
ρo——原油密度,kg/m3
ρw——地层水水密度,kg/m3
fw——原油含水量;
L——泵深,m;
Lf——动液面,m;
Ap——柱塞面积,m2
pt——油管压力,MPa;
pc——套管压力,MPa。
所述的步骤三中的上冲程悬点最大惯性载荷值和下冲程悬点最大惯性载荷值采用如下公式计算得到
Figure BDA0002430837440000071
Figure BDA0002430837440000072
其中,
P惯上——上冲程悬点最大惯性载荷,kN;
P惯下——下冲程悬点最大惯性载荷,kN;
S——冲程,m;
N——冲次,min-1
qr——每米抽油杆在空气中的重力,kgf/m;
ε——考虑油管过流断面变化引起液柱加速度变化的系数;
Atf——油管的流通断面面积,m2
Ar——平均抽油杆截面积,组合抽油杆柱取等效面,
Figure BDA0002430837440000081
m2
所述的步骤四中的悬点振动载荷值是采用如下公式得到
Figure BDA0002430837440000082
式中,
P——在抽油杆顶端产生的振动载荷,kN;
k——常数,其值取决于
Figure BDA0002430837440000083
Figure BDA0002430837440000084
值为0~1时,k=0;当
Figure BDA0002430837440000085
值为1~3时k=1,为当
Figure BDA0002430837440000086
值为3~5时k=2;当
Figure BDA0002430837440000087
值为5~7时k=3;
E——油管、抽油杆钢材弹性模量,2.02×108kN/m2
λr——抽油杆变形,m;
λ——油管和抽油杆总变形,m;
υu,d——静变形结束时的悬点速度,υu是上冲程,υd为下冲程,m/s;
C——抽油机游梁前臂长,m;
e——自然对数底数;
c——抽油杆内声波传播速度,单级杆柱c=5000,二级杆柱c=5400,三级杆柱c=5800,m/s;
α——曲柄转角,度;
αu,d——静变形结束时的曲柄转角,度;
所述的步骤五中的获取摩擦载荷值是通过如下方法得到的抽油杆与油管的摩擦力F1=1.5%G;
F2=1717N,当抽油泵径不大于70mm时;
Figure BDA0002430837440000091
F4=1.3F3
F5≈0
F摩上=F1+F2+F4
F摩下=F1+F2+F3
其中,
m——油管内径与抽油杆直径之比值;
G——抽油杆重量,kN;
μ——混合液粘度,mPa.m,
根据式(1)~式(7),可得出式(8)和式(9)
Pmax=P静上+P惯上+P振上+F摩上 (8)
Pmin=P静下-P惯下-P振下-F摩下 (9)
式(8)减去式(9)得出式(10):
Figure BDA0002430837440000092
Figure BDA0002430837440000101
对式(10)进行换算计算后,得出下列混合液密度式(11);
Figure BDA0002430837440000102
根据式(3),可以得出含水量fw的计算公式为:
Figure BDA0002430837440000103
用油井已有示功图的载荷、冲程、冲次和相关油井静态参数带入上式,得出油井的含水率;
其中,
Pmax——抽油机最大载荷,kN;
Pmin——抽油机最小载荷,kN;
ΔP——抽油机最大最小载荷差,kN。
有益效果:
本发明通过在在示功图中获取数据、获取悬点静载荷值、获取悬点惯性载荷值、获取悬点振动载荷值、获取摩擦载荷值、计算油井含水率和原油含水率监控七个步骤,应用数字化工况系统中示功图测试数据和油井静态参数得到油井含水量。能够每10分钟获取一次油井含水量,实时监控油井的产油量的变化,避免了传统油井含水测量的滞后性,为油田现场员工提供了一种快捷、方便的油井含水量求取手段。同时,本发明不但和油井工况系统有效结合,更减少了油田现场人力、物力和财力的投入,同样避免了现场工作者的油井取样、送样和化验分析等工作量;本发明能够及时反映油井生产状况,及时调整后续生产性注水的计划,有利于提高产量。
上述说明仅是本发明技术方案的概述,为了能够更清楚的了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为抽油机理论示功图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
根据图1所示的一种基于油井示功图获取原油含水量的方法,包括如下步骤
步骤一:在示功图中获取数据
在油井工况系统中获取示功图中的冲程、冲次数据值及油井静态参数;
步骤二:获取悬点静载荷值
悬点静载荷分为上行程悬点静载荷和下行程悬点静载荷,根据步骤一获取的每米抽油杆在液体中的重力、混合液密度、原油密度、地层水水密度、原油含水量、泵深、动液面、柱塞面积、油管压力和套管压力油井静态参数,得出上行程悬点静载荷值和下行程悬点静载荷值;具体计算方法如下
P静上=9.81qrlL+ApLfρ+106(pt-pc)Ap (1)
P静下=9.81qrlL (2)
ρ=ρo(1-fw)+ρwfw (3)
其中,
P静上——上行程悬点静载荷,kN;
P静下——下行程悬点静载荷,kN;
qrl——每米抽油杆在液体中的重力,组合抽油杆分段计算,kgf/m;
ρ——混合液密度,kg/m3
ρo——原油密度,kg/m3
ρw——地层水水密度,kg/m3
fw——原油含水量;
L——泵深,m;
Lf——动液面,m;
Ap——柱塞面积,m2
pt——油管压力,MPa;
pc——套管压力,MPa。
步骤三:获取悬点惯性载荷值
悬点惯性惯性载荷包括上冲程悬点最大惯性载荷和下冲程悬点最大惯性载荷,根据步骤一获取的冲程、冲次、每米抽油杆在空气中的重力、油管过流断面变化引起液柱加速度变化的系数、油管的流通断面面积和平均抽油杆截面积油井静态参数,得出上冲程悬点最大惯性载荷值和下冲程悬点最大惯性载荷值;具体计算方法如下
Figure BDA0002430837440000131
Figure BDA0002430837440000132
其中,
P惯上——上冲程悬点最大惯性载荷,kN;
P惯下——下冲程悬点最大惯性载荷,kN;
S——冲程,m;
N——冲次,min-1
qr——每米抽油杆在空气中的重力,kgf/m;
ε——考虑油管过流断面变化引起液柱加速度变化的系数;
Atf——油管的流通断面面积,m2
Ar——平均抽油杆截面积,组合抽油杆柱取等效面,
Figure BDA0002430837440000133
m2
步骤四:获取悬点振动载荷值
悬点振动载荷值采用如下公式得到
Figure BDA0002430837440000141
式中,
P——在抽油杆顶端产生的振动载荷,kN;
k——常数,其值取决于
Figure BDA0002430837440000142
Figure BDA0002430837440000143
值为0~1时,k=0;当
Figure BDA0002430837440000144
值为1~3时k=1,为当
Figure BDA0002430837440000145
值为3~5时k=2;当
Figure BDA0002430837440000146
值为5~7时k=3;
E——油管、抽油杆钢材弹性模量,2.02×108kN/m2
λr——抽油杆变形,m;
λ——油管和抽油杆总变形,m;
υu,d——静变形结束时的悬点速度,υu是上冲程,υd为下冲程,m/s;
C——抽油机游梁前臂长,m;
e——自然对数底数;
c——抽油杆内声波传播速度;其中:单级杆柱c=5000,二级杆柱c=5400,三级杆柱c=5800,m/s;
α——曲柄转角,度;
αu,d——静变形结束时的曲柄转角,度;
步骤五:获取摩擦载荷值
摩擦载荷有五部分组成:抽油杆与油管的摩擦力F1、柱塞与泵筒之间的半干摩擦力F2、液柱与抽油杆之间的摩擦力F3、液柱与油管之间的摩擦力F4及液柱通过游动阀的摩擦阻力F5,通过F1、F2、F3、F4和F5,计算得到上冲程摩擦载荷值和下冲程摩擦载荷值;具体是通过如下方法得到的
抽油杆与油管的摩擦力F1=1.5%G;
F2=1717N,当抽油泵径不大于70mm时;
Figure BDA0002430837440000151
F4=1.3F3
F5≈0
F摩上=F1+F2+F4
F摩下=F1+F2+F3
其中,
m——油管内径与抽油杆直径之比值;
G——抽油杆重量,kN;
μ——混合液粘度,mPa.m,
步骤六:计算油井含水率
根据步骤二、步骤三、步骤四和步骤五得到的悬点静载荷值、悬点惯性载荷值、悬点振动载荷值和摩擦载荷值,计算得到油井含水率;具体如下
根据式(1)~式(7),可得出式(8)和式(9)
Pmax=P静上+P惯上+P振上+F摩上 (8)
Pmin=P静下-P惯下-P振下-F摩下 (9)
式(8)减去式(9)得出式(10):
Figure BDA0002430837440000161
对式(10)进行换算计算后,得出下列混合液密度式(11);
Figure BDA0002430837440000162
根据式(3),可以得出含水量fw的计算公式为:
Figure BDA0002430837440000163
用油井已有示功图的载荷、冲程、冲次和相关油井静态参数带入上式,得出油井的含水率;
其中,
Pmax——抽油机最大载荷,kN;
Pmin——抽油机最小载荷,kN;
ΔP——抽油机最大最小载荷差,kN;
步骤七:原油含水率监控
根据步骤六计算得到的油井含水率,对油井中原油含水率进行监控,用于后续生产性调整注水计划。
有杆泵在运行时,抽油机驴头悬点上作用的载荷有四类:静载荷、惯性载荷、振动载荷和摩擦载荷。
悬点静载荷包括抽油杆自重、柱塞上部液柱形成的静液柱载荷。
悬点惯性包括抽油杆柱和油管内的流体做不等速运动而产生的抽油杆和液柱的动载荷。
实际的抽油杆柱和液柱,由于它们长度很大,具有相当的弹性和可压缩性,而抽油杆柱做周期性地上、地下运动和液柱载荷周期性地作用于下端,使抽油杆柱产生弹性振动,同时液柱下端周期性地被柱塞推动而使液柱也振动,如果油管下部未锚定,在液柱载荷周期性地作用下,管柱也要产生振动。这三组弹性体的震动互相影响,加上阻尼作用,使得整个系统的振动作用相当复杂,因此,要准确地计算弹性振动载荷是很困难的,本发明采用了一种简化的计算方法。该方法是由抽油杆柱的纵向振动方程,忽略了强迫振动项。
Figure BDA0002430837440000171
Figure BDA0002430837440000172
摩擦载荷一般由5部分组成:抽油杆与油管的摩擦力F1,根据矿场经验,在直井内通常不超过抽油杆重力的1.5%;柱塞与泵筒之间的半干摩擦力F2,根据矿场经验,抽油泵径不大于70mm时,半干摩擦力不超过1717N;液柱与抽油杆之间的摩擦力F3,可用以下公式计算;液柱与油管之间的摩擦力F4,根据油井的现场资料统计,约等于0.3F3;液柱通过游动阀的摩擦阻力F5,一般可忽略不计。
抽油机驴头主要受静载荷、悬点惯性载荷、悬点振动载荷和摩擦载荷的复合作用。根据式(1)~式(7),可得出式(8)、式(9):式(8)减去式(9)得出式(10):对式(10)进行换算计算后,得出混合液密度式(11);根据式(3),可以得出含水量fw的计算公式。
本发明通过七个步骤,应用数字化工况系统中示功图测试数据和油井静态参数,能够每10分钟获取一次油井含水量。本发明实时监控油井的产油量的变化,避免了传统油井含水测量的往往5-7天进行一次测定,导致测试数据滞后,不能反应出原油实时的真实情况,影响原油生产计量和注水的调整滞后的问题,为油田现场员工提供了一种快捷、方便的油井含水量求取手段。同时,本发明不但和油井工况系统有效结合,更减少了油田现场人力、物力和财力的投入,同样避免了现场工作者的油井取样、送样和化验分析等工作量,为油田采油后续工作提供了数据支撑。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
在不冲突的情况下,本领域的技术人员可以根据实际情况将上述各示例中相关的技术特征相互组合,以达到相应的技术效果,具体对于各种组合情况在此不一一赘述。
以上所述,只是本发明的较佳实施例而已,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽的范围。依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

1.一种基于油井示功图获取原油含水量的方法,其特征在于,包括如下步骤
步骤一:在示功图中获取数据
在油井工况系统中获取示功图中的冲程、冲次数据值及油井静态参数;
步骤二:获取悬点静载荷值
悬点静载荷分为上行程悬点静载荷和下行程悬点静载荷,根据步骤一获取的油井静态参数,计算得出上行程悬点静载荷值和下行程悬点静载荷值;
步骤三:获取悬点惯性载荷值
悬点惯性惯性载荷包括上冲程悬点最大惯性载荷和下冲程悬点最大惯性载荷,根据步骤一获取的油井静态参数,计算得出上冲程悬点最大惯性载荷值和下冲程悬点最大惯性载荷值;
步骤四:获取悬点振动载荷值
步骤五:获取摩擦载荷值
计算上冲程摩擦载荷值和下冲程摩擦载荷值;
步骤六:计算油井含水率
根据步骤二、步骤三、步骤四和步骤五得到的悬点静载荷值、悬点惯性载荷值、悬点振动载荷值和摩擦载荷值,计算得到油井含水率;
步骤七:原油含水率监控
根据步骤六计算得到的油井含水率,对油井中原油含水率进行监控,用于后续生产性调整注水计划。
2.如权利要求1所述的一种基于油井示功图获取原油含水量的方法,其特征在于:所述的步骤二计算上行程悬点静载荷值和下行程悬点静载荷值时,采用的步骤一获取的油井静态参数包括每米抽油杆在液体中的重力、混合液密度、原油密度、底层水水密度、原油含水量、泵深、动液面、柱塞面积、油管压力和套管压力油井静态参数。
3.如权利要求2所述的一种基于油井示功图获取原油含水量的方法,其特征在于:所述的步骤二中的获取悬点静载荷值中的上行程悬点静载荷值和下行程悬点静载荷值是采用如下公式进行计算得到的
P静上=9.81qrlL+ApLfρ+106(pt-pc)Ap (1)
P静下=9.81qrlL (2)
ρ=ρo(1-fw)+ρwfw (3)
其中,
P静上——上行程悬点静载荷,kN;
P静下——下行程悬点静载荷,kN;
qrl——每米抽油杆在液体中的重力,组合抽油杆分段计算,kgf/m;
ρ——混合液密度,kg/m3
ρo——原油密度,kg/m3
ρw——地层水水密度,kg/m3
fw——原油含水量;
L——泵深,m;
Lf——动液面,m;
Ap——柱塞面积,m2
pt——油管压力,MPa;
pc——套管压力,MPa。
4.如权利要求1所述的一种基于油井示功图获取原油含水量的方法,其特征在于:所述的步骤三计算上冲程悬点最大惯性载荷值和下冲程悬点最大惯性载荷值是采用步骤一获取的冲程、冲次及每米抽油杆在空气中的重力、油管过流断面变化引起液柱加速度变化的系数、油管的流通断面面积和平均抽油杆截面积油井静态参数进行计算的。
5.如权利要求4所述的一种基于油井示功图获取原油含水量的方法,其特征在于:所述的步骤三中的上冲程悬点最大惯性载荷值和下冲程悬点最大惯性载荷值采用如下公式计算得到
Figure FDA0002430837430000031
Figure FDA0002430837430000032
其中,
P惯上——上冲程悬点最大惯性载荷,kN;
P惯下——下冲程悬点最大惯性载荷,kN;
S——冲程,m;
N——冲次,min-1
qr——每米抽油杆在空气中的重力,kgf/m;
ε——考虑油管过流断面变化引起液柱加速度变化的系数;
Atf——油管的流通断面面积,m2
Ar——平均抽油杆截面积,组合抽油杆柱取等效面,
Figure FDA0002430837430000041
6.如权利要求1所述的一种基于油井示功图获取原油含水量的方法,其特征在于:所述的步骤四中的悬点振动载荷值是采用如下公式得到
Figure FDA0002430837430000042
式中,
P——在抽油杆顶端产生的振动载荷,kN;
k——常数,其值取决于
Figure FDA0002430837430000043
Figure FDA0002430837430000044
值为0~1时,k=0;当
Figure FDA0002430837430000045
值为1~3时k=1,为当
Figure FDA0002430837430000046
值为3~5时k=2;当
Figure FDA0002430837430000047
值为5~7时k=3;
E——油管、抽油杆钢材弹性模量,2.02×108kN/m2
λr——抽油杆变形,m;
λ——油管和抽油杆总变形,m;
υu,d——静变形结束时的悬点速度,υu是上冲程,υd为下冲程,m/s;
C——抽油机游梁前臂长,m;
e——自然对数底数;
c——抽油杆内声波传播速度;其中:单级杆柱c=5000,二级杆柱c=5400,三级杆柱c=5800,m/s;
α——曲柄转角,度;
αu,d——静变形结束时的曲柄转角,度。
7.如权利要求1所述的一种基于油井示功图获取原油含水量的方法,其特征在于:所述的步骤五中摩擦载荷由五部分组成:抽油杆与油管的摩擦力F1、柱塞与泵筒之间的半干摩擦力F2、液柱与抽油杆之间的摩擦力F3、液柱与油管之间的摩擦力F4及液柱通过游动阀的摩擦阻力F5,通过F1、F2、F3、F4和F5,得到计算上冲程摩擦载荷值和下冲程摩擦载荷值。
8.如权利要求7所述的一种基于油井示功图获取原油含水量的方法,其特征在于:所述的步骤五中的上冲程摩擦载荷值和下冲程摩擦载荷值是通过如下方法得到的
抽油杆与油管的摩擦力F1=1.5%G;
F2=1717N,当抽油泵径不大于70mm时;
Figure FDA0002430837430000051
F4=1.3F3
F5≈0
F摩上=F1+F2+F4
F摩下=F1+F2+F3
其中,
m——油管内径与抽油杆直径之比值;
G——抽油杆重量,kN
μ——混合液粘度,mPa.m。
9.如权利要求1所述的一种基于油井示功图获取原油含水量的方法,其特征在于,所述的步骤六中计算油井含水率是采用如下方式得到的:
步骤二中的获取悬点静载荷值中的上行程悬点静载荷值和下行程悬点静载荷值是采用如下公式进行计算得到的
P静上=9.81qrlL+ApLfρ+106(pt-pc)Ap (1)
P静下=9.81qrlL (2)
ρ=ρo(1-fw)+ρwfw (3)
其中,
P静上——上行程悬点静载荷,kN;
P静下——下行程悬点静载荷,kN;
qrl——每米抽油杆在液体中的重力,组合抽油杆分段计算,kgf/m;
ρ——混合液密度,kg/m3
ρo——原油密度,kg/m3
ρw——地层水水密度,kg/m3
fw——原油含水量;
L——泵深,m;
Lf——动液面,m;
Ap——柱塞面积,m2
pt——油管压力,MPa;
pc——套管压力,MPa;
所述的步骤三中的上冲程悬点最大惯性载荷值和下冲程悬点最大惯性载荷值采用如下公式计算得到
Figure FDA0002430837430000071
Figure FDA0002430837430000072
其中,
P惯上——上冲程悬点最大惯性载荷,kN;
P惯下——下冲程悬点最大惯性载荷,kN;
S——冲程,m;
N——冲次,min-1
qr——每米抽油杆在空气中的重力,kgf/m;
ε——考虑油管过流断面变化引起液柱加速度变化的系数;
Atf——油管的流通断面面积,m2
Ar——平均抽油杆截面积,组合抽油杆柱取等效面,
Figure FDA0002430837430000081
所述的步骤四中的悬点振动载荷值是采用如下公式得到
Figure FDA0002430837430000082
式中,
P——在抽油杆顶端产生的振动载荷,kN;
k——常数,其值取决于
Figure FDA0002430837430000083
Figure FDA0002430837430000084
值为0~1时,k=0;当
Figure FDA0002430837430000085
值为1~3时k=1,为当
Figure FDA0002430837430000086
值为3~5时k=2;当
Figure FDA0002430837430000087
值为5~7时k=3;
E——油管、抽油杆钢材弹性模量,2.02×108kN/m2
λr——抽油杆变形,m;
λ——油管和抽油杆总变形,m;
υu,d——静变形结束时的悬点速度,υu是上冲程,υd为下冲程,m/s;
C——抽油机游梁前臂长,m;
e——自然对数底数;
c——抽油杆内声波传播速度,单级杆柱c=5000,二级杆柱c=5400,三级杆柱c=5800,m/s;
α——曲柄转角,度;
αu,d——静变形结束时的曲柄转角,度;
所述的步骤五中的获取摩擦载荷值是通过如下方法得到的抽油杆与油管的摩擦力F1=1.5%G;
F2=1717N,当抽油泵径不大于70mm时;
Figure FDA0002430837430000091
F4=1.3F3
F5≈0
F摩上=F1+F2+F4
F摩下=F1+F2+F3
其中,
m——油管内径与抽油杆直径之比值;
G——抽油杆重量,kN;
μ——混合液粘度,mPa.m,
根据式(1)~式(7),可得出式(8)和式(9)
Pmax=P静上+P惯上+P振上+F摩上 (8)
Pmin=P静下-P惯下-P振下-F摩下 (9)
式(8)减去式(9)得出式(10):
Figure FDA0002430837430000092
对式(10)进行换算计算后,得出下列混合液密度式(11);
Figure FDA0002430837430000101
根据式(3),可以得出含水量fw的计算公式为:
Figure FDA0002430837430000102
用油井已有示功图的载荷、冲程、冲次和相关油井静态参数带入上式,得出油井的含水率;
其中,
Pmax——抽油机最大载荷,kN;
Pmin——抽油机最小载荷,kN;
ΔP——抽油机最大最小载荷差,kN。
CN202010235534.8A 2020-03-30 2020-03-30 一种基于油井示功图获取原油含水量的方法 Active CN111475989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010235534.8A CN111475989B (zh) 2020-03-30 2020-03-30 一种基于油井示功图获取原油含水量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010235534.8A CN111475989B (zh) 2020-03-30 2020-03-30 一种基于油井示功图获取原油含水量的方法

Publications (2)

Publication Number Publication Date
CN111475989A CN111475989A (zh) 2020-07-31
CN111475989B true CN111475989B (zh) 2022-10-04

Family

ID=71747902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010235534.8A Active CN111475989B (zh) 2020-03-30 2020-03-30 一种基于油井示功图获取原油含水量的方法

Country Status (1)

Country Link
CN (1) CN111475989B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111946329B (zh) * 2020-09-08 2023-09-26 中国石油天然气股份有限公司 一种油井动液面求取方法
CN114320276B (zh) * 2020-09-30 2023-09-26 中国石油天然气股份有限公司 通过微生物进行清防蜡的效果确定方法和装置
CN112392461B (zh) * 2020-12-09 2023-10-31 中国石油天然气股份有限公司 一种快速计算油井井筒中混合液体含水率的方法
CN112832740A (zh) * 2021-01-06 2021-05-25 中国石油天然气股份有限公司 一种应用示功图计算油井原油含水率的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105257279A (zh) * 2015-10-26 2016-01-20 中国石油天然气股份有限公司 一种抽油机井动液面的测量方法
CN105649602A (zh) * 2015-12-31 2016-06-08 山东天工石油装备有限公司 一种基于地面示功图实现油井工况诊断的方法
CN107237615B (zh) * 2017-08-09 2020-05-19 大连西贝通达科技有限公司 一种基于光杆载荷的游梁式抽油机运行速度优化控制方法
US10703987B2 (en) * 2017-08-31 2020-07-07 Saudi Arabian Oil Company Methods and systems for proactively monitoring crude quality assurance
CN108691530B (zh) * 2018-05-10 2021-10-22 南通大学 基于运动力学的塔架式双井抽油机光杆轴力的计算方法
CN108979623A (zh) * 2018-06-20 2018-12-11 陕西安控科技有限公司 一种异常示功图的识别方法
CN110924904A (zh) * 2018-09-20 2020-03-27 中国石油化工股份有限公司 一种由井底泵功图调整抽油机电机转速的方法

Also Published As

Publication number Publication date
CN111475989A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
CN111475989B (zh) 一种基于油井示功图获取原油含水量的方法
US11015444B2 (en) Method for predicting the optimal shut-in duration by coupling fluid flow and geological stress
CN108868748B (zh) 一种页岩气水平井重复压裂裂缝开启压力的计算方法
CN103422851B (zh) 抽油泵动态充满度试井确定间歇泵抽制度法
CN107608940B (zh) 一种油井间抽周期确定方法
US5064349A (en) Method of monitoring and controlling a pumped well
US20160061022A1 (en) Hydrocarbon Well Performance Monitoring System
CN111946329B (zh) 一种油井动液面求取方法
CN103924959B (zh) 测量油井产液中含水量的方法
CN111963147B (zh) 通过抽油机悬点静载荷监测动液面及动液面确定方法
CN107237615B (zh) 一种基于光杆载荷的游梁式抽油机运行速度优化控制方法
CN108240215A (zh) 一种基于有限差分法的抽油井柱塞有效冲程确定方法
CN115793048B (zh) 一种页岩油层系致密储层横波速度预测方法
CN111963151B (zh) 一种通过抽油机悬点静载荷确定地层压力的方法
CN106593415A (zh) 一种基于改进多相流算法的油井动液面计量方法
CN101038218A (zh) 小悬臂梁式游梁微变形测量装置
Попов et al. Comparative analysis of the analytical and numerical methods for calculating the stress-strain state of the near-wellbore zone based on the elastic model taking into account the main structural elements of the well
CN112832740A (zh) 一种应用示功图计算油井原油含水率的方法
RU2700738C1 (ru) Способ повышения достоверности контроля обводненности продукции нефтедобывающих скважин, оборудованных штанговыми глубинными насосами
CN111005712A (zh) 一种定向井杆管偏磨自动判识方法
CN112392461B (zh) 一种快速计算油井井筒中混合液体含水率的方法
CN111946331B (zh) 一种井底流压的测试方法及获取粘滞阻力的方法
Liu et al. An approach to the optimum design of sucker-rod pumping system
CN111027263A (zh) 动水压力作用下多柱式结构附加质量系数的确定方法
CN106837298A (zh) 一种低产液量油井间开生产时间确定方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant