CN111410514B - 一种光学测温材料及其制备方法和非接触式测温材料 - Google Patents

一种光学测温材料及其制备方法和非接触式测温材料 Download PDF

Info

Publication number
CN111410514B
CN111410514B CN202010243155.3A CN202010243155A CN111410514B CN 111410514 B CN111410514 B CN 111410514B CN 202010243155 A CN202010243155 A CN 202010243155A CN 111410514 B CN111410514 B CN 111410514B
Authority
CN
China
Prior art keywords
optical
temperature measuring
srco
mixed powder
thermometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010243155.3A
Other languages
English (en)
Other versions
CN111410514A (zh
Inventor
马斌
杨雪宁
李潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Jixin Hesheng Optical Products Co ltd
Original Assignee
Qinghai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinghai University filed Critical Qinghai University
Priority to CN202010243155.3A priority Critical patent/CN111410514B/zh
Publication of CN111410514A publication Critical patent/CN111410514A/zh
Application granted granted Critical
Publication of CN111410514B publication Critical patent/CN111410514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/20Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种光学测温材料的制备方法,所述制备方法采用的原料包括Eu2O3、SrCO3、Nb2O5和Ga2O3,先对SrCO3进行热处理,然后与Eu2O3、Nb2O5和Ga2O3混合并充分研磨得到混合粉体,将所述混合粉体进行放电等离子烧结,即得所述光学测温材料。本发明出利用Nb和Ga的荧光发光特性结合Eu3+制成Sr2GaNbO6:xEu3+的光学测温材料,测温的灵敏度在300K时达到1.90%K‑1,性能优异。

Description

一种光学测温材料及其制备方法和非接触式测温材料
技术领域
本发明涉及光学测温的技术领域,更具体地,涉及一种光学测温材料及其制备方法和非接触式测温材料。
背景技术
现阶段测温技术的研究热点之一就是基于物质的荧光光学特性的非接触式测温方法。这种方法可以有效避免传统接触式测温方法的诸多缺陷,例如,低分辨率和长响应时间等。同时,基于物质的荧光光学特性的非接触式测温方法制成的荧光温度传感器具有可以检测快速移动物体的温度、不会受到强电磁场的干扰,可以在生物体液中进行温度检测等优势。并且这种温度传感器的响应速度极快(<1ms),灵敏度和空间分辨率分别高达1%K-1和10μm。
稀土离子热耦合能级的荧光强度比对于稀土离子类材料在这种测温技术中的性能表现至关重要,现阶段开发出的可被掺杂利用的这类稀土离子包括Er3+(2H11/24S3/2),Nd3 +(4F3/2(1)4F3/2(2)),Tm3+(3F31G4)和Eu3+(5D05D1)。但是,这些稀土离子单掺杂使用往往会由于热耦合能级之间的能量间隙过小而造成准确率较低的现象。为了克服这一缺陷,一系列双掺杂稀土离子组合开始被投入研究,并且非常有希望应用于基于物质的荧光光学特性的非接触式测温方法,例如,Yb3+/Ho3+,Yb3+/Tm3+和Eu3+/Tb3+等。然而,这些双掺稀土离子组合还是存在灵敏度有待进一步提高的劣势问题。
有鉴于此,特提出本发明申请。
发明内容
为了解决上述技术问题,本发明提供了一种光学测温材料的制备方法,该制备方法的工艺简单,并且得到的光学测温材料的测温灵敏度在300K时达到1.90%K-1,性能优异。
本发明采用的技术方案的基本构思如下:
一种光学测温材料的制备方法,所述制备方法采用的原料包括Eu2O3、SrCO3、Nb2O5和Ga2O3,先对SrCO3进行热处理,然后与Eu2O3、Nb2O5和Ga2O3混合并充分球磨混合得到混合粉体,将所述混合粉体进行放电等离子烧结,即得所述光学测温材料。
作为一种实施方式,SrCO3进行热处理的方法为:将SrCO3置于马弗炉中进行热处理,热处理的温度为1100~1400℃,保温时间为2小时,升温速率为5~10℃/min。
作为一种实施方式,SrCO3进行热处理后,自然冷却至室温。
作为一种实施方式,SrCO3、Ga2O3、Nb2O5和Eu2O3按照Sr、Ga、Nb和Eu的摩尔比例为2:1:1:0.02进行投料。
作为一种实施方式,将所述混合粉体装入石墨模具中,并在所述混合粉体内插入石墨毡片进行分割,再将载有所述混合粉体的石墨模具置于放电等离子炉中进行高温合成反应。
作为一种实施方式,先将载有所述混合粉体的石墨模具加热到800℃,其中,升温速率为500℃/min,压强为0.5Mpa,保温时间为10min;然后继续以500℃/min的升温速率升温至1200℃,并升压至1Mpa,保温15min,降温至室温。
作为一种优选的实施方式,所述降温的速率为400℃/min。
作为一种实施方式,所述升温、保温和降温均在惰性气体保护下进行;优选地,所述惰性气体为纯度≥99.9%的Ar气。
本发明还涉及一种光学测温材料,其采用如上述内容任一项所述的制备方法得到。
作为一种实施方式,所述光学测温材料的化学组成如下所示:Sr2GaNbO6:xEu3+,其中,x=0.02。
作为一种实施方式,所述光学测温材料的测温灵敏度在300K时达到1.90%K-1
本发明进一步涉及一种非接触式测温材料,其设有上述内容任一项所述的光学测温材料。所述非接触式测温材料由于设置了本发明的光学测温材料,测温灵敏度更好,测温更准确。
本发明和现有技术相比具有如下的有益效果:
1、本发明出利用Nb和Ga的荧光发光特性结合Eu3+制成Sr2GaNbO6:xEu3+的光学测温材料,测温的灵敏度在300K时达到1.90%K-1,性能优异。
2、本发明的整个过程操作简单,原料进行热处理之后进行的高温合成实验时间仅需约30min,合成稀土掺杂的材料时,现有技术的方法在管式炉或马弗炉中进行高温合成时,以合成温度为1200℃为例,整个实验过程一般需要14h左右,可见本发明的整个实验过程是大大缩短的。
3、本发明巧妙地利用了放电等离子烧结设备升降温的速度快,对于提高反应物的化学活性等优势,大大缩短了加热时间,降低了能耗。
4、本发明制备的样品相纯度高,与标准数据完全一致,未出现杂相,结晶性非常高。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1是本发明实施例1制备的光学测温材料的X射线衍射谱线与标准谱线的对比图;
图2是本发明实施例1制备的光学测温材料的测温灵敏度拟合曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种光学测温材料的制备方法,所述制备方法采用的原料包括Eu2O3、SrCO3、Nb2O5和Ga2O3,先对SrCO3进行热处理,然后与Eu2O3、Nb2O5和Ga2O3混合并充分球磨混合得到混合粉体,将所述混合粉体进行放电等离子烧结,即得所述光学测温材料。
所述球磨混合的工艺具体如下:
将所有原料粉体装入聚四氟乙烯球磨罐中,磨球采用氧化铝材质,球料质量比为3:1;将装好磨球和原料的装入行星式球磨机,球磨速度为500~800r/min,球磨时间为30min。
作为一种实施方式,SrCO3进行热处理的方法为:将SrCO3置于马弗炉中进行热处理,热处理的温度为1100~1400℃,保温时间为2小时,升温速率为5~10℃/min。
若不采用上述的技术参数,最为明显的影响如下:
1.热处理产物中含有SrCO3,在后续放电等离子加热过程中,升温速率就会达不到500℃/min,大量的中间反应就会由此出现;
2.热处理后的产物会烧结成坚硬块体,使得球磨混合的难度增大且混合粉体不均匀。
作为一种优选的实施方式,SrCO3进行热处理后,自然冷却至室温。
自然冷却至室温可以确保产品的颗粒大小的均一性,并且使晶型发育更好,进而有助于提高其作为光学测温材料的灵敏度和准确性。
作为一种优选的实施方式,SrCO3、Ga2O3、Nb2O5和Eu2O3按照Sr、Ga、Nb和Eu的摩尔比例为2:1:1:0.02进行投料。
按照上述的摩尔比例进行投料有助于提高最终制备的样品的纯度。
作为一种优选的实施方式,将所述混合粉体装入石墨模具中,并在所述混合粉体内插入石墨毡片进行分割,再将载有所述混合粉体的石墨模具置于放电等离子炉中进行高温合成反应。
在所述混合粉体内插入石墨毡片进行分割,第一是为了缓解混合粉体导电性差的缺陷,使升温速率可以达到500℃/min,第二是为了避免混合粉体烧结成块体。
上述步骤的目的在于对混合粉体进行活化处理,放电等离子在对物料进行加热时,放电等离子体会在物料周围对物料粉体进行活化作用,提高其活性。
作为一种实施方式,先将载有所述混合粉体的石墨模具加热到800℃,其中,升温速率为500℃/min,压强为0.5Mpa,保温时间为10min;然后继续以500℃/min的升温速率升温至1200℃,并升压至1Mpa,保温15min,降温至室温。
经过研究发现该材料的最高升温速率为500℃/min,升温速率过低、保温时间过长或者压力大于上述的取值范围均会导致最终制备的产品存在烧结和物相不纯等问题。
作为一种优选的实施方式,所述降温的速率为400℃/min。
降温的速率为400℃/min有助于得到物相更纯净的目标产物,产物的晶体结构保持更好。
作为一种实施方式,所述升温、保温和降温均在惰性气体保护下进行;优选地,所述惰性气体为纯度≥99.9%的Ar气。
本发明还涉及一种光学测温材料,其采用如以上内容任一项所述的制备方法得到。
作为一种实施方式,所述光学测温材料的化学组成如下所示:Sr2GaNbO6:xEu3+,其中,x=0.02。
作为一种实施方式,所述光学测温材料的测温灵敏度在300K时达到1.90%K-1
本发明还涉及一种非接触式测温材料,其设有如以上内容任一项所述的光学测温材料。
下面结合本发明的具体实施例进行更详尽地说明,以便于更好地理解本发明。
实施例1
原料采用分析纯的Eu2O3,SrCO3,Nb2O5和Ga2O3
首先,将SrCO3粉体在马弗炉中进行热处理,热处理的温度为1200℃,时间为2小时,升温速率为10℃/min,热处理完成后进行降温,降温采用自然冷却。随后将热处理后的SrCO3粉体与其余三种原料粉体(Eu2O3,Nb2O5和Ga2O3)进行充分研末混合,得到混合粉体。其中,SrCO3、Ga2O3、Nb2O5和Eu2O3按照Sr、Ga、Nb和Eu的摩尔比例即Sr:Ga:Nb:Eu=2:1:1:0.02进行投料。
将混合好的混合粉体装入石墨模具中,同时在混合粉体中插入石墨毡片将粉体分割,然后将石墨模具放入放电等离子炉中进行高温合成反应,具体步骤为:首先将含有混合粉体的石墨模具加热到800℃,升温速率500℃/min,压强0.5Mpa,保温时间10min。随后继续使用500℃/min的升温速率将混合粉体加热升温至1200℃,并提高压强至1Mpa,并在此条件下保温15min,然后进行降温至室温,降温速率为400℃/min。整个升温、保温和降温过程均在高纯Ar气(99.9%)保护下进行。最后,取出石墨模具中的样品后,进行研磨,即得到目标样品。
上述制备得到的光学测温材料的化学组成为Sr2GaNbO6:xEu3+,其中,x=0.02。
上述光学测温材料的X射线衍射谱线与标准谱线的对比图如图1所示,从图1中可以看出,本发明合成的样品相的纯度高,与标准数据完全一致,未出现杂相,谱线尖锐证明结晶性非常高。可见本发明与普通高温固相合成法和化学方法相比,该方法不仅制备流程短而且获得了具有优异的结构性能的目标产物。
上述光学测温材料的测温灵敏度拟合曲线图如图2所示,由本发明的光学测温材料进行性能测试后得到的数据拟合结果可以看出,该材料的核心性能测温灵敏度非常高,其中,灵敏度在300K时达到1.90%K-1(图2)。
另外,本发明的光学测温材料相比其他Eu3+掺杂的测温材料,性能也非常突出,具体的性能对照参见表1。
表1
Figure BDA0002433230770000071
从上述表1的性能对照结果可以看出,本发明制备的光学测温材料和其他现有技术相比具有优异的性能,具有广泛的应用前景。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (11)

1.一种光学测温材料的制备方法,其特征在于,所述制备方法采用的原料包括Eu2O3、SrCO3、Nb2O5和Ga2O3,先对SrCO3进行热处理,然后与Eu2O3、Nb2O5和Ga2O3混合并充分球磨混合得到混合粉体,将所述混合粉体进行放电等离子烧结,即得所述光学测温材料;
SrCO3、Ga2O3、Nb2O5和Eu2O3按照Sr、Ga、Nb和Eu的摩尔比例为2:1:1:0.02进行投料;
所述光学测温材料的化学组成如下所示:Sr2GaNbO6:xEu3+,其中,x=0.02。
2.根据权利要求1所述的光学测温材料的制备方法,其特征在于,SrCO3进行热处理的方法为:将SrCO3置于马弗炉中进行热处理,热处理的温度为1100~1400℃,保温时间为2小时,升温速率为5~10℃/min。
3.根据权利要求1所述的光学测温材料的制备方法,其特征在于,SrCO3进行热处理后,自然冷却至室温。
4.根据权利要求1所述的光学测温材料的制备方法,其特征在于,将所述混合粉体装入石墨模具中,并在所述混合粉体内插入石墨毡片进行分割,再将载有所述混合粉体的石墨模具置于放电等离子炉中进行高温合成反应。
5.根据权利要求4所述的光学测温材料的制备方法,其特征在于,先将载有所述混合粉体的石墨模具加热到800℃,其中,升温速率为500℃/min,压强为0.5Mpa,保温时间为10min;然后继续以500℃/min的升温速率升温至1200℃,并升压至1Mpa,保温15min,降温至室温。
6.根据权利要求5所述的光学测温材料的制备方法,其特征在于,所述降温的速率为400℃/min。
7.根据权利要求5所述的光学测温材料的制备方法,其特征在于,所述升温、保温和降温均在惰性气体保护下进行。
8.根据权利要求7所述的光学测温材料的制备方法,其特征在于,所述惰性气体为纯度≥99.9%的Ar气。
9.一种光学测温材料,其特征在于,采用如权利要求1-8任一项所述的制备方法得到。
10.根据权利要求9所述的光学测温材料,其特征在于,所述光学测温材料的测温灵敏度在300K时达到1.90%K-1
11.一种非接触式测温材料,其特征在于,设有如权利要求9或10所述的光学测温材料。
CN202010243155.3A 2020-03-31 2020-03-31 一种光学测温材料及其制备方法和非接触式测温材料 Active CN111410514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010243155.3A CN111410514B (zh) 2020-03-31 2020-03-31 一种光学测温材料及其制备方法和非接触式测温材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010243155.3A CN111410514B (zh) 2020-03-31 2020-03-31 一种光学测温材料及其制备方法和非接触式测温材料

Publications (2)

Publication Number Publication Date
CN111410514A CN111410514A (zh) 2020-07-14
CN111410514B true CN111410514B (zh) 2021-01-05

Family

ID=71488092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010243155.3A Active CN111410514B (zh) 2020-03-31 2020-03-31 一种光学测温材料及其制备方法和非接触式测温材料

Country Status (1)

Country Link
CN (1) CN111410514B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174256B (zh) * 2021-04-07 2022-05-31 杭州电子科技大学 一种Mn4+掺杂的红色荧光粉及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1588991B1 (en) * 2003-01-20 2019-04-17 Ube Industries, Ltd. Ceramic composite material for optical conversion
JP4575171B2 (ja) * 2003-03-31 2010-11-04 カウンセル オブ サイエンティフィック アンド インダストリアル リサーチ Mg2MM’O6+x、(M=Y、希土類金属、およびM’=SN、SB、ZR、HF、およびTA)化合物、およびその製造方法
WO2011056418A2 (en) * 2009-10-28 2011-05-12 University Of Florida Research Foundation, Inc. Fabrication of dual structure ceramics by a single step process
CN107099281A (zh) * 2017-05-11 2017-08-29 中山大学 一种具有高灵敏度的光学测温材料及其制备方法
CN109280549A (zh) * 2018-10-23 2019-01-29 上海理工大学 一种荧光变色的光学测温材料及其制备方法、应用
CN110484253A (zh) * 2019-07-23 2019-11-22 中国计量大学 一种用于光学测温的上转换发光稀土掺杂钛酸镧纳米片的制备方法

Also Published As

Publication number Publication date
CN111410514A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
Zhao et al. Crystal Growth and Characterization of the Model High‐Temperature Superconductor HgBa2CuO4+ δ
CN103396121B (zh) 一种具有石榴石结构的新型透明闪烁陶瓷及其制备方法
EP3904312A1 (en) High-entropy rare earth-toughened tantalate ceramic and preparation method therefor
CN101817683B (zh) MgAlON透明陶瓷的无压烧结制备方法
CN102931335B (zh) 一种石墨烯复合锑化钴基方钴矿热电材料及其制备方法
CN105418063B (zh) 一种非化学计量比镥铝石榴石闪烁陶瓷及其制备方法
Lu et al. Controlled synthesis of layered rare‐earth hydroxide nanosheets leading to highly transparent (Y0. 95Eu0. 05) 2O3 ceramics
CN107935581B (zh) 两相均匀分布的复合石榴石闪烁陶瓷及其制备方法
CN112299861B (zh) 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法
CN111410514B (zh) 一种光学测温材料及其制备方法和非接触式测温材料
CN106948006A (zh) 一种高光输出硅酸铋闪烁晶体及其制备方法
CN112010270A (zh) FeBi(Te,Se)多晶超导材料及其制备方法和应用
Miniajluk et al. Spark Plasma Sintering of double perovskite Ba2MgWO6 doped with Ce3+: Part I-Structural and microstructural characterizations
CN107345134B (zh) 一种高灵敏度稀土掺杂钨青铜荧光探温材料
Ji et al. Preparation, luminescence and sintering properties of Ce-doped BaHfO3 phosphors
Morimoto et al. Conditions of large unitary (K, Na) NbO3 system single crystals for rapid solid-state crystal growth method
Wang et al. Effects of ball-milling on fabrication of YAG ceramics by a phase transformation assisted spark plasma sintering
Piątkowska et al. New vacancied and Gd3+-doped lead molybdato-tungstates and tungstates prepared via solid state and citrate-nitrate combustion method
Hou et al. Effective calcination pretreatment of Lu2O3 powders for LuAG transparent ceramics
CN102701723A (zh) Ce掺杂的LaAlO3闪烁陶瓷材料的制备方法
CN110228948B (zh) 一种新型的光致发光透明玻璃陶瓷及其制备方法
Ma et al. Effects of Gd3+-doping on the fabrication and performances of highly transparent (Lu, Gd) 2O3: Eu solid-solution ceramics
CN113277533A (zh) 探测材料、光释光剂量元件及其制备方法和应用
Grytsiv et al. Novel Zn9-cluster compounds RE2Zn6Ge3 (RE: La, Ce, Pr, Nd, Sm, Gd): crystal structure and physical properties
Martirosyan et al. Structure and properties of hard-magnetic barium, strontium, and lead ferrites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220720

Address after: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

Address before: 810016 No. 251 Ning Road, Qinghai, Xining

Patentee before: Qinghai University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240813

Address after: 518000 second floor, third floor and fourth floor, building 16, Fumin Industrial Zone, Pinghu community, Pinghu street, Longgang District, Shenzhen, Guangdong

Patentee after: Shenzhen Jixin Hesheng Optical Products Co.,Ltd.

Country or region after: China

Address before: 230000 Room 203, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Hefei Jiuzhou Longteng scientific and technological achievement transformation Co.,Ltd.

Country or region before: China