CN111431394A - Novel step-down single-phase three-level bridgeless PFC converter system - Google Patents

Novel step-down single-phase three-level bridgeless PFC converter system Download PDF

Info

Publication number
CN111431394A
CN111431394A CN202010305534.0A CN202010305534A CN111431394A CN 111431394 A CN111431394 A CN 111431394A CN 202010305534 A CN202010305534 A CN 202010305534A CN 111431394 A CN111431394 A CN 111431394A
Authority
CN
China
Prior art keywords
module
power
phase
circuit
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010305534.0A
Other languages
Chinese (zh)
Other versions
CN111431394B (en
Inventor
李志忠
赵付立
李优新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202010305534.0A priority Critical patent/CN111431394B/en
Publication of CN111431394A publication Critical patent/CN111431394A/en
Application granted granted Critical
Publication of CN111431394B publication Critical patent/CN111431394B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from AC input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4291Arrangements for improving power factor of AC input by using a Buck converter to switch the input current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种新型降压式单相三电平无桥PFC变换器系统,利用Buck拓扑电路结构、不带反并联二极管的IGBT以及通过相应的电路控制,实现电感电流连续模式(CCM)单相无桥三电平功率因数校正的功能,达到低总谐波失真、高功率因数和高效稳定工作的效果。

Figure 202010305534

The invention discloses a novel step-down single-phase three-level bridgeless PFC converter system, which utilizes Buck topology circuit structure, IGBT without anti-parallel diode and corresponding circuit control to realize continuous inductor current mode (CCM) The single-phase bridgeless three-level power factor correction function achieves the effect of low total harmonic distortion, high power factor and efficient and stable operation.

Figure 202010305534

Description

一种新型降压式单相三电平无桥PFC变换器系统A Novel Buck Single-Phase Three-Level Bridgeless PFC Converter System

技术领域technical field

本发明涉及AC/DC功率因数校正技术的技术领域,尤其涉及到一种新型降压式单相三电平无桥PFC变换器系统。The invention relates to the technical field of AC/DC power factor correction technology, in particular to a novel step-down single-phase three-level bridgeless PFC converter system.

背景技术Background technique

随着电力电子技术快速发展,各种用电设备得到普及。然而接入电网的电力电子开关电源设备成为向电网注入电流谐波的主要来源。高次电流谐波已经严重影响了电网电能质量、传输效率和其他设备的安全运行。因此国内外相关组织针对这一问题制定了限制电力系统电流谐波的相关安全标准。功率因数校正作为一种抑制高次谐波电流和提高功率因数的有效方法,已经成为中大功率电子设备不可或缺的重要一部分。With the rapid development of power electronic technology, all kinds of electrical equipment have been popularized. However, the power electronic switching power supply equipment connected to the grid has become the main source of current harmonics injected into the grid. High-order current harmonics have seriously affected the power quality, transmission efficiency and safe operation of other equipment in the power grid. Therefore, relevant organizations at home and abroad have formulated relevant safety standards to limit the current harmonics of power systems. As an effective method to suppress high-order harmonic current and improve power factor, power factor correction has become an indispensable part of medium and high power electronic equipment.

功率因数校正电路分为无源功率因数校正(PPFC)和有源功率因数校正(APFC)。APFC由于体积小、PF值高而得到广泛应用。传统的功率因数校正电路以升压有源功率因数校正变换器(Boost APFC)为代表,其以结构简单、安全稳定的特点得到广泛应用。然而,在宽范围输入电压条件下,传统的Boost APFC变换器在低电压输入时比高压输入时其效率要低,而且输出电压较高,对于后级设备功率器件电压应力要求较高。由于前级整流桥的存在,导致过多的能量损失,尤其在低压大功率时,二极管的通态损耗更为明显,这大大限制了变换器整机效率的提升。Power factor correction circuits are divided into passive power factor correction (PPFC) and active power factor correction (APFC). APFC is widely used due to its small size and high PF value. The traditional power factor correction circuit is represented by the boost active power factor correction converter (Boost APFC), which is widely used because of its simple structure, safety and stability. However, under the condition of a wide range of input voltage, the traditional Boost APFC converter has lower efficiency at low voltage input than at high voltage input, and the output voltage is higher, which requires higher voltage stress on the power devices of the later stage equipment. Due to the existence of the front-stage rectifier bridge, excessive energy loss is caused, especially at low voltage and high power, the on-state loss of the diode is more obvious, which greatly limits the improvement of the overall efficiency of the converter.

为了解决传统Boost APFC变换器带来的问题,有学者提出了无桥Buck PFC变换器,无桥Buck方案利用开关管代替桥臂二极管,减小了导通路径开关器件的损耗,而且实现降压输出的目的,减小了后级电路功率器件电压应力要求,从而缩小了成本和提高了工作效率。然而无桥Buck PFC变换器在低压输入时,由于输出电压高于输入电压,存在一定的输入电流死角,从而会恶化输入电流的谐波和功率因数值。In order to solve the problems caused by the traditional Boost APFC converter, some scholars have proposed a bridgeless Buck PFC converter. The bridgeless Buck scheme replaces the bridge arm diode with a switch tube, reduces the loss of the switching device in the conduction path, and realizes the step-down For the purpose of output, the voltage stress requirement of the power device of the post-stage circuit is reduced, thereby reducing the cost and improving the work efficiency. However, when the bridgeless Buck PFC converter has a low voltage input, since the output voltage is higher than the input voltage, there is a certain dead angle of the input current, which will deteriorate the harmonic and power factor values of the input current.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术的不足,提供一种新型降压式单相三电平无桥PFC变换器系统,利用Buck拓扑电路结构、不带反并联二极管的IGBT以及通过相应的电路控制,实现电感电流连续模式(CCM)单相无桥三电平功率因数校正(Power FactorCorrection,PFC)的功能,达到低总谐波失真、高功率因数和高效稳定工作的效果。The purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a new type of step-down single-phase three-level bridgeless PFC converter system, which utilizes Buck topology circuit structure, IGBT without anti-parallel diode, and control by corresponding circuit. , to achieve the function of inductor current continuous mode (CCM) single-phase bridgeless three-level power factor correction (Power FactorCorrection, PFC), to achieve the effect of low total harmonic distortion, high power factor and efficient and stable work.

为实现上述目的,本发明所提供的技术方案为:For achieving the above object, the technical scheme provided by the present invention is:

一种新型降压式单相三电平无桥PFC变换器系统,包括单相三电平无桥PFC变换器电路和控制电路;A novel step-down single-phase three-level bridgeless PFC converter system, comprising a single-phase three-level bridgeless PFC converter circuit and a control circuit;

所述控制电路与单相三电平无桥PFC变换器电路连接,从单相三电平无桥PFC变换器电路得到其输入电压Vin、输出电压Vout、电感电流IL采样数据;The control circuit is connected with the single-phase three-level bridgeless PFC converter circuit, and obtains its input voltage V in , output voltage V out , and inductor current IL sampling data from the single-phase three-level bridgeless PFC converter circuit;

其中,所述单相三电平无桥PFC变换器电路包括功率电感L、功率MOSFET S1、S2、不带反并联二极管的IGBT S3和S4、输出滤波电容Co1、Co2以及负载R;Wherein, the single-phase three-level bridgeless PFC converter circuit includes a power inductor L, power MOSFETs S 1 , S 2 , IGBTs S 3 and S 4 without anti-parallel diodes, output filter capacitors C o1 , C o2 and load R;

所述功率MOSFET S1的S极与功率MOSFET S2的S极连接,功率MOSFET S1的G极与功率MOSFET S2的G极连接; The S pole of the power MOSFET S1 is connected with the S pole of the power MOSFET S2, and the G pole of the power MOSFET S1 is connected with the G pole of the power MOSFET S2 ;

所述功率MOSFET S2的D极、不带反并联二极管的IGBT S3的S极、不带反并联二极管的IGBT S4的D极均与功率电感L的一端连接,功率电感L的另一端分别与输出滤波电容Co1、Co2的一端连接; The D pole of the power MOSFET S2, the S pole of the IGBT S3 without the anti - parallel diode, and the D pole of the IGBT S4 without the anti-parallel diode are all connected to one end of the power inductor L, and the other end of the power inductor L is connected. Connect to one end of the output filter capacitors C o1 and C o2 respectively;

输入电流经过所述功率MOSFET S1、S2、功率电感L,然后通过中性线构成回路;The input current passes through the power MOSFETs S 1 , S 2 and the power inductor L, and then forms a loop through the neutral line;

所述输出滤波电容Co2的另一端与不带反并联二极管的IGBT S3的D极连接,功率电感L、输出滤波电容Co2、不带反并联二极管的IGBT S3构成回路;The other end of the output filter capacitor C o2 is connected to the D pole of the IGBT S 3 without an anti-parallel diode, and the power inductor L, the output filter capacitor C o2 , and the IGBT S 3 without an anti-parallel diode form a loop;

所述输出滤波电容Co1的另一端与不带反并联二极管的IGBT S4的S极连接,功率电感L、输出滤波电容Co1、不带反并联二极管的IGBT S4构成回路;The other end of the output filter capacitor C o1 is connected to the S pole of the IGBT S 4 without the anti-parallel diode, and the power inductor L, the output filter capacitor C o1 , and the IGBT S 4 without the anti-parallel diode form a loop;

所述负载R和输出滤波电容Co1、Co2串联。The load R is connected in series with the output filter capacitors C o1 and C o2 .

进一步地,所述控制电路由辅助供电电源模块、输入电压检测模块、输出电压采样模块、电感电流采样模块、第一驱动电路模块、第二驱动电路模块、第三驱动电路模块、PWM驱动信号产生电路模块、比较器、加法器、积分器、误差放大器组成;Further, the control circuit is generated by an auxiliary power supply module, an input voltage detection module, an output voltage sampling module, an inductor current sampling module, a first drive circuit module, a second drive circuit module, a third drive circuit module, and a PWM drive signal. Circuit module, comparator, adder, integrator, error amplifier;

其中,所述输入电压检测模块和输出电压采样模块分别与单相三电平无桥PFC变换器电路中对应的电压输入端和电压输出端连接;Wherein, the input voltage detection module and the output voltage sampling module are respectively connected with the corresponding voltage input terminal and voltage output terminal in the single-phase three-level bridgeless PFC converter circuit;

所述第一驱动电路模块与PWM驱动信号产生电路模块连接,用于驱动功率MOSFETS1和S2的开闭;The first driving circuit module is connected with the PWM driving signal generating circuit module, and is used for driving the opening and closing of the power MOSFETs S1 and S2 ;

所述第二驱动电路模块和第三驱动电路模块分别连接于输入电压检测模块和PWM驱动信号产生电路模块之间,分别用于驱动不带反并联二极管的IGBT S3和S4的开闭;The second drive circuit module and the third drive circuit module are respectively connected between the input voltage detection module and the PWM drive signal generation circuit module, and are respectively used to drive the opening and closing of the IGBTs S3 and S4 without anti - parallel diodes ;

所述输出电压采样模块、误差放大器、加法器、比较器、PWM驱动信号产生电路模块顺序连接;The output voltage sampling module, error amplifier, adder, comparator, and PWM drive signal generating circuit module are connected in sequence;

所述积分器连接于误差放大器和比较器之间;the integrator is connected between the error amplifier and the comparator;

所述电感电流采样模块连接于各功率电感的一端与加法器之间。The inductor current sampling module is connected between one end of each power inductor and the adder.

进一步地,所述输入电压检测模块包括转换电路、双向稳压二极管以及运算放大器;其中,双向稳压二极管接于转换电路和运算放大器之间;Further, the input voltage detection module includes a conversion circuit, a bidirectional zener diode and an operational amplifier; wherein, the bidirectional zener diode is connected between the conversion circuit and the operational amplifier;

所述转换电路由第一、二、三、四分压电阻R1a、R2a、R3a、R4a组成;The conversion circuit is composed of first, second, third and fourth voltage dividing resistors R 1a , R 2a , R 3a and R 4a ;

所述第一分压电阻R1a的一端接电流输入,另一端与第二分压电阻R2a连接;One end of the first voltage dividing resistor R1a is connected to the current input, and the other end is connected to the second voltage dividing resistor R2a ;

所述第四分压电阻R4a的一端接电流输入,另一端与第三分压电阻R3a连接;One end of the fourth voltage dividing resistor R 4a is connected to the current input, and the other end is connected to the third voltage dividing resistor R 3a ;

所述第二分压电阻R2a的另一端和第三分压电阻R3a的另一端接地。The other end of the second voltage dividing resistor R 2a and the other end of the third voltage dividing resistor R 3a are grounded.

与现有技术相比,本方案原理及优点如下:Compared with the prior art, the principle and advantages of this scheme are as follows:

本方案利用Buck拓扑电路结构、不带反并联二极管的IGBT以及通过相应的电路控制,实现电感电流连续模式(CCM)单相无桥三电平功率因数校正的功能,达到低总谐波失真、高功率因数和高效稳定工作的效果。This scheme utilizes Buck topology circuit structure, IGBT without anti-parallel diode and corresponding circuit control to realize the function of inductive current continuous mode (CCM) single-phase bridgeless three-level power factor correction to achieve low total harmonic distortion, The effect of high power factor and efficient and stable work.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的服务作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the services required in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only For some embodiments of the present invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.

图1为本发明一种新型降压式单相三电平无桥PFC变换器系统的结构框图;1 is a structural block diagram of a novel step-down single-phase three-level bridgeless PFC converter system of the present invention;

图2为本发明一种新型降压式单相三电平无桥PFC变换器系统中单相三电平无桥PFC变换器的原理图;2 is a schematic diagram of a single-phase three-level bridgeless PFC converter in a novel step-down single-phase three-level bridgeless PFC converter system of the present invention;

图3为图2在交流电输入正半周时的工作模态之一;Fig. 3 is one of the working modes of Fig. 2 during the positive half cycle of AC input;

图4为图2在交流电输入正半周时的工作模态之二;Fig. 4 is the second working mode of Fig. 2 when the alternating current is input in the positive half cycle;

图5为图2在交流电输入负半周时的工作模态之一;Fig. 5 is one of the working modes of Fig. 2 in the negative half cycle of AC input;

图6为图2在交流电输入负半周时的工作模态之二;FIG. 6 is the second working mode of FIG. 2 when the alternating current is input in the negative half cycle;

图7为输入电压检测模块的结构示意图;7 is a schematic structural diagram of an input voltage detection module;

图8为输入电压检测模块各关键信号波形图;Fig. 8 is the waveform diagram of each key signal of the input voltage detection module;

图9为仿真后输出电压波形图;Fig. 9 is the output voltage waveform diagram after simulation;

图10为仿真后输入电压和输入电流波形图;Figure 10 is the input voltage and input current waveform diagram after simulation;

图11为输出电压采样模块的电路图;Fig. 11 is the circuit diagram of the output voltage sampling module;

图12为电感电流采样模块的电路图;Fig. 12 is the circuit diagram of the inductor current sampling module;

图13为第一、二、三驱动电路模块的电路图;13 is a circuit diagram of the first, second and third drive circuit modules;

图14为PWM驱动信号产生电路模块的电路图。FIG. 14 is a circuit diagram of a PWM drive signal generating circuit module.

具体实施方式Detailed ways

下面结合具体实施例对本发明作进一步说明:Below in conjunction with specific embodiment, the present invention will be further described:

如图1所示,本实施例所述的一种新型降压式单相三电平无桥PFC变换器系统,包括单相三电平无桥PFC变换器电路1和控制电路2两部分。As shown in FIG. 1 , a novel step-down single-phase three-level bridgeless PFC converter system described in this embodiment includes a single-phase three-level bridgeless PFC converter circuit 1 and a control circuit 2 two parts.

进一步地,如图2所示,第一部分,单相三电平无桥PFC变换器电路1包括功率电感L、功率MOSFET S1、S2、不带反并联二极管的IGBT S3和S4、输出滤波电容Co1、Co2以及负载R。Further, as shown in FIG. 2 , in the first part, the single-phase three-level bridgeless PFC converter circuit 1 includes a power inductor L, power MOSFETs S 1 and S 2 , IGBTs S 3 and S 4 without anti-parallel diodes, Output filter capacitors C o1 , C o2 and load R.

功率MOSFET S1的S极与功率MOSFET S2的S极连接,功率MOSFET S1的G极与功率MOSFET S2的G极连接。 The S pole of the power MOSFET S1 is connected to the S pole of the power MOSFET S2, and the G pole of the power MOSFET S1 is connected to the G pole of the power MOSFET S2.

功率MOSFET S2的D极、不带反并联二极管的IGBT S3的S极、不带反并联二极管的IGBT S4的D极均与功率电感L的一端连接,功率电感L的另一端分别与输出滤波电容Co1、Co2的一端连接。 The D pole of the power MOSFET S2, the S pole of the IGBT S3 without the anti - parallel diode, and the D pole of the IGBT S4 without the anti-parallel diode are all connected to one end of the power inductor L, and the other end of the power inductor L is respectively connected to the One ends of the output filter capacitors C o1 and C o2 are connected.

输入电流经过所述功率MOSFET S1、S2、功率电感L,然后通过中性线构成回路。The input current passes through the power MOSFETs S 1 , S 2 , and the power inductor L, and then forms a loop through the neutral line.

输出滤波电容Co2的另一端与不带反并联二极管的IGBT S3的D极连接,功率电感L、输出滤波电容Co2、不带反并联二极管的IGBT S3构成回路。The other end of the output filter capacitor C o2 is connected to the D pole of the IGBT S 3 without an anti-parallel diode, and the power inductor L, the output filter capacitor C o2 , and the IGBT S 3 without an anti-parallel diode form a loop.

输出滤波电容Co1的另一端与不带反并联二极管的IGBT S4的S极连接,功率电感L、输出滤波电容Co1、不带反并联二极管的IGBT S4构成回路。The other end of the output filter capacitor C o1 is connected to the S pole of the IGBT S 4 without an anti-parallel diode, and the power inductor L, the output filter capacitor C o1 , and the IGBT S 4 without an anti-parallel diode form a loop.

负载R和输出滤波电容Co1、Co2串联。The load R is connected in series with the output filter capacitors C o1 and C o2 .

第二部分,控制电路2与单相三电平无桥PFC变换器电路1连接,从单相三电平无桥PFC变换器电路1得到其输入电压Vin、输出电压Vout、电感电流IL采样数据,具体由辅助供电电源模块2-1、输入电压检测模块2-2、输出电压采样模块2-3、电感电流采样模块2-4、第一驱动电路模块2-5、第二驱动电路模块2-11、第三驱动电路模块2-12、PWM驱动信号产生电路模块2-6、比较器2-7、加法器2-8、积分器2-9、误差放大器2-10组成。In the second part, the control circuit 2 is connected to the single-phase three-level bridgeless PFC converter circuit 1, and the input voltage V in , the output voltage V out and the inductor current I are obtained from the single-phase three-level bridgeless PFC converter circuit 1. L sampling data, specifically by the auxiliary power supply module 2-1, the input voltage detection module 2-2, the output voltage sampling module 2-3, the inductor current sampling module 2-4, the first driving circuit module 2-5, the second driving A circuit module 2-11, a third driving circuit module 2-12, a PWM driving signal generating circuit module 2-6, a comparator 2-7, an adder 2-8, an integrator 2-9, and an error amplifier 2-10 are composed.

其中,输入电压检测模块2-2和输出电压采样模块2-3分别与单相三电平无桥PFC变换器电路1中对应的电压输入端和电压输出端连接。The input voltage detection module 2-2 and the output voltage sampling module 2-3 are respectively connected to the corresponding voltage input terminals and voltage output terminals in the single-phase three-level bridgeless PFC converter circuit 1 .

第一驱动电路模块2-5与PWM驱动信号产生电路模块2-6连接,用于驱动功率MOSFET S1和S2的开闭;The first driving circuit module 2-5 is connected with the PWM driving signal generating circuit module 2-6 , and is used for driving the opening and closing of the power MOSFETs S1 and S2;

第二驱动电路模块2-11和第三驱动电路模块2-12分别连接于输入电压检测模块2-2和PWM驱动信号产生电路模块2-6之间,分别用于驱动不带反并联二极管的IGBT S3和S4的开闭;The second driving circuit module 2-11 and the third driving circuit module 2-12 are respectively connected between the input voltage detecting module 2-2 and the PWM driving signal generating circuit module 2-6, and are respectively used for driving the anti-parallel diodes without anti-parallel diodes. The opening and closing of IGBTs S3 and S4;

输出电压采样模块2-3、误差放大器2-10、加法器2-8、比较器2-7、PWM驱动信号产生电路模块2-6顺序连接。The output voltage sampling module 2-3, the error amplifier 2-10, the adder 2-8, the comparator 2-7, and the PWM drive signal generating circuit module 2-6 are connected in sequence.

积分器2-9连接于误差放大器2-10和比较器2-7之间。The integrator 2-9 is connected between the error amplifier 2-10 and the comparator 2-7.

电感电流采样模块2-4连接于各功率电感的一端与加法器2-8之间。The inductor current sampling module 2-4 is connected between one end of each power inductor and the adder 2-8.

具体地,如图7所示,输入电压检测模块2-2包括转换电路、双向稳压二极管以及运算放大器;双向稳压二极管接于转换电路和运算放大器之间;转换电路由第一、二、三、四分压电阻R1a、R2a、R3a、R4a组成;第一分压电阻R1a的一端接电流输入,另一端与第二分压电阻R2a连接;第四分压电阻R4a的一端接电流输入,另一端与第三分压电阻R3a连接;第二分压电阻R2a的另一端和第三分压电阻R3a的另一端接地。Specifically, as shown in FIG. 7 , the input voltage detection module 2-2 includes a conversion circuit, a bidirectional zener diode and an operational amplifier; the bidirectional zener diode is connected between the conversion circuit and the operational amplifier; the conversion circuit consists of the first, second, Three, four divider resistors R 1a , R 2a , R 3a , R 4a are composed; one end of the first divider resistor R 1a is connected to the current input, and the other end is connected to the second divider resistor R 2a ; the fourth divider resistor R One end of 4a is connected to the current input, and the other end is connected to the third voltage dividing resistor R3a ; the other end of the second voltage dividing resistor R2a and the other end of the third voltage dividing resistor R3a are grounded.

输出电压采样模块2-3如图11所示。The output voltage sampling module 2-3 is shown in Figure 11.

电感电流采样模块2-4如图12所示。The inductor current sampling module 2-4 is shown in Figure 12.

第一、二、三驱动电路模块2-5、2-11、2-12均如图13所示。The first, second, and third drive circuit modules 2-5, 2-11, and 2-12 are shown in FIG. 13 .

PWM驱动信号产生电路模块2-6如图14所示。The PWM drive signal generating circuit module 2-6 is shown in Figure 14.

控制电路2的工作原理如下:The working principle of control circuit 2 is as follows:

首先,首先通过输出电压采样模块2-3采集输出电压采样值并将输出电压采样值v0与参考电压vref经过误差放大器2-10得到误差电压值vm,将vm值一路送入加法器2-8与电感电流采样值im进行求和得到V1值,一路送入积分器2-9进行积分得到V2值,最后将V1和V2送入比较器2-7得到PWM驱动信号P1、P2,驱动信号P1和P2为两路互补的PWM信号。First, the output voltage sampling value is collected by the output voltage sampling module 2-3, and the output voltage sampling value v 0 and the reference voltage v ref are passed through the error amplifier 2-10 to obtain the error voltage value vm , and the vm value is sent all the way to the addition The summation of the inductor 2-8 and the inductor current sampling value im to obtain the value of V 1 , which is sent to the integrator 2-9 for integration to obtain the value of V 2 , and finally V 1 and V 2 are sent to the comparator 2-7 to obtain the PWM The driving signals P 1 and P 2 , and the driving signals P 1 and P 2 are two complementary PWM signals.

然后,将输入电压Vin送入输入电压检测模块2-2对输入电压极性进行判断,若判断出Vin>0时,第二驱动电路模块2-11输出驱动信号PS3,此时第三驱动电路模块2-12不输出驱动信号;若判断出Vin<0时,第三驱动电路模块2-12输出驱动信号S4,此时第二驱动电路模块2-11不输出驱动信号;以此来开通或关闭对应的不带反并联二极管的IGBT S3和S4。单相三电平无桥PFC变换器电路1通过控制电路2的精确控制,从而可以实现功率因数校正的目的。Then, the input voltage V in is sent to the input voltage detection module 2-2 to judge the polarity of the input voltage. If it is judged that V in > 0, the second drive circuit module 2-11 outputs the drive signal P S3 , and the first The third driving circuit module 2-12 does not output the driving signal; if it is determined that V in <0, the third driving circuit module 2-12 outputs the driving signal S 4 , and the second driving circuit module 2-11 does not output the driving signal at this time; In this way, the corresponding IGBTs S 3 and S 4 without anti-parallel diodes are turned on or off. The single-phase three-level bridgeless PFC converter circuit 1 can achieve the purpose of power factor correction through the precise control of the control circuit 2 .

本实施例中,单相三电平无桥PFC变换器电路1拓扑结构各工作模态的详细分析如下:In this embodiment, the detailed analysis of each working mode of the topology structure of the single-phase three-level bridgeless PFC converter circuit 1 is as follows:

一、在交流电输入正半周,该阶段可以分为两个工作模态:1. In the positive half cycle of AC input, this stage can be divided into two working modes:

(1)工作模态一(1) Working mode one

当交流输入为正半周期时,第一驱动电路模块2-5驱动功率MOSFET S1、S2同时导通,不带反并联二极管的IGBT S3和S4处于关闭状态。输入电流经过功率MOSFET S1、S2,功率电感L,然后通过中性线构成回路,对功率电感L进行储能。同时输出滤波电容Co1、Co2向负载R供能,该期间电路工作状态如图3所示。When the AC input is a positive half cycle, the first driving circuit module 2-5 drives the power MOSFETs S1 and S2 to be turned on at the same time, and the IGBTs S3 and S4 without anti - parallel diodes are turned off. The input current passes through the power MOSFETs S 1 , S 2 , the power inductor L, and then forms a loop through the neutral line to store the power inductor L. At the same time, the output filter capacitors C o1 and C o2 supply energy to the load R, and the working state of the circuit during this period is shown in Figure 3 .

(2)工作模态二(2) Working mode 2

当功率MOSFET S1、S2同时关断时,由输入电压检测模块2-2检测到交流输入为正半周期及Vin>0,第二驱动电路模块2-11输出PWM驱动信号给不带反并联二极管的IGBT S3,使得不带反并联二极管的IGBT S3导通,此时功率MOSFET S1、S2和不带反并联二极管的IGBTS4处于关闭状态。功率电感L释放能量,电感电流线性下降,电流经过输出滤波电容Co2,不带反并联二极管的IGBT S3构成回路,对滤波电容Co2进行充电。同时输出滤波电容Co1、Co2向负载R供能,该期间电路工作状态如图4所示。When the power MOSFETs S 1 and S 2 are turned off at the same time, the input voltage detection module 2-2 detects that the AC input is a positive half cycle and V in >0, and the second drive circuit module 2-11 outputs a PWM drive signal to the The IGBT S 3 with the anti-parallel diode turns on the IGBT S 3 without the anti-parallel diode. At this time, the power MOSFETs S 1 and S 2 and the IGBT S 4 without the anti-parallel diode are turned off. The power inductor L releases energy, the inductor current decreases linearly, the current passes through the output filter capacitor C o2 , and the IGBT S 3 without the anti-parallel diode forms a loop to charge the filter capacitor C o2 . At the same time, the output filter capacitors C o1 and C o2 supply energy to the load R, and the circuit operating state during this period is shown in Figure 4 .

二、在交流电输入负半周,该阶段可以分为两个工作模态:2. In the negative half cycle of AC input, this stage can be divided into two working modes:

(1)工作模态三(1) Working mode three

当交流输入为负半周期时,第一驱动电路模块2-5驱动功率MOSFET S1、S2同时导通,不带反并联二极管的IGBT S3和S4处于关闭状态。输入电流经过功率MOSFET S1、S2,功率电感L,然后通过中性线构成回路,对功率电感L进行储能。同时输出滤波电容Co1、Co2向负载R供能,该期间电路工作状态如图5所示。When the AC input is a negative half cycle, the first driving circuit module 2-5 drives the power MOSFETs S 1 and S 2 to be turned on at the same time, and the IGBTs S 3 and S 4 without anti-parallel diodes are turned off. The input current passes through the power MOSFETs S 1 , S 2 , the power inductor L, and then forms a loop through the neutral line to store the power inductor L. At the same time, the output filter capacitors C o1 and C o2 supply energy to the load R, and the circuit operating state during this period is shown in Figure 5 .

(2)工作模态四(2) Working mode four

当功率MOSFET S1、S2同时关断时,由输入电压检测模块2-2检测到交流输入为负半周期及Vin<0,第三驱动电路模块2-12输出PWM驱动信号给不带反并联二极管的IGBT S4,使得不带反并联二极管的IGBT S4导通,此时功率MOSFET S1、S2和不带反并联二极管的IGBTS3处于关闭状态。功率电感L释放能量,电感电流线性下降,电流经过输出滤波电容Co1,不带反并联二极管的IGBT S4构成回路,对滤波电容Co1进行充电。同时输出滤波电容Co1、Co2向负载R供能,该期间电路工作状态如图6所示。When the power MOSFETs S 1 and S 2 are turned off at the same time, the input voltage detection module 2-2 detects that the AC input is a negative half cycle and V in <0, and the third drive circuit module 2-12 outputs a PWM drive signal to the The IGBT S 4 with the anti-parallel diode turns on the IGBT S 4 without the anti-parallel diode. At this time, the power MOSFETs S 1 and S 2 and the IGBT S 3 without the anti-parallel diode are turned off. The power inductor L releases energy, the inductor current decreases linearly, the current passes through the output filter capacitor C o1 , and the IGBT S 4 without the anti-parallel diode forms a loop to charge the filter capacitor C o1 . At the same time, the output filter capacitors C o1 and C o2 supply energy to the load R, and the circuit operating state during this period is shown in Figure 6 .

由于实施例中单相三电平无桥PFC变换器电路1拓扑结构中存在两个共源串联的功率MOSFET S1、S2和两个不带反并联二极管的IGBT S3、S4四个功率开关管,所以需要对输入电压极性进行判断,以便于确定输入电压在不同极性时,选择对应的不带反并联二极管的IGBT工作。Because in the single-phase three-level bridgeless PFC converter circuit 1 topology in the embodiment, there are two common-source series-connected power MOSFETs S 1 , S 2 and two IGBTs S 3 , S 4 without anti-parallel diodes Therefore, it is necessary to judge the polarity of the input voltage, so as to determine that the corresponding IGBTs without anti-parallel diodes can be selected to work when the input voltages are of different polarities.

首先交流电Vin通过第一分压电阻R1a与第二分压电阻R2a和第三分压电阻R3a与第四分压电阻R4a两组分压电阻将输入交流电压转变为小信号交流电,同时加入双向稳压二极管管(TVS),在电路发生异常时起到保护运算放大器(OPAMP)的作用。通过OPAMP两输入端比较可以得输出信号uin为高电平还是低电平,在交流电压输入为正半周期时,OPAMP同相输入端电位为正,反向端输入端电位为负,OPAMP输出高电平;反之,在交流电压输入为负半周期时,OPAMP输出低电平。以此来选通对应的驱动电路。输入电压检测模块2-2各关键信号波形如图8所示。First, the alternating current V in converts the input alternating voltage into a small-signal alternating current through the first and second voltage dividing resistors R 1a , R 2a , and the third voltage dividing resistor R 3a and the fourth voltage dividing resistor R 4a . At the same time, a bidirectional Zener diode (TVS) is added to protect the operational amplifier (OPAMP) when the circuit is abnormal. By comparing the two input terminals of OPAMP, it can be obtained whether the output signal u in is high level or low level. When the AC voltage input is a positive half cycle, the potential of the non-inverting input terminal of OPAMP is positive, the potential of the input terminal of the reverse terminal is negative, and the OPAMP output High level; on the contrary, when the AC voltage input is a negative half cycle, OPAMP outputs a low level. In this way, the corresponding driving circuit is selected. The key signal waveforms of the input voltage detection module 2-2 are shown in Figure 8.

为证明本实施例的有效性,利用了仿真软件PSIM对本发明实例进行仿真,得出了如图9所示的输出电压波形以及如图10所示的输入电压和输入电流波形。In order to prove the validity of this embodiment, the simulation software PSIM is used to simulate the example of the present invention, and the output voltage waveform shown in FIG. 9 and the input voltage and input current waveforms shown in FIG. 10 are obtained.

以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。The above-mentioned embodiments are only preferred embodiments of the present invention, and are not intended to limit the scope of implementation of the present invention. Therefore, any changes made according to the shape and principle of the present invention should be included within the protection scope of the present invention.

Claims (3)

1.一种新型降压式单相三电平无桥PFC变换器系统,其特征在于,包括单相三电平无桥PFC变换器电路(1)和控制电路(2);1. a novel step-down single-phase three-level bridgeless PFC converter system, is characterized in that, comprises single-phase three-level bridgeless PFC converter circuit (1) and control circuit (2); 所述控制电路(2)与单相三电平无桥PFC变换器电路(1)连接,从单相三电平无桥PFC变换器电路(1)得到其输入电压Vin、输出电压Vout、电感电流IL采样数据;The control circuit (2) is connected to the single-phase three-level bridgeless PFC converter circuit (1), and the input voltage V in and the output voltage V out are obtained from the single-phase three-level bridgeless PFC converter circuit (1). , the sampling data of the inductor current IL ; 其中,所述单相三电平无桥PFC变换器电路(1)包括功率电感L、功率MOSFET S1、S2、不带反并联二极管的IGBT S3和S4、输出滤波电容Co1、Co2以及负载R;Wherein, the single-phase three-level bridgeless PFC converter circuit (1) includes a power inductor L, power MOSFETs S 1 , S 2 , IGBTs S 3 and S 4 without anti-parallel diodes, an output filter capacitor C o1 , C o2 and load R; 所述功率MOSFET S1的S极与功率MOSFET S2的S极连接,功率MOSFET S1的G极与功率MOSFET S2的G极连接; The S pole of the power MOSFET S1 is connected with the S pole of the power MOSFET S2, and the G pole of the power MOSFET S1 is connected with the G pole of the power MOSFET S2 ; 所述功率MOSFET S2的D极、不带反并联二极管的IGBT S3的S极、不带反并联二极管的IGBT S4的D极均与功率电感L的一端连接,功率电感L的另一端分别与输出滤波电容Co1、Co2的一端连接; The D pole of the power MOSFET S2, the S pole of the IGBT S3 without the anti - parallel diode, and the D pole of the IGBT S4 without the anti-parallel diode are all connected to one end of the power inductor L, and the other end of the power inductor L is connected. Connect to one end of the output filter capacitors C o1 and C o2 respectively; 输入电流经过所述功率MOSFET S1、S2、功率电感L,然后通过中性线构成回路;The input current passes through the power MOSFETs S 1 , S 2 and the power inductor L, and then forms a loop through the neutral line; 所述输出滤波电容Co2的另一端与不带反并联二极管的IGBT S3的D极连接,功率电感L、输出滤波电容Co2、不带反并联二极管的IGBT S3构成回路;The other end of the output filter capacitor C o2 is connected to the D pole of the IGBT S 3 without an anti-parallel diode, and the power inductor L, the output filter capacitor C o2 , and the IGBT S 3 without an anti-parallel diode form a loop; 所述输出滤波电容Co1的另一端与不带反并联二极管的IGBT S4的S极连接,功率电感L、输出滤波电容Co1、不带反并联二极管的IGBT S4构成回路;The other end of the output filter capacitor C o1 is connected to the S pole of the IGBT S 4 without the anti-parallel diode, and the power inductor L, the output filter capacitor C o1 , and the IGBT S 4 without the anti-parallel diode form a loop; 所述负载R和输出滤波电容Co1、Co2串联。The load R is connected in series with the output filter capacitors C o1 and C o2 . 2.根据权利要求1所述的一种新型降压式单相三电平无桥PFC变换器系统,其特征在于,所述控制电路(2)由辅助供电电源模块(2-1)、输入电压检测模块(2-2)、输出电压采样模块(2-3)、电感电流采样模块(2-4)、第一驱动电路模块(2-5)、第二驱动电路模块(2-11)、第三驱动电路模块(2-12)、PWM驱动信号产生电路模块(2-6)、比较器(2-7)、加法器(2-8)、积分器(2-9)、误差放大器(2-10)组成;2. A novel step-down single-phase three-level bridgeless PFC converter system according to claim 1, wherein the control circuit (2) is composed of an auxiliary power supply module (2-1), an input Voltage detection module (2-2), output voltage sampling module (2-3), inductor current sampling module (2-4), first drive circuit module (2-5), second drive circuit module (2-11) , a third drive circuit module (2-12), a PWM drive signal generation circuit module (2-6), a comparator (2-7), an adder (2-8), an integrator (2-9), an error amplifier (2-10) Composition; 其中,所述输入电压检测模块(2-2)和输出电压采样模块(2-3)分别与单相三电平无桥PFC变换器电路(1)中对应的电压输入端和电压输出端连接;Wherein, the input voltage detection module (2-2) and the output voltage sampling module (2-3) are respectively connected to the corresponding voltage input terminal and voltage output terminal in the single-phase three-level bridgeless PFC converter circuit (1). ; 所述第一驱动电路模块(2-5)与PWM驱动信号产生电路模块(2-6)连接,用于驱动功率MOSFET S1和S2的开闭;The first driving circuit module (2-5) is connected with the PWM driving signal generating circuit module ( 2-6 ), and is used for driving the opening and closing of the power MOSFETs S1 and S2; 所述第二驱动电路模块(2-11)和第三驱动电路模块(2-12)分别连接于输入电压检测模块(2-2)和PWM驱动信号产生电路模块(2-6)之间,分别用于驱动不带反并联二极管的IGBT S3和S4的开闭;The second drive circuit module (2-11) and the third drive circuit module (2-12) are respectively connected between the input voltage detection module (2-2) and the PWM drive signal generation circuit module (2-6), They are used to drive the switching of IGBTs S3 and S4 without anti - parallel diodes, respectively ; 所述输出电压采样模块(2-3)、误差放大器(2-10)、加法器(2-8)、比较器(2-7)、PWM驱动信号产生电路模块(2-6)顺序连接;The output voltage sampling module (2-3), the error amplifier (2-10), the adder (2-8), the comparator (2-7), and the PWM drive signal generating circuit module (2-6) are connected in sequence; 所述积分器(2-9)连接于误差放大器(2-10)和比较器(2-7)之间;The integrator (2-9) is connected between the error amplifier (2-10) and the comparator (2-7); 所述电感电流采样模块(2-4)连接于各功率电感的一端与加法器(2-8)之间。The inductor current sampling module (2-4) is connected between one end of each power inductor and the adder (2-8). 3.根据权利要求2所述的一种新型降压式单相三电平无桥PFC变换器系统,其特征在于,所述输入电压检测模块(2-2)包括转换电路、双向稳压二极管以及运算放大器;其中,双向稳压二极管接于转换电路和运算放大器之间;3. A new type of step-down single-phase three-level bridgeless PFC converter system according to claim 2, wherein the input voltage detection module (2-2) comprises a conversion circuit, a bidirectional Zener diode and an operational amplifier; wherein, the bidirectional zener diode is connected between the conversion circuit and the operational amplifier; 所述转换电路由第一、二、三、四分压电阻R1a、R2a、R3a、R4a组成;The conversion circuit is composed of first, second, third and fourth voltage dividing resistors R 1a , R 2a , R 3a and R 4a ; 所述第一分压电阻R1a的一端接电流输入,另一端与第二分压电阻R2a连接;One end of the first voltage dividing resistor R1a is connected to the current input, and the other end is connected to the second voltage dividing resistor R2a ; 所述第四分压电阻R4a的一端接电流输入,另一端与第三分压电阻R3a连接;One end of the fourth voltage dividing resistor R 4a is connected to the current input, and the other end is connected to the third voltage dividing resistor R 3a ; 所述第二分压电阻R2a的另一端和第三分压电阻R3a的另一端接地。The other end of the second voltage dividing resistor R 2a and the other end of the third voltage dividing resistor R 3a are grounded.
CN202010305534.0A 2020-04-17 2020-04-17 Control method of buck single-phase three-level bridgeless PFC converter system Active CN111431394B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010305534.0A CN111431394B (en) 2020-04-17 2020-04-17 Control method of buck single-phase three-level bridgeless PFC converter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010305534.0A CN111431394B (en) 2020-04-17 2020-04-17 Control method of buck single-phase three-level bridgeless PFC converter system

Publications (2)

Publication Number Publication Date
CN111431394A true CN111431394A (en) 2020-07-17
CN111431394B CN111431394B (en) 2024-08-02

Family

ID=71558113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010305534.0A Active CN111431394B (en) 2020-04-17 2020-04-17 Control method of buck single-phase three-level bridgeless PFC converter system

Country Status (1)

Country Link
CN (1) CN111431394B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517815A (en) * 2021-09-14 2021-10-19 浙江日风电气股份有限公司 Three-level bidirectional direct current converter and control system and control method thereof
CN117060710A (en) * 2023-08-21 2023-11-14 哈尔滨工业大学 Single-phase bridgeless buck-boost PFC converter
CN117060708A (en) * 2023-08-21 2023-11-14 哈尔滨工业大学 Single-stage bridgeless PFC converter and control method
CN117223208A (en) * 2021-03-10 2023-12-12 阿里尔科学创新有限公司 T-type buck-boost rectifier
WO2024038464A1 (en) * 2022-08-18 2024-02-22 Ariel Scientific Innovations Ltd. Front-end single-stage step up - step down three-level inverter

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180422A (en) * 2002-11-27 2004-06-24 Fuji Electric Fa Components & Systems Co Ltd PWM rectifier
US20040232903A1 (en) * 2003-05-23 2004-11-25 Delta Electronics, Inc. L-D snubber for different type PFC circuit
US20090268496A1 (en) * 2008-04-25 2009-10-29 Delta Electronics, Inc. Three-phase buck-boost power factor correction circuit and controlling method thereof
CN102739100A (en) * 2012-06-11 2012-10-17 合肥工业大学 Three-level three-phase four-bridge arm converter
CN106026630A (en) * 2016-05-18 2016-10-12 浙江大学 Variable-modal bridgeless PFC circuit
EP3113345A1 (en) * 2015-07-01 2017-01-04 ABB Technology AG Electrical converter and control method
CN106685209A (en) * 2017-02-26 2017-05-17 合肥科威尔电源系统有限公司 Interlaced parallel bridge-less PFC circuit controller and control method therefor
CN107482930A (en) * 2017-08-21 2017-12-15 国网上海市电力公司 A dual-inductance dual-voltage DC output circuit
CN107896069A (en) * 2017-12-25 2018-04-10 三峡大学 A kind of New single-phase mixes three-level rectifier
CN110289776A (en) * 2019-07-30 2019-09-27 广东工业大学 Single Inductor Dual Boost Bridgeless PFC Converter
WO2020051557A1 (en) * 2018-09-06 2020-03-12 Cornell University High power density power converter and uninterruptible power supply circuit and methods
CN211959064U (en) * 2020-04-17 2020-11-17 广东工业大学 Novel non-isolated Buck PFC converter system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180422A (en) * 2002-11-27 2004-06-24 Fuji Electric Fa Components & Systems Co Ltd PWM rectifier
US20040232903A1 (en) * 2003-05-23 2004-11-25 Delta Electronics, Inc. L-D snubber for different type PFC circuit
US20090268496A1 (en) * 2008-04-25 2009-10-29 Delta Electronics, Inc. Three-phase buck-boost power factor correction circuit and controlling method thereof
CN102739100A (en) * 2012-06-11 2012-10-17 合肥工业大学 Three-level three-phase four-bridge arm converter
EP3113345A1 (en) * 2015-07-01 2017-01-04 ABB Technology AG Electrical converter and control method
CN106026630A (en) * 2016-05-18 2016-10-12 浙江大学 Variable-modal bridgeless PFC circuit
CN106685209A (en) * 2017-02-26 2017-05-17 合肥科威尔电源系统有限公司 Interlaced parallel bridge-less PFC circuit controller and control method therefor
CN107482930A (en) * 2017-08-21 2017-12-15 国网上海市电力公司 A dual-inductance dual-voltage DC output circuit
CN107896069A (en) * 2017-12-25 2018-04-10 三峡大学 A kind of New single-phase mixes three-level rectifier
WO2020051557A1 (en) * 2018-09-06 2020-03-12 Cornell University High power density power converter and uninterruptible power supply circuit and methods
CN110289776A (en) * 2019-07-30 2019-09-27 广东工业大学 Single Inductor Dual Boost Bridgeless PFC Converter
CN211959064U (en) * 2020-04-17 2020-11-17 广东工业大学 Novel non-isolated Buck PFC converter system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117223208A (en) * 2021-03-10 2023-12-12 阿里尔科学创新有限公司 T-type buck-boost rectifier
EP4305745A4 (en) * 2021-03-10 2024-08-14 Ariel Scientific Innovations Ltd. T-TYPE STEP-DOWN BOOST RECTIFIER
US12283880B2 (en) 2021-03-10 2025-04-22 Ariel Scientific Innovations Ltd. T-type buck-boost rectifier
CN113517815A (en) * 2021-09-14 2021-10-19 浙江日风电气股份有限公司 Three-level bidirectional direct current converter and control system and control method thereof
CN113517815B (en) * 2021-09-14 2021-11-26 浙江日风电气股份有限公司 Three-level bidirectional direct current converter and control system and control method thereof
WO2024038464A1 (en) * 2022-08-18 2024-02-22 Ariel Scientific Innovations Ltd. Front-end single-stage step up - step down three-level inverter
CN117060710A (en) * 2023-08-21 2023-11-14 哈尔滨工业大学 Single-phase bridgeless buck-boost PFC converter
CN117060708A (en) * 2023-08-21 2023-11-14 哈尔滨工业大学 Single-stage bridgeless PFC converter and control method
CN117060708B (en) * 2023-08-21 2024-05-24 哈尔滨工业大学 Single-stage bridgeless PFC converter and control method

Also Published As

Publication number Publication date
CN111431394B (en) 2024-08-02

Similar Documents

Publication Publication Date Title
CN111431394B (en) Control method of buck single-phase three-level bridgeless PFC converter system
CN202167837U (en) A PFC overcurrent protection circuit and an air conditioner using the circuit
CN212850263U (en) Novel OCC voltage-reducing PFC circuit
CN103754133B (en) A kind of parallel great power electric automobile DC charging power supply system based on STM32
CN113224942B (en) Non-isolated Buck-Boost bridgeless PFC converter system
EP3043460A1 (en) Control device and method of totem-pole bridgeless pfc soft switch
CN107846151A (en) A kind of efficient vehicle-mounted charge converter
CN107896069A (en) A kind of New single-phase mixes three-level rectifier
CN104852567A (en) Totem-pole bridgeless power factor correction circuit of soft switch
CN107121611A (en) The method for monitoring the failure of DCMBoostPFC converters output capacitance
WO2021208274A1 (en) Power factor adjustment architecture applicable to single-phase/three-phase power grid, and control method therefor
CN102832820B (en) The low-voltage dc power supply energy feedback type electronic load booster system of Digital Control
CN103166489A (en) A control circuit of a three-phase high power factor rectifier
CN115616427A (en) A lithium battery detection system and detection device
CN109428476B (en) An analog control device for a power factor correction circuit
CN211630095U (en) A single-phase three-level Buck PFC rectifier
CN108390584A (en) A kind of control method of the ten switches non-isolated photovoltaic DC-to-AC converter of Clamp three-phase
CN211959064U (en) Novel non-isolated Buck PFC converter system
CN202737749U (en) Low-voltage DC power energy feedback electronic load boost system controlled in digitalized manner
CN110535364A (en) A kind of dual Buck inverter improvement modulator approach based on accessory power supply
CN211959080U (en) Buck three-phase four-wire three-level PFC rectifier system
CN111342684B (en) A single-phase three-level Buck PFC rectifier and its control method
CN203151389U (en) Control circuit of three-phase high power factor rectifier
CN111431420B (en) Control method of three-phase four-wire system three-level Buck PFC rectifier system
CN205377701U (en) Push -pull type dc -to -ac converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant