CN111429723B - 一种基于路侧设备的通信与感知数据融合方法 - Google Patents

一种基于路侧设备的通信与感知数据融合方法 Download PDF

Info

Publication number
CN111429723B
CN111429723B CN202010284520.5A CN202010284520A CN111429723B CN 111429723 B CN111429723 B CN 111429723B CN 202010284520 A CN202010284520 A CN 202010284520A CN 111429723 B CN111429723 B CN 111429723B
Authority
CN
China
Prior art keywords
roadside
monitoring
data
communication
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010284520.5A
Other languages
English (en)
Other versions
CN111429723A (zh
Inventor
刘君
李静林
杨树
李成
李永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Datang Communication Zhejiang Technology Co ltd
Original Assignee
Datang Communication Zhejiang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datang Communication Zhejiang Technology Co ltd filed Critical Datang Communication Zhejiang Technology Co ltd
Priority to CN202010284520.5A priority Critical patent/CN111429723B/zh
Publication of CN111429723A publication Critical patent/CN111429723A/zh
Application granted granted Critical
Publication of CN111429723B publication Critical patent/CN111429723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed

Abstract

本发明实施例公开了一种基于路侧设备的通信与感知数据融合方法,包括如下步骤:划定路侧监测区域,并且在路侧安装路侧监控设备;建立三维立体空间,并且将每个路侧监控设备获取的监测数据对应在三维立体空间内的分布位置;将所有路侧监控设备的监测数据集成进行边缘计算,得到融合多种信息的路面场景重建模型;本方案可自动智能实现对车辆跨道行驶和车辆超速行驶的准确判断,无需人工查阅监控录像进行一一对比,提高对车辆的监控力度和监控效率,减少人工投入;并且通过三维立体模型可实现对违规车辆的违规数据进行长久保存,避免无法实现数据溯源。

Description

一种基于路侧设备的通信与感知数据融合方法
技术领域
本发明实施例涉及交通管制方法技术领域,具体涉及一种基于路侧设备的通信与感知数据融合方法。
背景技术
随着智能交通管理及车联网技术的发展,智能交通管理系统中的路侧设备(或称路侧单元,Road Side Unit,RSU)与车载终端(或称车载单元,On Board Unit,OBU)采用短距通信方式进行通讯,实现车辆身份识别,电子扣费,实现不停车、免取卡,建立无人值守车辆通道等功能。
现有技术中为了监测路边车辆的驾驶是否违反交通规则,大多利用摄像头拍摄路边车辆的行驶情况,由人工判断车辆是否违规,直接利用路侧摄像头的监控视频判断车辆驾驶是否违规的操作复杂,无法感知车辆行驶速度,并且判断车辆行驶位置的图像处理方式以及计算系统复杂,人工判断的速度慢且容易出现纰漏,并且交警需要来回奔跑在路上,增加交警的劳动强度,且容易出现违章遗漏的情况,对交通管制和驾驶员的制约力度不够。
发明内容
为此,本发明实施例提供一种基于路侧设备的通信与感知数据融合方法,以解决现有技术中利用路侧摄像头的监控视频判断车辆驾驶是否违规的操作复杂、容易出现违章遗漏的情况的问题。
为了实现上述目的,本发明的实施方式提供如下技术方案:
一种基于路侧设备的通信与感知数据融合方法,包括如下步骤:
步骤100、划定路侧监测区域,并且在路侧安装路侧监控设备;
步骤200、建立三维立体空间,并且将每个所述路侧监控设备获取的监测数据对应在三维立体空间内的分布位置;
步骤300、将所有路侧监控设备的监测数据集成进行边缘计算,得到融合多种信息的路面场景重建模型。
作为本发明的一种优选方案,在步骤100中,所述路侧监控设备包括路侧计算设备、路侧通信设备、路侧摄像头和路侧雷达,所述路侧通信设备与路侧摄像头和路侧雷达根据路侧车辆建立关于所述路侧监测区域的三维立体空间,所述路侧雷达根据最大监测范围等间距均匀分布,所述路侧摄像头根据最大拍摄距离等间距均匀分布,所述路侧通信设备安装所述路侧监测区域的入口处,并且所述路侧通信设备、路侧雷达和路侧摄像头从下到上的依次安装在地表面上。
作为本发明的一种优选方案,所述路侧通信设备用于监测路侧车辆与所述路侧通信设备的横向距离,同时所述获取所述路侧通信设备获取所述路侧监测区域在城市GIS系统中的位置,所述城市GIS系统中的若干个相邻路侧监测区域内的所述路侧通信设备建立通讯连接,所述路侧通信设备通过获取周围通信对象的的通信电磁波分布得到通信对象与所述路侧通信设备的相对位置分布,同时从通信报文中获取其他通信设备发送的定位数据。
作为本发明的一种优选方案,所述路侧雷达用于监测路侧车辆在路侧监测区域内沿着竖向轴移动的瞬时速度,所述路侧雷达利用电磁波探测目标,所述路侧雷达通过发射电磁波对探测目标进行照射并接收其回波以获得探测目标至电磁波发射点的距离、距离变化和方位信息。
作为本发明的一种优选方案,所述路侧摄像头用于实时采集路侧车辆在路侧监控区域内的视频,所述路侧摄像头拍摄的数据发送到临时存储数据池内。
作为本发明的一种优选方案,其特征在于,在步骤200中,在所述路侧监测区域建立三维立体空间,所述路侧雷达的路侧车辆作为Y轴,所述路侧通信设备的路侧车辆作为X轴,所述路侧摄像头将所述路侧雷达监测的路侧车辆以及所述路侧通信设备监测的路侧车辆在Z轴拉伸影像。
作为本发明的一种优选方案,在步骤300中,建立所述路侧雷达和所述路侧通信设备的监测数据与时间轴之间的匹配对应关系,所述路侧雷达用于监测路侧车辆在监测区域内的行驶速度,所述路侧通信设备用于根据监测的路侧车辆横向位置确定所述路侧车辆的驾驶路径是否符合交通规则。
作为本发明的一种优选方案,在步骤300中,将所有路侧监控设备的监测数据集成到路侧计算设备进行边缘计算的实现步骤为:
步骤301、分别设定路侧雷达和路侧通信设备的监控数据有效范围;
步骤302、将所述路侧雷达、路侧通信设备和所述路侧摄像头的监控数据以及对应数据的监测时间点发送到所述路侧计算设备的临时存储数据池内;
步骤303、标记超出监控数据有效范围的路侧雷达数据和路侧通信设备数据,同时标记出对应的监测时间点;
步骤304、路侧计算设备选定包含监测时间点的排查时间段,并且从所述路侧摄像头拍摄的视频内一次截取排查数据流;
步骤305、在一次截取排查数据流的基础上二次筛选超出监控数据有效范围的视频数据,并且将视频数据在三维立体空间内模拟出路侧车辆的驾驶状态。
作为本发明的一种优选方案,在二次筛选超出监控数据有效范围的视频数据时,还可以通过标记超出监控数据有效范围的路侧雷达数据和路侧通信设备数据的连续时间段,直接重建出对应路侧车辆在此连续时间段内的三维立体模型;
作为本发明的一种优选方案,将超出监控数据有效范围的路侧雷达数据和路侧通信设备数据集成在所述三维立体模型上。
本发明的实施方式具有如下优点:
(1)本发明通过多个路侧设备的监测数据的融合,利用路侧通信设备监测路侧车辆的信息以及车辆跨道行驶情况,利用路侧雷达监测路侧车辆在路侧监测区域内沿着竖向轴移动的瞬时速度,同时利用摄像头记录路况信息,从而实现及时有效的判断出不符合交通规则的车辆信息,并且通过路侧雷达、路侧通信设备和所述路侧摄像头的多个监测设备的实时监控,可自动智能实现对车辆跨道行驶和车辆超速行驶的准确判断,无需人工查阅监控录像进行一一对比,提高对车辆的监控力度和监控效率,减少人工投入;
(2)本发明将这些视频段在三维空间立体内模拟重现,三维立体模型的占用空间小,由于路侧摄像头的监控数据会定期的覆盖,通过三维立体模型可实现对违规车辆的违规数据进行长久保存,避免无法实现数据溯源。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
图1为本发明实施方式中的通信和数据融合方法的流程示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供了一种基于路侧设备的通信与感知数据融合方法,现有技术中为了监测路边车辆的驾驶是否违反交通规则,大多利用摄像头拍摄路边车辆的行驶情况,由人工判断车辆是否违规,人工判断的速度慢且容易出现纰漏,因此本实施方式为了解决现有问题,通过多个路侧设备的监测数据的融合,准确无疑的自动确认路侧车辆的行驶状态,快速找出违反交通规则的车辆。
具体包括如下步骤:
步骤100、划定路侧监测区域,并且在路侧安装路侧监控设备。
步骤200、建立三维立体空间,并且将每个所述路侧监控设备获取的监测数据对应在三维立体空间内的分布位置。
步骤300、将所有路侧监控设备的监测数据集成进行边缘计算,得到融合多种信息的路面场景重建模型。
在步骤100中,所述路侧监控设备包括路侧计算设备、路侧通信设备、路侧摄像头和路侧雷达,所述路侧通信设备与路侧摄像头和路侧雷达根据路侧车辆建立关于所述路侧监测区域的三维立体空间,所述路侧雷达根据最大监测范围等间距均匀分布,所述路侧摄像头根据最大拍摄距离等间距均匀分布,所述路侧通信设备安装所述路侧监测区域的入口处,并且所述路侧通信设备、路侧雷达和路侧摄像头从下到上的依次安装在地表面上。
路侧通信设备用于监测路侧车辆与所述路侧通信设备的横向距离,所述路侧通信设备通过获取周围通信对象的的通信电磁波分布得到通信对象与所述路侧通信设备的相对位置分布,同时从通信报文中获取其他通信设备发送的定位数据,在本实施方式中主要利用路侧通信设备测量路边车辆距离通信设备安装点的横向距离。
路侧雷达用于监测路侧车辆在路侧监测区域内沿着竖向轴移动的瞬时速度,所述路侧雷达利用电磁波探测目标,所述路侧雷达通过发射电磁波对探测目标进行照射并接收其回波以获得探测目标至电磁波发射点的距离、距离变化和方位信息,在本实施方式中主要利用路侧雷达测量路边车辆的移动速度。
路侧摄像头用于实时采集路侧车辆在路侧监控区域内的视频,所述路侧摄像头拍摄的数据发送到临时存储数据池内,
本实施方式在路侧监控区域内,将路侧通信设备安装在地表面上,路侧雷达等间距安装在路侧通信设备的上方,路侧摄像头安装在路侧雷达的上方,因此可以确保路侧通信设备和路侧雷达至少可以监测到路侧监控区域内两个车道的车辆,提高路边设备的数据监控准确性。
另外,本实施方式将举例说明路侧设备的通信和数据融合的应用环境,众所周知,对于比较拥挤的路段来说,每个车辆遵守交通规则行驶可避免交通事故的发生,为了对车辆进行实时准确的监控,本实施方式的路侧设备的使用方法具体如下:
由于车辆在每个车道的距离可在一定的范围内变化,因此路侧通信设备通过获取每个车辆与通信点之间的横向距离,判断每个车辆所处的位置是否超过标准范围,一旦超过标准范围,则意味着该车辆没有遵守交通规则,同样的,根据路侧雷达监测结果计算车辆经过每个雷达的速度,判断车辆是否超速,因此建立所述路侧雷达和所述路侧通信设备的监测数据与时间轴之间的匹配对应关系,所述路侧雷达用于监测路侧车辆在监测区域内的行驶速度,所述路侧通信设备用于根据监测的路侧车辆横向位置确定所述路侧车辆的驾驶路径是否符合交通规则。
因此,在所述路侧监测区域建立三维立体空间,所述路侧雷达的路侧车辆作为Y轴,所述路侧通信设备的路侧车辆作为X轴,所述路侧摄像头将所述路侧雷达监测的路侧车辆以及所述路侧通信设备监测的路侧车辆在Z轴拉伸影像。
直接利用路侧摄像头的监控视频判断车辆驾驶是否违规的操作复杂,无法感知车辆行驶速度,并且判断车辆行驶位置的图像处理方式以及计算系统复杂,因此,本实施方式将所有路侧监控设备的监测数据集成到路侧计算设备进行边缘计算的实现步骤为:
1、分别设定路侧雷达和路侧通信设备的监控数据有效范围;
2、将所述路侧雷达、路侧通信设备和所述路侧摄像头的监控数据以及对应数据的监测时间点发送到所述路侧计算设备的临时存储数据池内;
3、标记超出监控数据有效范围的路侧雷达数据和路侧通信设备数据,同时标记出对应的监测时间点;
4、路侧计算设备选定包含监测时间点的排查时间段,并且从所述路侧摄像头拍摄的视频内一次截取排查数据流;
5、在一次截取排查数据流的基础上二次筛选超出监控数据有效范围的视频数据,并且将视频数据在三维立体空间内模拟出路侧车辆的驾驶状态。
在本实施方式中,由于路侧雷达和路侧通信设备的数据传输和数据标记过程中会存在一定的延时,因此为了避免延时产生的误差,本实施方式在截取路侧摄像头的监控视频时,选择包含标记时间点的一段时间内的视频数据,例如标记时间为8:00,选择7:59-8:01时间段内的一次截取排查数据流。
在二次筛选超出监控数据有效范围的视频数据时,可以通过人工的方式再截取超出监控数据有效范围的视频段,或者还可以通过标记超出监控数据有效范围的路侧雷达数据和路侧通信设备数据的连续时间点,直接重建出对应路侧车辆在此连续时间段内的三维立体模型。
通过上述方式,可以实现及时有效的判断出不符合交通规则的车辆信息,并且通过路侧雷达、路侧通信设备和所述路侧摄像头的多个监测设备的实时监控,可实现对车辆跨道行驶和车辆超速行驶的准确判断,无需人工查阅监控录像进行一一对比,提高对车辆的监控力度和监控效率,减少人工投入。
另外,本实施方式的路侧通信设备还可以用于监测路边违规停车的情况,根据路侧通信设备监测的车辆位置分布,如果路侧通信设备多次监测的同一个车辆位置分布不变,则意味着该车辆已经靠边停车,根据该监控区域对路边停车的管理,如果停车时间超过设定时间段,则截取该时间段对应的路侧摄像头采集的视频信息,即可实现对违停车辆的管控。
截取的车辆跨道行驶和车辆超速行驶视频段以及违停车辆的视频段分类保存在数据库内进行存档备份,方便后期的管控和数据追溯。
同时也可以将这些视频段在三维空间立体内模拟重现,三维立体模型的占用空间小,由于路侧摄像头的监控数据会定期的覆盖,通过三维立体模型可实现对违规车辆的违规数据进行长久保存,避免无法实现数据溯源。
所述路侧通信设备获取所述路侧监测区域在城市GIS系统中的位置,所述城市GIS系统中的若干个相邻路侧监测区域内的所述路侧通信设备建立通讯连接,路侧通信设备支持包括CAN、802.11P、3G/4G、WiFi/BT等通信方式,可以实现车与路侧设备、路侧设备与路侧设备、路侧设备与车联网管理平台之间高可靠性和低时延的实时通信功能。提供信息中继、路段车辆环境信息采集、交通灯的控制、交通信息推送等服务。
因此车联网管理平台可以向路侧通信设备发布监控车辆的信息,路侧通信设备实现整个城市的通信覆盖,可实现对监控车辆的追踪定位,方便对某一监控车辆的定向实时监控。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (4)

1.一种基于路侧设备的通信与感知数据融合方法,其特征在于,包括如下步骤:
步骤100、划定路侧监测区域,并且在路侧安装路侧监控设备;
步骤200、建立三维立体空间,并且将每个所述路侧监控设备获取的监测数据对应在三维立体空间内的分布位置;
步骤300、将所有路侧监控设备的监测数据集成进行边缘计算,得到融合多种信息的路面场景重建模型;
所述路侧监控设备包括路侧计算设备、路侧通信设备、路侧摄像头和路侧雷达,所述路侧通信设备与路侧摄像头和路侧雷达根据路侧车辆建立关于所述路侧监测区域的三维立体空间,所述路侧雷达根据最大监测范围等间距均匀分布,所述路侧摄像头根据最大拍摄距离等间距均匀分布,所述路侧通信设备安装所述路侧监测区域的入口处,并且所述路侧通信设备、路侧雷达和路侧摄像头从下到上的依次安装在地表面上;
所述路侧通信设备用于监测路侧车辆与所述路侧通信设备的横向距离,同时所述路侧通信设备获取所述路侧监测区域在城市GIS系统中的位置,所述城市GIS系统中的若干个相邻路侧监测区域内的所述路侧通信设备建立通讯连接,所述路侧通信设备通过获取周围通信对象的的通信电磁波分布得到通信对象与所述路侧通信设备的相对位置分布,同时从通信报文中获取其他通信设备发送的定位数据;
所述路侧雷达用于监测路侧车辆在路侧监测区域内沿着竖向轴移动的瞬时速度,所述路侧雷达利用电磁波探测目标,所述路侧雷达通过发射电磁波对探测目标进行照射并接收其回波以获得探测目标至电磁波发射点的距离、距离变化和方位信息;
在所述路侧监测区域建立三维立体空间,所述路侧雷达的路侧车辆作为Y轴,所述路侧通信设备的路侧车辆作为X轴,所述路侧摄像头将所述路侧雷达监测的路侧车辆以及所述路侧通信设备监测的路侧车辆在Z轴拉伸影像;
建立所述路侧雷达和所述路侧通信设备的监测数据与时间轴之间的匹配对应关系,所述路侧雷达用于监测路侧车辆在监测区域内的行驶速度,所述路侧通信设备用于根据监测的路侧车辆横向位置确定所述路侧车辆的驾驶路径是否符合交通规则;
将所有路侧监控设备的监测数据集成到路侧计算设备进行边缘计算的实现步骤为:
步骤301、分别设定路侧雷达和路侧通信设备的监控数据有效范围;
步骤302、将所述路侧雷达、路侧通信设备和所述路侧摄像头的监控数据以及对应数据的监测时间点发送到所述路侧计算设备的临时存储数据池内;
步骤303、标记超出监控数据有效范围的路侧雷达数据和路侧通信设备数据,同时标记出对应的监测时间点;
步骤304、路侧计算设备选定包含监测时间点的排查时间段,并且从所述路侧摄像头拍摄的视频内一次截取排查数据流;
步骤305、在一次截取排查数据流的基础上二次筛选超出监控数据有效范围的视频数据,并且将视频数据在三维立体空间内模拟出路侧车辆的驾驶状态。
2.根据权利要求1所述的一种基于路侧设备的通信与感知数据融合方法,其特征在于,所述路侧摄像头用于实时采集路侧车辆在路侧监控区域内的视频,所述路侧摄像头拍摄的数据发送到临时存储数据池内。
3.根据权利要求1所述的一种基于路侧设备的通信与感知数据融合方法,其特征在于,在二次筛选超出监控数据有效范围的视频数据时,还可以通过标记超出监控数据有效范围的路侧雷达数据和路侧通信设备数据的连续时间段,直接重建出对应路侧车辆在此连续时间段内的三维立体模型。
4.根据权利要求3所述的一种基于路侧设备的通信与感知数据融合方法,其特征在于,将超出监控数据有效范围的路侧雷达数据和路侧通信设备数据集成在所述三维立体模型上。
CN202010284520.5A 2020-04-13 2020-04-13 一种基于路侧设备的通信与感知数据融合方法 Active CN111429723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010284520.5A CN111429723B (zh) 2020-04-13 2020-04-13 一种基于路侧设备的通信与感知数据融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010284520.5A CN111429723B (zh) 2020-04-13 2020-04-13 一种基于路侧设备的通信与感知数据融合方法

Publications (2)

Publication Number Publication Date
CN111429723A CN111429723A (zh) 2020-07-17
CN111429723B true CN111429723B (zh) 2021-08-06

Family

ID=71554088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010284520.5A Active CN111429723B (zh) 2020-04-13 2020-04-13 一种基于路侧设备的通信与感知数据融合方法

Country Status (1)

Country Link
CN (1) CN111429723B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112732452B (zh) * 2021-03-30 2021-06-22 广州赛瑞科技股份有限公司 基于边缘计算的电动车物联管控方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200231A (zh) * 2014-09-02 2014-12-10 银江股份有限公司 一种高效的交通状态标注方法
CN108010360A (zh) * 2017-12-27 2018-05-08 中电海康集团有限公司 一种基于车路协同的自动驾驶环境感知系统
CN108615364A (zh) * 2018-08-03 2018-10-02 交通运输部公路科学研究所 一种基于车路协同技术对车辆行驶状态进行监控的方法
CN108922188A (zh) * 2018-07-24 2018-11-30 河北德冠隆电子科技有限公司 雷达跟踪定位的四维实景交通路况感知预警监控管理系统
CN110290496A (zh) * 2019-06-17 2019-09-27 高新兴物联科技有限公司 一种v2x升级系统及升级方法
CN110542898A (zh) * 2019-06-18 2019-12-06 同济大学 一种基于雷达组群的车辆行为连续跟踪探测系统及方法
US20200094827A1 (en) * 2019-08-15 2020-03-26 Lg Electronics Inc. Apparatus for controlling autonomous vehicle and control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595103B (zh) * 2012-03-07 2014-05-28 深圳市信义科技有限公司 一种基于gis地图推演智能视频的方法
EP3091370B1 (en) * 2015-05-05 2021-01-06 Volvo Car Corporation Method and arrangement for determining safe vehicle trajectories
CN109003338A (zh) * 2018-06-22 2018-12-14 南京慧尔视智能科技有限公司 一种路侧停车自动计时收费方法及装置
US10582354B1 (en) * 2018-10-05 2020-03-03 Allstate Insurance Company Systems and methods for automatic breakdown detection and roadside assistance
CN110738846A (zh) * 2019-09-27 2020-01-31 同济大学 基于雷达与视频组群的车辆行为监测系统及其实现方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200231A (zh) * 2014-09-02 2014-12-10 银江股份有限公司 一种高效的交通状态标注方法
CN108010360A (zh) * 2017-12-27 2018-05-08 中电海康集团有限公司 一种基于车路协同的自动驾驶环境感知系统
CN108922188A (zh) * 2018-07-24 2018-11-30 河北德冠隆电子科技有限公司 雷达跟踪定位的四维实景交通路况感知预警监控管理系统
CN108615364A (zh) * 2018-08-03 2018-10-02 交通运输部公路科学研究所 一种基于车路协同技术对车辆行驶状态进行监控的方法
CN110290496A (zh) * 2019-06-17 2019-09-27 高新兴物联科技有限公司 一种v2x升级系统及升级方法
CN110542898A (zh) * 2019-06-18 2019-12-06 同济大学 一种基于雷达组群的车辆行为连续跟踪探测系统及方法
US20200094827A1 (en) * 2019-08-15 2020-03-26 Lg Electronics Inc. Apparatus for controlling autonomous vehicle and control method thereof

Also Published As

Publication number Publication date
CN111429723A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
CN105336171B (zh) 一种摄像机位置标定方法及装置
CN102496285B (zh) 基于视频检测的路口车辆闯红灯判别方法
CN109584567A (zh) 基于车路协同的交通管理方法
CN202422425U (zh) 基于视频检测的路口智能信号控制系统
CN108320553B (zh) 基于道路驾驶事件的路况预测方法
CN105788280A (zh) 一种基于车联网的智慧城市车辆自动追踪系统
CN109035837B (zh) 一种基于无人机的智能交通系统测试方法
CN111105621B (zh) 一种检测违章停车的方法及装置
KR20190043396A (ko) 도로 경로 촬영 영상을 이용한 도로 경로 별 날씨정보 생성 및 제공하기 위한 방법 및 시스템
CN111429723B (zh) 一种基于路侧设备的通信与感知数据融合方法
Fleck et al. Towards large scale urban traffic reference data: Smart infrastructure in the test area autonomous driving baden-württemberg
CN101320048A (zh) 扇形排列的多电荷耦合器件图像传感器大视场车辆测速装置
CN105303826A (zh) 一种违章侧方停车取证装置及方法
EP3026652A1 (en) Double stereoscopic sensor
KR102061264B1 (ko) C-its 기반 차량위치정보를 이용한 돌발 상황 감지시스템
CN110648528A (zh) 一种智慧公路管理系统
CN110379174B (zh) 一种基于5g定位和视频分析技术的交通管控系统
CN112866328A (zh) 一种面向智能网联汽车的车路协同系统及方法
CN109816971B (zh) 基于多源数据融合的危险品运输车辆预防跟踪系统及方法
KR101372843B1 (ko) 스테레오 기법을 이용한 교차로 꼬리물기 차량 자동 단속 시스템 및 그 방법
CN111311942A (zh) 基于v2x技术的路况显示方法、系统、v2x终端及v2x服务器
CN105303825A (zh) 一种违章斜侧方停车取证装置及方法
CN110490108A (zh) 一种违章状态的标记方法、装置、存储介质及电子装置
CN111835998A (zh) 超视距全景图像获取方法、装置、介质、设备及系统
CN111277956A (zh) 车辆盲区信息的采集方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant