CN111247255A - 用于检测大豆植物dbn8007的核酸序列及其检测方法 - Google Patents

用于检测大豆植物dbn8007的核酸序列及其检测方法 Download PDF

Info

Publication number
CN111247255A
CN111247255A CN201980005159.3A CN201980005159A CN111247255A CN 111247255 A CN111247255 A CN 111247255A CN 201980005159 A CN201980005159 A CN 201980005159A CN 111247255 A CN111247255 A CN 111247255A
Authority
CN
China
Prior art keywords
seq
nucleic acid
dna
acid sequence
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980005159.3A
Other languages
English (en)
Other versions
CN111247255B (zh
Inventor
韩超
于彩虹
谢香庭
王登元
杨淑靖
崔广东
康越景
鲍晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Dabeinong Biotechnology Co Ltd
Original Assignee
Beijing Dabeinong Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Dabeinong Biotechnology Co Ltd filed Critical Beijing Dabeinong Biotechnology Co Ltd
Publication of CN111247255A publication Critical patent/CN111247255A/zh
Application granted granted Critical
Publication of CN111247255B publication Critical patent/CN111247255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/02Methods or apparatus for hybridisation; Artificial pollination ; Fertility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8277Phosphinotricin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Insects & Arthropods (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pest Control & Pesticides (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种用于检测大豆植物DBN8007的核酸序列及其检测方法,所述核酸序列包括SEQ ID NO:1或其互补序列、和/或SEQ ID NO:2或其互补序列。本发明大豆植物DBN8007对鳞翅目昆虫具有较好的抗性并对草铵膦除草剂具有较好的耐受性,对产量无影响,且检测方法可以准确快速的鉴定生物样品中是否包含转基因大豆事件DBN8007的DNA分子。

Description

用于检测大豆植物DBN8007的核酸序列及其检测方法
技术领域
本发明涉及植物分子生物学领域,特别是农业生物技术研究中的转基因农作物育种领域。具体地,本发明涉及昆虫抗性和草铵膦除草剂耐受性的转基因大豆事件DBN8007和用于检测生物样品中是否包含特定转基因大豆事件DBN8007的核酸序列及其检测方法。
背景技术
大豆(Glycine max)是世界五大主栽作物之一。生物技术已经应用于大豆以改善其农艺性状和品质。在大豆生产中除草剂耐受性是一项重要的农艺性状,特别是耐受草甘膦除草剂,如已有成功的大豆事件GTS40-3-2、MON89788,美国等大豆主要种植区域已广泛种植。另一个重要的农艺性状是昆虫抗性,特别是对鳞翅目昆虫的抗性,如已有成功的大豆事件MON87701在巴西等大豆主要种植区域广泛种植。值得一提的是,Vip蛋白与Cry蛋白的作用机制不同,其为营养期杀虫蛋白,且可以作为一种有效管理Cry蛋白抗性昆虫的手段。大豆对鳞翅目昆虫的抗性可以通过转基因的方法使鳞翅目昆虫的抗性基因在大豆植物中表达而获得。此外,草铵膦除草剂与草甘膦除草剂的作用机理不同,其为灭生性的触杀型除草剂,且可以作为一种有效管理草甘膦抗性杂草的手段。大豆对草铵膦除草剂的耐受性可以通过转基因的方法使草铵膦除草剂耐受型基因(如PAT)在大豆植物中表达而获得。
设计适用于转化大豆作物的包含外源功能基因(Vip3Aa基因和PAT基因)的表达载体且得到相应的可商业化转基因大豆事件具有重要意义。目前未有Vip蛋白在大豆植物控虫上成功应用的案例,与此同时,除草剂耐受性作为大豆生产中一项重要的农艺性状,几乎是不可或缺的,因此良好的商业化大豆转化事件要综合考虑Vip3Aa基因和PAT基因在大豆植物中的载体设计、两个表达盒的互作影响、抗虫效果、耐受除草剂效果以及对产量和其他植物生理指标的影响,使得Vip3Aa基因和PAT基因能够在大豆中适量表达并实现其相应的功能,而不影响大豆产量和其他生理指标。
已知外源基因在植物体内的表达受到它们的染色体位置的影响,可能是由于染色质结构(如异染色质)或转录调节元件(如增强子)接近整合位点。为此,通常需要筛选大量的事件才有可能鉴定出可以商业化的事件(即导入的目标基因得到最优表达的事件)。例如,在植物和其他生物体中已经观察到导入基因的表达量在事件间可能有很大差异;在表达的空间或时间模式上可能也存在差异,如在不同植物组织之间转基因的相对表达存在差异,这种差异表现在实际的表达模式可能与根据导入的基因构建体中的转录调节元件所预期的表达模式不一致。因此,通常需要产生成百上千个不同的事件并从这些事件中筛选出具有以商业化为目的所预期的转基因表达量和表达模式的单一事件。具有预期的转基因表达量和表达模式的事件可用于采用常规育种方法通过有性异型杂交将转基因渗入到其他遗传背景中。通过这种杂交方式产生的后代保持了原始转化体的转基因表达特征。应用这种策略模式可以确保在许多品种中具有可靠的基因表达,而这些品种能很好的适应当地的生长条件。
能够检测特定事件的存在以确定有性杂交的后代是否包含目的基因将是有益的。此外,检测特定事件的方法还将有助于遵守相关法规,例如来源于重组农作物的食物在投入市场前需要获得正式批准和进行标记。通过任何熟知的多核苷酸检测方法来检测转基因的存在都是可能的,例如聚合酶链式反应(PCR)或利用多核苷酸探针的DNA杂交。这些检测方法通常集中于常用的遗传元件,例如启动子、终止子、标记基因等。因此,除非与插入的转基因DNA相邻的染色体DNA(“侧翼DNA”)的序列是己知的,上述这种方法就不能够用于区别不同的事件,特别是那些用相同的DNA构建体产生的事件。所以,目前常利用跨越了插入的转基因和侧翼DNA的接合部位的一对引物通过PCR来鉴定转基因特定事件,具体地说是包含于插入序列的第一引物和包含于插入序列的第二引物。
发明内容
本发明的目的是提供一种用于检测大豆植物DBN8007的核酸序列及其检测方法,转基因大豆事件DBN8007对昆虫具有较好的抗性并对草铵膦除草剂具有较好的耐受性,且检测方法可以准确快速的鉴定生物样品中是否包含转基因大豆事件DBN8007的DNA分子。
为实现上述目的,本发明提供了一种核酸序列,具有SEQ ID NO:3或其互补序列第1-553位中至少11个连续的核苷酸和SEQ ID NO:3或其互补序列第554-1407位中至少11个连续的核苷酸、和/或SEQ ID NO:4或其互补序列第1-348位中至少11个连续的核苷酸和SEQID NO:4或其互补序列第349-1022位中至少11个连续的核苷酸。
优选地,所述核酸序列具有SEQ ID NO:3或其互补序列第1-553位中22-25个连续的核苷酸和SEQ ID NO:3或其互补序列第554-1407位中22-25个连续的核苷酸、和/或SEQID NO:4或其互补序列第1-348位中22-25个连续的核苷酸和SEQ ID NO:4或其互补序列第349-1022位中22-25个连续的核苷酸。
优选地,所述核酸序列包含SEQ ID NO:1或其互补序列、和/或SEQ ID NO:2或其互补序列。
所述SEQ ID NO:1或其互补序列为转基因大豆事件DBN8007中在插入序列的5’末端位于插入接合部位附近的一个长度为22个核苷酸的序列,所述SEQ ID NO:1或其互补序列跨越了大豆插入位点的侧翼基因组DNA序列和插入序列的5’末端的DNA序列,包含所述SEQ ID NO:1或其互补序列即可鉴定为转基因大豆事件DBN8007的存在。所述SEQ ID NO:2或其互补序列为转基因大豆事件DBN8007中在插入序列的3’末端位于插入接合部位附近的一个长度为22个核苷酸的序列,所述SEQ ID NO:2或其互补序列跨越了插入序列的3’末端的DNA序列和大豆插入位点的侧翼基因组DNA序列,包含所述SEQ ID NO:2或其互补序列即可鉴定为转基因大豆事件DBN8007的存在。
优选地,所述核酸序列包含SEQ ID NO:3或其互补序列、和/或SEQ ID NO:4或其互补序列。
本发明中,所述核酸序列可以为所述SEQ ID NO:3或其互补序列中T-DNA插入序列的任何部分的至少11个或更多个连续多核苷酸(第一核酸序列),或者为所述SEQ ID NO:3或其互补序列中5’侧翼大豆基因组DNA区域的任何部分的至少11个或更多个连续多核苷酸(第二核酸序列)。所述核酸序列进一步可以为同源于或互补于包含完整的所述SEQ ID NO:1的所述SEQ ID NO:3的一部分。当第一核酸序列和第二核酸序列一起使用时,这些核酸序列可作为DNA引物对用于产生扩增产物的DNA扩增方法中。使用DNA引物对在DNA扩增方法中产生的扩增产物是包括SEQ ID NO:1的扩增产物时,可以诊断转基因大豆事件DBN8007或其后代的存在。所述SEQ ID NO:3或其互补序列为转基因大豆事件DBN8007中在T-DNA插入序列的5’末端位于插入接合部位附近的一个长度为1407个核苷酸的序列,所述SEQ ID NO:3或其互补序列由553个核苷酸的大豆基因组5’侧翼序列(SEQ ID NO:3的核苷酸第1-553位)、356个pDBN4006构建体DNA序列中的核苷酸(SEQ ID NO:3的核苷酸第554-909位)和498个核苷酸的prAtAct2转录起始序列(SEQ ID NO:3的核苷酸第910-1407位)组成,包含所述SEQ ID NO:3或其互补序列即可鉴定为转基因大豆事件DBN8007的存在。
所述核酸序列可以为所述SEQ ID NO:4或其互补序列中T-DNA插入序列的任何部分的至少11个或更多个连续多核苷酸(第三核酸序列),或者为所述SEQ ID NO:4或其互补序列中3’侧翼大豆基因组DNA区域的任何部分的至少11个或更多个连续多核苷酸(第四核酸序列)。所述核酸序列进一步可以为同源于或互补于包含完整的所述SEQ ID NO:2的所述SEQ ID NO:4的一部分。当第三核酸序列和第四核酸序列一起使用时,这些核酸序列可作为DNA引物对用于产生扩增产物的DNA扩增方法中。使用DNA引物对在DNA扩增方法中产生的扩增产物是包括SEQ ID NO:2的扩增产物时,可以诊断转基因大豆事件DBN8007或其后代的存在。所述SEQ ID NO:4或其互补序列为转基因大豆事件DBN8007中在插入序列的3’末端位于T-DNA插入接合部位附近的一个长度为1022个核苷酸的序列,所述SEQ ID NO:4或其互补序列由145个核苷酸的t35S转录终止子的DNA序列(SEQ ID NO:4的核苷酸第1-145位)、203个pDBN4006构建体DNA序列中的核苷酸(SEQ ID NO:4的核苷酸第146-348位)和674个核苷酸的大豆基因组3’侧翼序列(SEQ ID NO:4的核苷酸第349-1022位)组成,包含所述SEQ IDNO:4或其互补序列即可鉴定为转基因大豆事件DBN8007的存在。
进一步地,所述核酸序列包含SEQ ID NO:5或其互补序列。
所述SEQ ID NO:5或其互补序列为表征转基因大豆事件DBN8007的长度为11935个核苷酸的序列,其具体包含的基因组和遗传元件如表1所示。包含所述SEQ ID NO:5或其互补序列即可鉴定为转基因大豆事件DBN8007的存在。
表1、SEQ ID NO:5包含的基因组及遗传元件
Figure BDA0002452252810000031
本领域技术人员熟知的,第一、第二、第三和第四核酸序列不必仅仅由DNA组成,也可包括RNA、DNA和RNA的混合物,或者DNA、RNA或其它不作为一种或多种聚合酶模板的核苷酸或其类似物的组合。此外,本发明中所述探针或引物应该是至少大约11、12、13、14、15、16、17、18、19、20、21或22个连续核苷酸的长度,其可以选自SEQ ID NO:1、SEQ ID NO:2、SEQID NO:3、SEQ ID NO:4和SEQ ID NO:5中所述的核苷酸。当选自SEQ ID NO:3、SEQ ID NO:4和SEQ ID NO:5所示的核苷酸时,所述探针和引物可以为长度是至少大约21个到大约50个或更多的连续核苷酸。
所述核酸序列或其互补序列可用于DNA扩增法中以产生扩增子,所述扩增子用于检测生物样品中转基因大豆事件DBN8007或其后代的存在;所述核酸序列或其互补序列可用于核苷酸检测法中,以检测生物样品中转基因大豆事件DBN8007或其后代的存在。
为实现上述目的,本发明还提供了一种检测样品中转基因大豆事件DBN8007的DNA存在的方法,包括:
使待检测样品与用于扩增目标扩增产物的至少两种引物在核酸扩增反应中接触;
进行核酸扩增反应;和
检测所述目标扩增产物的存在;
所述目标扩增产物包含所述核酸序列。
优选地,所述目标扩增产物包含SEQ ID NO:1或其互补序列、SEQ ID NO:2或其互补序列、SEQ ID NO:6或其互补序列、和/或SEQ ID NO:7或其互补序列。
具体地,所述引物包括第一引物和第二引物,所述第一引物选自SEQ ID NO:1、SEQID NO:8和SEQ ID NO:10;所述第二引物选自SEQ ID NO:2、SEQ ID NO:9和SEQ ID NO:11。
为实现上述目的,本发明还提供了一种检测样品中转基因大豆事件DBN8007的DNA存在的方法,包括:
使待检测样品与探针接触,所述探针包含所述核酸序列;
使所述待检测样品和所述探针在严格杂交条件下杂交;和
检测所述待检测样品和所述探针的杂交情况。
所述严格条件可为在6×SSC(柠檬酸钠)、0.5%SDS(十二烷基硫酸钠)溶液中,在65℃下杂交,然后用2×SSC、0.1%SDS和1×SSC、0.1%SDS各洗膜1次。
优选地,所述探针包含SEQ ID NO:1或其互补序列、SEQ ID NO:2或其互补序列、SEQ ID NO:6或其互补序列、和/或SEQ ID NO:7或其互补序列。
可选地,至少一个所述探针用至少一种荧光基团标记。
为实现上述目的,本发明还提供了一种检测样品中转基因大豆事件DBN8007的DNA存在的方法,包括:
使待检测样品与标记物核酸分子接触,所述标记物核酸分子包括所述核酸序列;
使所述待检测样品和所述标记物核酸分子在严格杂交条件下杂交;
检测所述待检测样品和所述标记物核酸分子的杂交情况,进而通过标记物辅助育种分析以确定昆虫抗性和/或除草剂耐受性与标记物核酸分子在遗传学上是连锁的。
优选地,所述标记物核酸分子包括选自以下的至少一种:SEQ ID NO:1或其互补序列、SEQ ID NO:2或其互补序列、和/或SEQ ID NO:6-11或其互补序列。
为实现上述目的,本发明还提供了一种DNA检测试剂盒,包括至少一个DNA分子,所述DNA分子包含所述核酸序列,其可以作为对于转基因大豆事件DBN8007或其后代具有特异性的DNA引物之一或探针。
优选地,所述DNA分子包含SEQ ID NO:1或其互补序列、SEQ ID NO:2或其互补序列、SEQ ID NO:6或其互补序列、和/或SEQ ID NO:7或其互补序列。
为实现上述目的,本发明还提供了一种植物细胞,包含编码昆虫抗性Vip3Aa蛋白的核酸序列、编码草铵膦除草剂耐受性PAT蛋白的核酸序列和特定区域的核酸序列,所述特定区域的核酸序列包括SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:6和/或SEQ ID NO:7所示的序列。
优选地,所述植物细胞包含编码昆虫抗性Vip3Aa蛋白的核酸序列、编码草铵膦除草剂耐受性PAT蛋白的核酸序列和特定区域的核酸序列,所述特定区域的核酸序列包括SEQID NO:3和/或SEQ ID NO:4所示的序列。
优选地,所述植物细胞依次包含SEQ ID NO:1、SEQ ID NO:5第5594-11006位核酸序列和SEQ ID NO:2,或者包含SEQ ID NO:5所示的序列。
为实现上述目的,本发明还提供了一种保护大豆植物免于昆虫侵袭的方法,包括在靶昆虫的膳食中提供至少一种转基因大豆植物细胞,所述转基因大豆植物细胞在其基因组中包含SEQ ID NO:1和/或SEQ ID NO:2所示的序列,摄食所述转基因大豆植物细胞的靶昆虫被抑制进一步摄食所述转基因大豆植物。
优选地,所述转基因大豆植物细胞在其基因组中包含SEQ ID NO:3和/或SEQ IDNO:4所示的序列。
优选地,所述转基因大豆植物细胞在其基因组中依次包含SEQ ID NO:1、SEQ IDNO:5第5594-11006位核酸序列和SEQ ID NO:2,或者包含SEQ ID NO:5。
为实现上述目的,本发明还提供了一种保护大豆植物免受由除草剂引起的损伤或控制种植大豆植物的大田中杂草的方法,包括将含有有效剂量草铵膦除草剂施加到种植至少一种转基因大豆植物的大田中,所述转基因大豆植物在其基因组中包含SEQ ID NO:1和/或SEQ ID NO:2所示的序列,所述转基因大豆植物对草铵膦除草剂具有耐受性。
优选地,所述转基因大豆植物在其基因组中包含SEQ ID NO:3和/或SEQ ID NO:4所示的序列。
优选地,所述转基因大豆植物在其基因组中依次包含SEQ ID NO:1、SEQ ID NO:5第5594-11006位核酸序列和SEQ ID NO:2,或者包含SEQ ID NO:5所示的序列。
为实现上述目的,本发明还提供了一种培养对昆虫具有抗性和/或耐受草铵膦除草剂的大豆植物的方法,包括:
种植至少一粒大豆种子,所述大豆种子的基因组中包含编码昆虫抗性Vip3Aa蛋白的核酸序列和/或编码草铵膦除草剂耐受性PAT蛋白的核酸序列、和特定区域的核酸序列,或者所述大豆种子的基因组中包含SEQ ID NO:5所示的核酸序列;
使所述大豆种子长成大豆植株;
用靶昆虫侵袭所述大豆植株和/或用有效剂量草铵膦除草剂喷洒所述大豆植株,收获与其他不具有特定区域的核酸序列的植株相比具有减弱的植物损伤的植株;
所述特定区域的核酸序列为SEQ ID NO:1和/或SEQ ID NO:2所示的序列;优选也,所述特定区域的核酸序列为SEQ ID NO:3和/或SEQ ID NO:4所示的序列。
为实现上述目的,本发明还提供了一种产生对昆虫具有抗性和/或对草铵膦除草剂具有耐受性的大豆植株的方法,包括将第一大豆植物基因组中包含的编码昆虫抗性Vip3Aa蛋白的核酸序列和/或编码草铵膦耐受性PAT蛋白的核酸序列、和特定区域的核酸序列,或者将所述第一大豆植物基因组中包含的SEQ ID NO:5所示的核酸序列,引入第二大豆植物,从而产生大量子代植株;选择具有所述特定区域的核酸序列的所述子代植株,且所述子代植株对昆虫具有抗性和/或对草铵膦除草剂具有耐受性;所述特定区域的核酸序列为SEQ ID NO:1和/或SEQ ID NO:2所示的序列;优选地,所述特定区域的核酸序列为SEQ IDNO:3和/或SEQ ID NO:4所示的序列;
优选地,所述方法包括将转基因大豆事件DBN8007与缺少昆虫抗性和/或草铵膦耐受性的大豆植株进行有性杂交,从而产生大量子代植株,选择具有所述特定区域的核酸序列的所述子代植株;
用靶昆虫侵袭和/或用草铵膦处理所述子代植株;
选择对昆虫具有抗性和/或对草铵膦除草剂具有耐受性的所述子代植株。
为实现上述目的,本发明还提供了一种产生自转基因大豆事件DBN8007的农产品或商品,所述农产品或商品为卵磷脂、脂肪酸、甘油、固醇、大豆片、大豆粉、大豆蛋白或其浓缩物、大豆油、大豆蛋白纤维、豆浆凝块或豆腐。
在本发明用于检测大豆植物的核酸序列及其检测方法中,以下定义和方法可以更好地定义本发明和指导本领域的普通技术人员实施本发明,除非另作说明,根据本领域普通技术人员的常规的用法来理解术语。
所述“大豆”是指黄豆(Glycine max),并且包括可以与大豆交配的所有植物品种,包括野生大豆种。
所述“包含”、“包括”或“含有”是指“包括但不限于”。
术语“植物”包括整株植物、植物细胞、植物器官、植物原生质体、植物可以从中再生的植物细胞组织培养物、植物愈伤组织、植物丛(plant clumps)和植物或植物部分中完整的植物细胞,所述植物部分例如胚、花粉、胚珠、种子、叶、花、枝、果实、茎秆、根、根尖、花药等。应理解为本发明范围内的转基因植物的部分包括但不限于植物细胞、原生质体、组织、愈伤组织、胚以及花、茎、果实、叶和根,以上植物部分源自事先用本发明的DNA分子转化的并因此至少部分地由转基因细胞组成的转基因植物或其子代。
术语“基因”是指表达特定蛋白的核酸片段,包括编码序列前的调节序列(5’非编码序列)和编码序列后的调节序列(3’非编码序列)。“天然基因”是指天然发现具有其自身调节序列的基因。“嵌合基因”是指不是天然基因的任何基因,其包含非天然发现的调节和编码序列。“内源基因”是指天然基因,所述天然基因位于生物体基因组中它的天然位置。“外源基因”是现存在于生物的基因组中且原来不存在的外来基因,也指经转基因步骤导入受体细胞的基因。外源基因可以包含插入非天然生物体的天然基因或嵌合基因。“转基因”是通过转化程序已经被引入基因组的基因。植物基因组中重组DNA已被插入的位点可以称为“插入位点”或“靶位点”。
“侧翼DNA”可以包含天然存在于例如植物的生物体中的基因组或通过转化过程引入的外源(异源)DNA,例如与转化事件相关的片段。因此,侧翼DNA可以包括天然和外源DNA的组合。在本发明中,“侧翼DNA”亦称“侧翼区”或“侧翼序列”或“侧翼基因组序列”或“侧翼基因组DNA”,是指至少3、5、10、11、15、20、50、100、200、300、400、1000、1500、2000、2500或5000碱基对或更长的序列,其位于最初外源插入DNA分子的直接上游或下游并且与最初外源插入DNA分子相邻。当该侧翼区位于下游时,其也可以称为“3’侧翼”或“左边界侧翼”等。当该侧翼区位于上游时,其也可以称为“5’侧翼”或“右边界侧翼”等。
引起外源DNA的随机整合的转化程序会导致含有不同侧翼区的转化体,所述不同侧翼区是每个转化体所特异性含有的。当重组DNA通过传统杂交被引入植物时,其侧翼区通常不会改变。转化体也会含有异源插入物DNA和基因组DNA的段之间或两段基因组DNA之间或两段异源DNA之间的独特的接合。“接合”是两个具体的DNA片段连接的点。例如,接合存在于插入物DNA连接侧翼DNA的位置。接合点还存在于转化的生物体中,其中两个DNA片段以修饰自天然生物体中发现的方式的连接在一起。“接合区域”或“接合序列”是指包含接合点的DNA。
本发明提供了称为DBN8007的转基因大豆事件及其后代,所述转基因大豆事件DBN8007亦称为大豆植物DBN8007,其包括转基因大豆事件DBN8007的植物和种子及其植物细胞或其可再生部分,所述转基因大豆事件DBN8007的植物部分,包括但不限于细胞、花粉、胚珠、花、芽、根、茎、叶、荚和来自大豆植物DBN8007的产物,例如大豆饼、粉和油,具体可以为卵磷脂、脂肪酸、甘油、固醇、食用油、脱脂大豆片、包括脱脂的和烘烤的大豆粉、豆浆凝块、豆腐、大豆蛋白浓缩物、分离的大豆蛋白、水解植物蛋白、组织化大豆蛋白和大豆蛋白纤维。
本发明转基因大豆事件DBN8007包含了一个DNA构建体,当其在植物细胞内表达时,所述转基因大豆事件DBN8007获得对昆虫的抗性和对草铵膦除草剂的耐受性。所述DNA构建体包含两个串联的表达盒,第一个表达盒包含用于在植物中表达的适合的启动子和适合的多聚腺苷酸化信号序列,所述启动子可操作地连接Vip3Aa蛋白的核酸序列,所述Vip3Aa蛋白的核酸序列主要对鳞翅目昆虫具有抗性。第二个表达盒包含用于在植物中表达的适合的启动子和适合的多聚腺苷酸化信号序列,所述启动子可操作地连接编码膦丝菌素N-乙酰基转移酶(phosphinothricinN-acetyltransferase,PAT)的基因,所述PAT蛋白的核酸序列对草铵膦除草剂具有耐受性。进一步地,所述启动子可以为从植物分离的适合启动子,包括组成型、诱导型和/或组织特异性启动子,所述适合启动子包括但不限于,花椰菜花叶病毒(CaMV)35S启动子、玄参花叶病毒(FMV)35S启动子、泛素蛋白(Ubiquitin)启动子、肌动蛋白(Actin)启动子、土壤农杆菌(Agrobacterium tumefaciens)胭脂碱合成酶(NOS)启动子、章鱼碱合成酶(OCS)启动子、夜香树属(Cestrum)黄叶卷曲病毒启动子、马铃薯块茎储藏蛋白(Patatin)启动子、核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)启动子、谷胱甘肽硫转移酶(GST)启动子、E9启动子、GOS启动子、alcA/alcR启动子、毛根农杆菌(Agrobacterium rhizogenes)RolD启动子和拟南芥属(Arabidopsis thaliana)Suc2启动子。所述多聚腺苷酸化信号序列可以为在植物中起作用的适合多聚腺苷酸化信号序列,所述适合多聚腺苷酸化信号序列包括但不限于,来源于土壤农杆菌(Agrobacteriumtumefaciens)胭脂碱合成酶(NOS)基因的多聚腺苷酸化信号序列、来源于花椰菜花叶病毒(GaMY)35S终止子、来源于蛋白酶抑制剂II(PIN|II)基因的多聚腺苷酸化信号序列和来源于α-微管蛋白(α-tubulin)基因的多聚腺苷酸化信号序列。
此外,所述表达盒还可以包括其他的遗传元件,所述遗传元件包括但不限于,增强子和信号肽/转运肽。所述增强子可以加强基因的表达水平,所述增强子包括但不限于,烟草蚀刻病毒(TEV)翻译激活因子、CaMV35S增强子和FMV35S增强子。所述信号肽/转运肽可以引导Vip3Aa蛋白和/或PAT蛋白转运到细胞外或者细胞内特定的细胞器或区室,例如,利用编码叶绿体转运肽序列靶向叶绿体,或者利用‘KDEL’保留序列靶向内质网。
所述Vip3Aa基因可以是从苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)中分离得到的,且可以通过优化密码子或者以其它方式改变Vip3Aa基因的核苷酸序列,以达到增加转化细胞中转录物的稳定性和可利用性的目的。
所述“鳞翅目(Lepidoptera)”,包括蛾、蝶两类昆虫,是农林害虫最多的一个目,如小地老虎、棉铃虫、斜纹夜蛾、二点委夜蛾、桃蛀螟等。
所述膦丝菌素N-乙酰基转移酶(PAT)基因可以是从链霉菌(Streptomycesviridochromogenes)菌株分离的酶,通过乙酰化催化L-膦丝菌素转化为其无活性形式,以赋予植物对草铵膦除草剂的耐受性。Phosphinothricin(PTC,2-氨基-4-甲膦酰丁酸)是谷氨酰胺合成酶的抑制剂。PTC是抗生素2-氨基-4-甲膦酰-丙氨酰-丙氨酸的结构单位,此三肽(PTT)具有抗革兰氏阳性和革兰氏阴性细菌以及抗真菌灰葡萄孢(Botrytis cinerea)的活性。膦丝菌素N-乙酰基转移酶(PAT)基因也可以作为选择性标记基因。
所述“草铵膦”又名草丁膦,是指2-氨基-4-[羟基(甲基)膦酰基]丁酸铵,用“草铵膦除草剂”处理是指使用任何一种含有草铵膦的除草剂制剂进行处理。为了达到有效生物学剂量而对某种草铵膦制剂使用率的选择不超过普通农艺技术人员的技能。使用任何一种含有草铵膦的除草剂制剂处理包含了来源于转基因大豆事件DBN8007的植物材料的田地,将控制所述田地中的杂草生长,并且不影响来源于转基因大豆事件DBN8007的植物材料的生长或产量。
所述DNA构建体采用转化方法被引入到植物中,所述转化方法包括但不限于,农杆菌(Agrobacterium)介导转化法、基因枪转化法和花粉管通道转化法。
所述农杆菌介导转化法是植物转化的常用方法。将要引入到植物中的外源DNA克隆到载体的左和右边界共有序列之间,即T-DNA区。所述载体被转化到农杆菌细胞中,随后,所述农杆菌细胞用于感染植物组织,包含外源DNA的载体的所述T-DNA区被插入到植物基因组中。
所述基因枪转化法即为用包含外源DNA的载体轰击植物细胞(粒子介导的生物弹击转化)。
所述花粉管通道转化法是利用植物授粉后所形成的天然的花粉管通道(又名花粉管引导组织),经珠心通道,将外源DNA携带入胚囊。
转化后,必须从转化的植物组织再生转基因植物,并且利用适合的标记选择具有外源DNA的后代。
DNA构建体是DNA分子互相连接起来的组合,该组合提供了一个或多个表达盒。DNA构建体优选地是能够在细菌细胞内自我复制,而且含有不同的限制性内切酶位点的质粒,所含的限制性内切酶位点用于导入提供功能性基因元件,即启动子、内含子、前导序列、编码序列、3’终止子区域和其他序列的DNA分子。DNA构建体中所含有的表达盒包括提供信使RNA的转录所必需的基因元件,所述表达盒可以设计为在原核细胞或真核细胞中表达。本发明的表达盒被设计为最优选地在植物细胞内表达。
转基因“事件”是通过用异源DNA构建体转化植物细胞而得到的,即包括至少一个含有目标基因的核酸表达盒,通过转基因的方法插入到植物基因组中以产生植物群体,再生所述植物群体,和选择具有插入特定基因组位点特征的特定植株。术语“事件”是指含有异源DNA的原始转化体和该转化体的后代。术语“事件”还指原始转化体和含有异源DNA的其它品种个体之间进行有性杂交而得到的后代,即使在与回交亲本进行反复回交后,来自于原始转化体亲本的插入DNA和侧翼基因组DNA也存在于杂交后代中的同一染色体位置。术语“事件”还指来自原始转化体的DNA序列,该DNA序列包含插入DNA和与插入DNA紧密相邻的侧翼基因组序列,该DNA序列被预期转移到子代中,该子代由含有插入DNA的亲本系(例如原始转化体和其自交产生的子代)与不含有插入DNA的亲本系进行有性杂交而产生,且该子代接受了包含目标基因的插入DNA。
本发明中“重组”是指通常不能在自然界中发现并且因此通过人工干预产生的DNA和/或蛋白和/或生物体的形式。这种人工干预可产生重组DNA分子和/或重组植物。所述“重组DNA分子”是通过人工组合两种在其它情况下是分离的序列区段而获得的,例如通过化学合成或通过遗传工程技术操作分离的核酸区段。进行核酸操作的技术是众所周知的。
术语“转基因”包括任何细胞、细胞系、愈伤组织、组织、植物部分或植物,以上的基因型由于异源核酸的存在而改变,所述“转基因”包括最初被这样改变的转基因体以及由最初的转基因体通过有性杂交或无性繁殖生成的子代个体。在本发明中,术语“转基因”不包括通过常规植物育种方法或天然发生事件的基因组的(染色体的或染色体外的)改变,所述天然发生事件例如随机异体受精、非重组病毒感染、非重组细菌转化、非重组转座或自发突变。
本发明中“异源的”是指自然界中第一分子通常不被发现与第二分子组合。例如,分子可以源自第一物种并插入到第二物种的基因组中。因此这种分子对于宿主是异源的并被人工引入宿主细胞的基因组中。
培养对鳞翅目昆虫具有抗性且对草铵膦除草剂具有耐受性的转基因大豆事件DBN8007,通过以下步骤:首先使第一亲本大豆植物与第二亲本大豆植物有性杂交,从而产生了多样的第一代子代植株,所述第一亲本大豆植物由培育自转基因大豆事件DBN8007及其后代的大豆植物组成,该转基因大豆事件DBN8007及其后代是通过利用本发明的对鳞翅目昆虫具有抗性且对草铵膦除草剂具有耐受性的表达盒进行转化而得到的,第二亲本大豆植物缺乏对鳞翅目昆虫的抗性和/或对草铵膦除草剂具有耐受性;然后选择对鳞翅目昆虫的侵袭具有抗性和/或对草铵膦除草剂具有耐受性的子代植株,可以培育出对鳞翅目昆虫具有抗性且对草铵膦除草剂具有耐受性的大豆植物。这些步骤可以进一步包括使鳞翅目昆虫抗性和/或草铵膦耐受性的子代植株与第二亲本大豆植物或第三亲本大豆植物进行回交,然后通过用鳞翅目昆虫侵袭、草铵膦除草剂施加或通过与性状相关的分子标记物(如包含转基因大豆事件DBN8007中插入序列的5’端和3’端鉴定出的接合位点的DNA分子)的鉴定来选择子代,从而产生对鳞翅目昆虫具有抗性且对草铵膦除草剂具有耐受性的大豆植物。
还应理解的是,两种不同的转基因植物也可以交配以产生含有两个独立的、分离式添加的外源基因的后代。适当后代的自交可以得到对两个添加的外源基因来说都是纯合子的后代植株。如前所述的对亲本植株的回交和与非转基因植物的异型杂交也是可以预期的,无性繁殖也是同样的。
术语“探针”是一段分离的核酸分子,其上面结合有常规的可检测标记或报告分子,例如,放射性同位素、配体、化学发光剂或酶类。这种探针与目标核酸的一条链是互补的,在本发明中,探针与来自转基因大豆事件DBN8007基因组的一条DNA链互补,不论该基因组DNA是来自转基因大豆事件DBN8007或种子还是来源于转基因大豆事件DBN8007的植物或种子或提取物。本发明的探针不仅包括脱氧核糖核酸或核糖核酸,还包括特异性地与目标DNA序列结合并可用于检测该目标DNA序列的存在的聚酰胺及其他探针材料。
术语“引物”是一段分离的核酸分子,其通过核酸杂交,退火结合到互补的目标DNA链上,在引物和目标DNA链之间形成杂合体,然后在聚合酶(例如DNA聚合酶)的作用下,沿目标DNA链延伸。本发明的引物对涉及其在目标核酸序列扩增中的应用,例如,通过聚合酶链式反应(PCR)或其他常规的核酸扩增方法。
探针和引物的长度一般是11个多核苷酸或更多,优选的是18个多核苷酸或更多,更优选的是24个多核苷酸或更多,最优选的是30个多核苷酸或更多。这种探针和引物在高度严格杂交条件下与目标序列特异性地杂交。尽管不同于目标DNA序列且对目标DNA序列保持杂交能力的探针是可以通过常规方法设计出来的,但是,优选的,本发明中的探针和引物与目标序列的连续核酸具有完全的DNA序列同一性。
基于本发明的侧翼基因组DNA和插入序列的引物和探针可以通过常规方法确定,例如,通过从来源于转基因大豆事件DBN8007的植物材料中分离相应的DNA分子,并确定该DNA分子的核酸序列。所述DNA分子包含转基因插入序列和大豆基因组侧翼序列,所述DNA分子的片段可以用作引物或探针。
本发明的核酸探针和引物在严格条件下与目标DNA序列杂交。任何常规的核酸杂交或扩增方法都可以用于鉴定样品中来源于转基因大豆事件DBN8007的DNA的存在。核酸分子或其片段在一定情况下能够与其他核酸分子进行特异性杂交。如本发明使用的,如果两个核酸分子能形成反平行的双链核酸结构,就可以说这两个核酸分子彼此间能够进行特异性杂交。如果两个核酸分子显示出完全的互补性,则称其中一个核酸分子是另一个核酸分子的“互补物”。如本发明使用的,当一个核酸分子的每一个核苷酸都与另一个核酸分子的对应核苷酸互补时,则称这两个核酸分子显示出“完全互补性”。如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在至少常规的“低度严格”条件下退火且彼此结合,则称这两个核酸分子为“最低程度互补”。类似地,如果两个核酸分子能够以足够的稳定性相互杂交从而使它们在常规的“高度严格”条件下退火且彼此结合,则称这两个核酸分子具有“互补性”。从完全互补性中偏离是可以允许的,只要这种偏离不完全阻止两个分子形成双链结构。为了使一个核酸分子能够作为引物或探针,仅需保证其在序列上具有充分的互补性,以使得在所采用的特定溶剂和盐浓度下能形成稳定的双链结构。
如本发明使用的,基本同源的序列是一段核酸分子,该核酸分子在高度严格条件下能够和相匹配的另一段核酸分子的互补链发生特异性杂交。促进DNA杂交的适合的严格条件,例如,大约在45℃条件下用6.0×氯化钠/柠檬酸钠(SSC)处理,然后在50℃条件下用2.0×SSC洗涤,这些条件对本领域技术人员是公知的。例如,在洗涤步骤中的盐浓度可以选自低度严格条件的约2.0×SSC、50℃到高度严格条件的约0.2×SSC、50℃。此外,洗涤步骤中的温度条件可以从低度严格条件的室温约22℃,升高到高度严格条件的约65℃。温度条件和盐浓度可以都发生改变,也可以其中一个保持不变而另一个变量发生改变。优选地,本发明的一个核酸分子可以在中度严格条件下,例如在约2.0×SSC和约65℃下与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6和SEQ ID NO:7中一个或多个核酸分子或其互补序列,或者上述序列的任一片段发生特异性杂交。更优选地,本发明的一个核酸分子在高度严格条件下与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQID NO:4、SEQ ID NO:5、SEQ ID NO:6和SEQ ID NO:7中一个或多个核酸分子或其互补序列,或者上述序列的任一片段发生特异性杂交。本发明中,优选的标记物核酸分子具有SEQ IDNO:1、SEQ ID NO:2、SEQ ID NO:6或SEQ ID NO:7或其互补序列,或者上述序列的任一片段。本发明另一优选的标记物核酸分子与SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:6或SEQ IDNO:7或其互补序列,或者上述序列的任一片段具有80%到100%或90%到100%的序列同一性。SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:6和SEQ ID NO:7可以用作植物育种方法中的标记物以鉴定遗传杂交的后代。探针与目标DNA分子的杂交可以通过任何一种为本领域技术人员所熟知的方法进行检测,这些方法包括但不限于,荧光标记、放射性标记、抗体类标记和化学发光标记。
关于使用特定的扩增引物对目标核酸序列进行的扩增(例如,通过PCR),“严格条件”指的是在DNA热扩增反应中仅允许引物对目标核酸序列发生杂交的条件,具有与目标核酸序列相应的野生型序列(或其互补序列)的引物,能够与所述目标核酸序列结合,并且优选产生唯一的扩增产物,扩增产物即扩增子。
术语“特异性结合(目标序列)”是指在严格杂交条件下探针或引物仅与包含目标序列的样品中的目标序列发生杂交。
如本发明使用的,“扩增子”是指作为核酸模板一部分的目标核酸序列的核酸扩增产物。例如,为了确定大豆植物是否由含有本发明转基因大豆事件DBN8007通过有性杂交方式产生,或采集自田地的大豆样品是否包含转基因大豆事件DBN8007,或大豆提取物,例如粗粉、面或油是否包含转基因大豆事件DBN8007,从大豆植物组织样品或提取物提取的DNA可以通过使用引物对的核酸扩增方法以产生对于转基因大豆事件DBN8007的DNA的存在是诊断性的扩增子。所述引物对包括一个来源于植物基因组中与插入的外源DNA插入位点相邻的侧翼序列的第一引物,和来源于插入的外源DNA的第二引物。扩增子具有一定长度和序列,所述序列对所述转基因大豆事件DBN8007也是诊断性的。扩增子的长度范围可以是引物对的结合长度加上一个核苷酸碱基对,优选加上约50个核苷酸碱基对,更优选加上约250个核苷酸碱基对,最优选加上约450个核苷酸碱基对或更多。
可选的,引物对可以来源于插入DNA两侧的侧翼基因组序列,以产生包括整个插入核苷酸序列的扩增子。来源于植物基因组序列的引物对中的一个可以位于距插入DNA序列一定距离处,该距离的范围可以为一个核苷酸碱基对到约两万个核苷酸碱基对。术语“扩增子”的使用特别排除了在DNA热扩增反应中形成的引物二聚体。
核酸扩增反应可以通过本领域已知的任何一种核酸扩增反应方法实现,包括聚合酶链式反应(PCR)。各种核酸扩增方法已是本领域技术人员所熟知的。PCR扩增方法已经发展到可扩增多达22kb的基因组DNA和多达42kb的噬菌体DNA。这些方法以及本领域的其他DNA扩增方法可以用于本发明。插入的外源DNA序列和来自转基因大豆事件DBN8007的侧翼DNA序列可以通过利用所提供的引物序列对转基因大豆事件DBN8007的基因组进行扩增,扩增后对PCR扩增子或克隆的DNA进行标准的DNA测序。
基于DNA扩增方法的DNA检测试剂盒含有用作引物的DNA分子,它们在适当的反应条件下特异性杂交到目标DNA上并扩增诊断性扩增子。试剂盒可提供基于琼脂糖凝胶的检测方法或者现有技术已知的检测诊断性扩增子的许多方法。含有与SEQ ID NO:3或SEQ IDNO:4的大豆基因组的任何部分同源或互补的、以及与SEQ ID NO:5的转基因插入区的任何部分同源或互补的DNA引物的试剂盒是本发明所提供的。特别地鉴别在DNA扩增方法中有用的引物对是SEQ ID NO:8和SEQ ID NO:9,其扩增与转基因大豆事件DBN8007的5’转基因/基因组区的一部分同源的诊断性扩增子,其中扩增子包括SEQ ID NO:1。用作DNA引物的其它DNA分子可选自SEQ ID NO:5。
这些方法所产生的扩增子可以通过多种技术进行检测。其中一个方法是遗传点分析(Genetic Bit Analysis),该方法设计了一个跨越插入DNA序列和相邻的侧翼基因组DNA序列的DNA寡核苷酸链。将该寡核苷酸链固定在一个微孔板的微孔内,在对目标区域进行PCR扩增后(在插入序列内和相邻的侧翼基因组序列中各使用一个引物),单链PCR产物可与固定的寡核苷酸链进行杂交,并且作为单碱基延伸反应的模板,该延伸反应使用了DNA聚合酶和为下一个预期的碱基特定标记的ddNTPs。可以通过荧光或ELISA类方法得到结果。信号代表了插入/侧翼序列的存在,其说明扩增、杂交和单碱基延伸反应是成功的。
另一种方法是焦磷酸测序技术(Pyrosequencing)。该方法设计了一个跨越插入DNA序列和相邻的基因组DNA结合部位的寡核苷酸链。将该寡核苷酸链和目标区域的单链PCR产物(在插入序列内和相邻的侧翼基因组序列中各使用一个引物)进行杂交,然后和DNA聚合酶、ATP、硫酰基酶、荧光素酶、三磷酸腺苷双磷酸酶、腺苷-5’-磷硫酸盐和萤光素一起进行温育。分别加入dNTPs,测量产生的光信号。光信号代表了插入/侧翼序列的存在,其说明扩增、杂交、和单碱基或多碱基延伸反应是成功的。
Chen等(基因组研究(Genome Res.)9:492-498,1999)描述的荧光偏振现象也是可以用于检测本发明扩增子的一种方法。使用这种方法需要设计一个跨越插入DNA序列和相邻的基因组DNA结合部位的寡核苷酸链。将该寡核苷酸链和目标区域的单链PCR产物(在插入序列内和相邻的侧翼基因组序列中各使用一个引物)进行杂交,然后和DNA聚合酶以及一种荧光标记的ddNTP一起进行温育。单碱基延伸会导致插入ddNTP。这种插入可以利用荧光仪测量其偏振的改变。偏振的改变代表了插入/侧翼序列的存在,其说明扩增、杂交和单碱基延伸反应是成功的。
Taqman被描述为一种检测和定量分析DNA序列存在的方法,该方法在制造商所提供的使用说明中有详细介绍。现简要说明如下,设计一个跨越插入DNA序列和相邻的基因组侧翼结合部位的FRET寡核苷酸探针。该FRET探针和PCR引物(在插入序列内和相邻的侧翼基因组序列中各使用一个引物)在热稳定聚合酶和dNTPs存在下进行循环反应。FRET探针的杂交导致FRET探针上荧光部分和淬灭部分的分裂以及荧光部分的释放。荧光信号的产生代表了插入/侧翼序列的存在,其说明扩增和杂交是成功的。
基于杂交原理,用于检测来源于转基因大豆事件DBN8007的植物材料的适合技术还可以包括Southern印迹杂交(Southern blot)、Northern印迹杂交(Northern blot)和原位杂交(in situ hybridization)。特别地,所述适合技术包括温育探针和样品,洗涤以移除未结合的探针和检测探针是否已经杂交。所述的检测方法取决于探针所附标记的类型,例如,通过X光片曝光和显影可以检测放射性标记的探针,或通过底物转化实现颜色变化可以检测酶标记的探针。
Tyangi等(自然生物技术(Nature Biotech.)14:303-308,1996)介绍了分子标记在序列检测中的应用。简要说明如下,设计一个跨越插入DNA序列和相邻的基因组侧翼结合部位的FRET寡核苷酸探针。该FRET探针的独特结构导致其含有二级结构,该二级结构能够在近距离内保持荧光部分和淬灭部分。该FRET探针和PCR引物(在插入序列内和相邻的侧翼基因组序列中各使用一个引物)在热稳定聚合酶和dNTPs存在下进行循环反应。经过成功的PCR扩增,FRET探针和目标序列的杂交导致探针二级结构的丧失,从而使荧光部分和淬灭部分在空间上发生分离,产生荧光信号。荧光信号的产生代表了插入/侧翼序列的存在,其说明扩增和杂交是成功的。
其他描述的方法,例如微流体(microfluidics)提供了分离和扩增DNA样品的方法和设备。光染料用于检测和测定特定的DNA分子。包含用于检测DNA分子的电子传感器或结合特定DNA分子的纳珠并因而可被检测的纳试管(nanotube)设备对于检测本发明的DNA分子是有用的。
可以使用本发明所述的组合物和DNA检测领域描述的或已知的方法来开发DNA检测试剂盒。所述试剂盒有利于鉴定样品中是否存在转基因大豆事件DBN8007的DNA,还可以用于培育含有转基因大豆事件DBN8007的DNA的大豆植物。所述试剂盒可以含有DNA引物或探针,其同源于或互补于SEQ ID NO:1、2、3、4或5的至少一部分,或含有其它DNA引物或探针,其同源于或互补于DNA的转基因遗传元件中所含的DNA,这些DNA序列可以用于DNA扩增反应,或作为DNA杂交方法中的探针。在大豆基因组中含有的以及在图1和表1中说明的转基因插入序列与大豆基因组结合部位的DNA结构包含:位于转基因插入序列5’末端的大豆植物DBN8007侧翼基因组区域,来自农杆菌的右侧边界区域(RB)的一部分插入序列,第一个表达盒由拟南芥的ACTIN2启动子(prAtAct2),可操作地连接到苏云金芽孢杆菌的昆虫抗性的mVip3Aa基因上,并可操作地连接到胭脂碱合酶基因的转录终止子(tNos)上而组成,第二个表达盒由含有花椰菜花叶病毒35S启动子(pr35S),可操作地连接到链霉菌的草铵膦耐受性的膦丝菌素N-乙酰基转移酶基因(cPAT)上,并可操作地连接到花椰菜花叶病毒35S终止子(t35S)上而组成,来自农杆菌的左侧边界区域(LB)的一部分插入序列,以及位于转基因插入序列3’末端的大豆植物DBN8007侧翼基因组区域(SEQ ID NO:5)。在DNA扩增方法中,作为引物的DNA分子可以是来源于转基因大豆事件DBN8007中转基因插入序列的任何部分,也可以是来源于转基因大豆事件DBN8007的大豆基因组侧翼DNA序列的任何部分。
转基因大豆事件DBN8007可以与其他转基因大豆品种组合,例如除草剂(如草甘膦、麦草畏等)耐受性的转基因大豆品种,或携带其他抗虫基因的转基因大豆品种。所有这些不同转基因事件的各种组合,与本发明的转基因大豆事件DBN8007一起育种,可以提供抗多种虫害并抗多种除草剂的改良杂种转基因大豆品种。这些品种相比于非转基因品种和单性状的转基因品种可以表现出产量提升等更优异的特征。
本发明转基因大豆事件DBN8007是对鳞翅目害虫的摄食损伤有抗性的,并且耐受含草铵膦的农业除草剂的植物毒性作用。该双重性状的大豆植株表达苏云金芽孢杆菌的Vip3Aa蛋白,其提供了对鳞翅目害虫(如豆天蛾)摄食损伤的抗性,并表达链霉菌的草铵膦抗性的膦丝菌素N-乙酰基转移酶(PAT)蛋白,其赋予植物对草铵膦的耐受性。双重性状大豆具有如下优点:1)免受由于鳞翅目害虫(如豆天蛾、斜纹夜蛾等)造成的经济损失,豆天蛾、斜纹夜蛾等是大豆种植区的主要害虫;2)施加含草铵膦的农业除草剂给大豆作物用于广谱杂草控制的能力;3)大豆产量没有降低。此外,编码昆虫抗性和草铵膦耐受性性状的转基因连锁在同一DNA区段上,并且存在于转基因大豆事件DBN8007基因组的单一基因座上,这一点提供了增强的育种效率并使得能够用分子标记来追踪繁殖群体及其子代中的转基因插入片段。同时本发明检测方法中SEQ ID NO:1或其互补序列、SEQ ID NO:2或其互补序列、SEQ ID NO:6或其互补序列、或者SEQ ID NO:7或其互补序列可以作为DNA引物或探针以产生诊断为转基因大豆事件DBN8007或其后代的扩增产物,且可以快速、准确、稳定的鉴定出来源于转基因大豆事件DBN8007的植物材料的存在。
序列简述
SEQ ID NO:1 转基因大豆事件DBN8007中在插入序列5’末端位于插入接合部位附近的一个长度为22个核苷酸的序列,其中第1-11位核苷酸和第12-22位核苷酸分别位于大豆基因组上插入位点的两侧;
SEQ ID NO:2 转基因大豆事件DBN8007中在插入序列3’末端位于插入接合部位附近的一个长度为22个核苷酸的序列,其中第1-11位核苷酸和第12-22位核苷酸分别位于大豆基因组上插入位点的两侧;
SEQ ID NO:3 转基因大豆事件DBN8007中在插入序列的5’末端位于插入接合部位附近的一个长度为1407个核苷酸的序列;
SEQ ID NO:4 转基因大豆事件DBN8007中在插入序列的3’末端位于插入接合部位附近的一个长度为1022个核苷酸的序列;
SEQ ID NO:5 整个T-DNA序列、5’和3’末端的大豆基因组侧翼序列;
SEQ ID NO:6 位于SEQ ID NO:3上的序列,跨越了pDBN4006构建体DNA序列和prAtAct2转录起始序列;
SEQ ID NO:7 位于SEQ ID NO:4上的序列,跨越了t35S转录终止子序列和pDBN4006构建体DNA序列;
SEQ ID NO:8 扩增SEQ ID NO:3的第一引物;
SEQ ID NO:9 扩增SEQ ID NO:3的第二引物;
SEQ ID NO:10 扩增SEQ ID NO:4的第一引物;
SEQ ID NO:11 扩增SEQ ID NO:4的第二引物;
SEQ ID NO:12 5’侧翼基因组序列上的引物;
SEQ ID NO:13 与SEQ ID NO:12配对的位于T-DNA上的引物;
SEQ ID NO:14 3’侧翼基因组序列上的引物,其与SEQ ID NO:12配对可以检测转基因是纯合子或是杂合子;
SEQ ID NO:15 与SEQ ID NO:14配对的位于T-DNA上的引物;
SEQ ID NO:16 Taqman检测mVip3Aa基因的第一引物;
SEQ ID NO:17 Taqman检测mVip3Aa基因的第二引物;
SEQ ID NO:18 Taqman检测mVip3Aa基因的探针;
SEQ ID NO:19 Taqman检测PAT基因的第一引物;
SEQ ID NO:20 Taqman检测PAT基因的第二引物;
SEQ ID NO:21 Taqman检测PAT基因的探针;
SEQ ID NO:22 大豆内源基因lectin的第一引物;
SEQ ID NO:23 大豆内源基因lectin的第二引物;
SEQ ID NO:24 Southern杂交检测中mVip3Aa基因的探针;
SEQ ID NO:25 Southern杂交检测中PAT基因的探针;
SEQ ID NO:26 位于T-DNA上的引物,与SEQ ID NO:13方向一致;
SEQ ID NO:27 位于T-DNA上的引物,与SEQ ID NO:13方向相反,用作获得侧翼序列;
SEQ ID NO:28 位于T-DNA上的引物,与SEQ ID NO:13方向相反,用作获得侧翼序列;
SEQ ID NO:29 位于T-DNA上的引物,与SEQ ID NO:15方向一致;
SEQ ID NO:30 位于T-DNA上的引物,与SEQ ID NO:15方向相反,用作获得侧翼序列;
SEQ ID NO:31 位于T-DNA上的引物,与SEQ ID NO:15方向相反,用作获得侧翼序列。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的转基因插入序列与大豆基因组接合部位的结构示意图,以及用于检测大豆植物DBN8007的核酸序列相对位置的示意图(相对位置示意图参考Wm82.a2 RefGen);
图2为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的重组表达载体pDBN4006的结构示意图;
图3为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的转基因大豆事件DBN8007对棉铃虫生物测定效果图;
图4为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的转基因大豆事件DBN8007对斜纹夜蛾生物测定效果图;
图5为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的转基因大豆事件DBN8007对甜菜夜蛾生物测定效果图;
图6为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的转基因大豆事件DBN8007对豆天蛾生物测定效果图;
图7为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的转基因大豆事件DBN8007接种棉铃虫的田间效果图;
图8为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的转基因大豆事件DBN8007在甜菜夜蛾自然发生条件下的田间效果图;
图9为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的转基因大豆事件DBN8007在斜纹夜蛾自然发生条件下的田间效果图;
图10为本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的转基因大豆事件DBN8007对草地贪夜蛾生物测定效果图。
具体实施方式
下面通过具体实施例进一步说明本发明用于检测大豆植物DBN8007的核酸序列及其检测方法的技术方案。
第一实施例、克隆与转化
1.1、载体克隆
使用标准基因克隆技术构建重组表达载体pDBN4006(如图2所示)。所述载体pDBN4006包含两个串联的转基因表达盒,第一个表达盒由来自拟南芥的ACTIN2启动子(prAtAct2),可操作地连接到来自苏云金芽孢杆菌的可提供昆虫抗性的mVip3Aa基因(CN103509808B)上,并可操作地连接到胭脂碱合酶的转录终止子(tNos)上而组成;第二个表达盒由含有花椰菜花叶病毒启动子(pr35S),可操作地连接到链霉菌的草铵膦耐受性的膦丝菌素N-乙酰基转移酶基因(cPAT)上,并可操作地连接到花椰菜花叶病毒的转录终止子(t35S)上而组成。
将所述载体pDBN4006用液氮法转化到农杆菌LBA4404(Invitrgen,Chicago,USA;Cat.No:18313-015)中,并且以4-[羟基(甲基)膦酰基]-DL-高丙氨酸为选择标记对转化细胞进行筛选。
1.2、植物转化
采用常规的农杆菌侵染法进行转化,将无菌培养的大豆子叶节组织与本实施例1.1中所述的农杆菌共培养,以将构建的重组表达载体pDBN4006中的T-DNA转入到大豆染色体组中,以产生转基因大豆事件DBN8007。
对于农杆菌介导的大豆转化,简要地,将成熟的大豆种子在大豆萌发培养基(B5盐3.1g/L,B5维他命,蔗糖20g/L,琼脂8g/L,pH5.6)中进行萌发,将种子接种于萌发培养基上,按以下条件培养:温度25±1℃;光周期(光/暗)为16/8h。萌发4-6天后取鲜绿的子叶节处膨大的大豆无菌苗,在子叶节下3-4毫米处切去下胚轴,纵向切开子叶,去顶芽、侧芽和种子根。用解剖刀的刀背在子叶节处进行创伤,用农杆菌悬浮液接触创伤过的子叶节组织,其中农杆菌能够将mVip3Aa基因的核苷酸序列和PAT基因的核苷酸序列传递至创伤过的子叶节组织(步骤1:侵染步骤)。在此步骤中,子叶节组织优选地浸入农杆菌悬浮液(OD660=0.5-0.8,侵染培养基(MS盐2.15g/L、B5维他命、蔗糖20g/L、葡萄糖10g/L、乙酰丁香酮(AS)40mg/L、2-吗啉乙磺酸(MES)4g/L、玉米素(ZT)2mg/L,pH5.3)中以启动侵染。子叶节组织与农杆菌共培养一段时期(3天)(步骤2:共培养步骤)。优选地,子叶节组织在侵染步骤后在固体培养基(MS盐4.3g/L、B5维他命、蔗糖20g/L、葡萄糖10g/L、2-吗啉乙磺酸(MES)4g/L、玉米素2mg/L、琼脂8g/L,pH5.6)上培养。在此共培养阶段后,有一个选择性的“恢复”步骤。在“恢复”步骤中,恢复培养基(B5盐3.1g/L、B5维他命、2-吗啉乙磺酸(MES)1g/L、蔗糖30g/L、玉米素(ZT)2mg/L、琼脂8g/L,头孢霉素150mg/L,谷氨酸100mg/L,天冬氨酸100mg/L,pH5.6)中至少存在一种己知抑制农杆菌生长的抗生素(头孢霉素150-250mg/L),不添加植物转化体的选择剂(步骤3:恢复步骤)。优选地,子叶节再生的组织块在有抗生素但没有选择剂的固体培养基上培养,以消除农杆菌并为侵染细胞提供恢复期。接着,子叶节再生的组织块在含选择剂(4-[羟基(甲基)膦酰基]-DL-高丙氨酸)的培养基上培养并选择生长着的转化愈伤组织(步骤4:选择步骤)。优选地,子叶节再生的组织块在有选择剂的筛选固体培养基(B5盐3.1g/L、B5维他命、2-吗啉乙磺酸(MES)1g/L、蔗糖30g/L、6-苄基腺嘌呤(6-BAP)1mg/L、琼脂8g/L,头孢霉素150mg/L,谷氨酸100mg/L,天冬氨酸100mg/L,4-[羟基(甲基)膦酰基]-DL-高丙氨酸10mg/L,pH5.6)上培养,导致转化的细胞可以继续生长。然后,转化的细胞再生成植物(步骤5:再生步骤),优选地,在含选择剂的培养基上生长的子叶节再生的组织块在固体培养基(B5分化培养基和B5生根培养基)上培养以再生植物。
筛选得到的抗性组织块转移到所述B5分化培养基(B5盐3.1g/L、B5维他命、2-吗啉乙磺酸(MES)1g/L、蔗糖30g/L、玉米素(ZT)1mg/L、琼脂8g/L、头孢霉素150mg/L、谷氨酸50mg/L、天冬氨酸50mg/L、赤霉素1mg/L、生长素1mg/L、4-[羟基(甲基)膦酰基]-DL-高丙氨酸5mg/L,pH5.6)上,25℃下培养分化。分化出来的小苗转移到所述B5生根培养基(B5盐3.1g/L、B5维他命、2-吗啉乙磺酸(MES)1g/L、蔗糖30g/L、琼脂8g/L、头孢霉素150mg/L、吲哚-3-丁酸(IBA)1mg/L),在生根培养上,25℃下培养至约10em高,移至温室培养至结实。在温室中,每天于温度26℃下培养16小时,再于温度20℃下培养8小时。
1.3、转基因事件的鉴定和筛选
一共产生了288个独立转基因T0植株。为了筛选表现最优异的转基因事件,将上述288个独立转基因T0单株,送入温室移栽进行培养、繁殖获得转基因T1单株。
由于以成熟大豆种子且以草铵膦为筛选剂进行的大豆遗传转化过程容易产生假阳性转基因事件,因此在T1代通过喷施草铵膦的方式对转基因事件进行阳性鉴定,共获得154个阳性转基因单株;通过TaqManTM分析检测上述154个转基因大豆植株是否存在单拷贝的mVip3Aa和PAT基因,且不含载体骨架序列,共获得90个转基因单株;通过转基因插入位点分析,共筛选到24个T-DNA两侧序列完整、T-DNA没有插入到大豆基因组的重要基因中、基因插入没有产生较大的开放阅读框(ORF)的转基因单株;通过对主要靶标昆虫(如棉铃虫、斜纹夜蛾、甜菜夜蛾)的抗性评价和比较,共筛选到21个昆虫抗性良好的转基因单株;由于遗传转化、基因插入等均可能对大豆植株造成农艺性状上的影响(例如苗势、生育期、株高或倒伏等),因此将上述21个转基因T2代单株种于田间以鉴定转基因T2单株在不同时期(苗期-盛花期、始粒期-成熟期)的农艺性状表现;再通过自交和回交选育的方式,在不同世代、不同地理环境和/或不同背景材料的情况下,通过对转基因大豆植株的农艺性状、分子生物学、靶标昆虫抗性、草铵膦耐受性等是否可稳定遗传进行筛选,选定了转基因大豆事件DBN8007是优异的,其具有单拷贝转基因(参见第二实施例)、良好的昆虫抗性、草铵膦除草剂耐受性和农艺性状表现(参见第六实施例和第七实施例)。
第二实施例、用TaqMan进行转基因大豆事件DBN8007检测
取转基因大豆事件DBN8007的叶片约100mg作为样品,用植物DNA提取试剂盒(DNeasy Plant Maxi Kit,Qiagen)提取其基因组DNA,通过Taqman探针荧光定量PCR方法检测mVip3Aa基因和PAT基因的拷贝数。同时以野生型大豆植株作为对照,按照上述方法进行检测分析。实验设3次重复,取平均值。
具体方法如下:
步骤1、取转基因大豆事件DBN8007的叶片100mg,在研钵中用液氮研成匀浆,每个样品取3个重复;
步骤2、使用植物DNA提取试剂盒(DNeasy Plant Maxi Kit,Qiagen)提取上述样品的基因组DNA,具体方法参考其产品说明书;
步骤3、用超微量分光光度计(NanoDrop 2000,Thermo Scientific)测定上述样品的基因组DNA浓度;
步骤4、调整上述样品的基因组DNA浓度至同一浓度值,所述浓度值的范围为80-100ng/μL;
步骤5、采用Taqman探针荧光定量PCR方法鉴定样品的拷贝数,以经过鉴定已知拷贝数的样品作为标准品,以野生型大豆植株的样品作为对照,每个样品3个重复,取其平均值;荧光定量PCR引物和探针序列分别是:
以下引物和探针用来检测mVip3Aa基因序列:
引物1:cgaatacagaaccctgtcggc如序列表中SEQ ID NO:16所示;
引物2:cgtgaggaaggtctcagaaatgac如序列表中SEQ ID NO:17所示;
探针1:cgacgatggcgtgtatatgcctcttgg如序列表中SEQ ID NO:18所示;
以下引物和探针用来检测PAT基因序列:
引物3:gagggtgttgtggctggtattg如序列表中SEQ ID NO:19所示;
引物4:tctcaactgtccaatcgtaagcg如序列表中SEQ ID NO:20所示;
探针2:cttacgctgggccctggaaggctag如序列表中SEQ ID NO:21所示;
PCR反应体系为:
Figure BDA0002452252810000161
所述50×引物/探针混合物包含1mM浓度的每种引物各45μL,100μM浓度的探针50μL和860μL 1×TE缓冲液(10mM Tris-HCl、1mM EDTA,pH 8.0),并且在4℃,贮藏在琥珀试管中。
PCR反应条件为:
Figure BDA0002452252810000162
利用快速实时荧光定量PCR系统软件(Applied Biosystems 7900HT Fast Real-Time PCR System SDS v2.3,Applied Biosystems)分析数据,结果表明获得的转基因大豆事件DBN8007为单拷贝。
第三实施例、分析转基因大豆事件DBN8007的插入位点
3.1、基因组DNA提取
DNA提取按照常规采用的CTAB(十六烷基三甲基溴化铵)法:取2g转基因大豆事件DBN8007的幼嫩叶片在液氮中研磨成粉后,加入0.5mL于温度65℃预热的DNA提取CTAB缓冲液(20g/L CTAB、1.4M NaCl、100mM Tris-HCl、20mM EDTA(乙二胺四乙酸),用NaOH调pH至8.0),充分混匀后,于温度65℃抽提90min;加入0.5倍体积苯酚和0.5倍体积氯仿,颠倒混匀;12000rpm(每分钟转数)转速下离心10min;吸取上清液,加入2倍体积无水乙醇,轻柔晃动离心管,于温度4℃静置30min;12000rpm转速下再离心10min;收集DNA到管底;弃上清液,用1mL质量浓度为70%的乙醇,洗涤沉淀;12000rpm转速下离心5min;真空抽干或在超净台吹干;DNA沉淀溶解于适量的TE缓冲液中,保存在温度-20℃条件下。
3.2、侧翼DNA序列的分析
对上述提取的DNA样品进行浓度测定,使待测样品的浓度位于80-100ng/μL之间。用限制性内切酶EcoRI(5’端分析)和EcoRV(3’端分析)分别酶切基因组DNA。每个酶切体系中加入26.5μL基因组DNA,0.5μL上述限制性内切酶以及3μL酶切缓冲液(采用的限制性酶均是NEB公司的酶及其配套的缓冲液或通用缓冲液,现称NEBCutSmart),酶切1 h。待酶切结束后,向酶切体系中加入70μL无水乙醇,冰浴30min,转速12000rpm离心7min,弃上清,吹干,之后加入8.5μL双蒸水、1μL10×T4-DNA连接酶缓冲液(NEB T4 DNA Ligase ReactionBuffer,其具体配方可访问NEB网站或参考ht中s://www.neb.com/products/restriction-endonucleases、https://www.neb.com/products/b0202-t4-dna-ligase-reaction-buffer)以及0.5μL T4-DNA连接酶在温度4℃连接过夜。用一系列嵌套引物进行PCR扩增分离5’端和3’端基因组DNA。具体的,分离5’端基因组DNA的引物组合包括SEQ ID NO:13和SEQID NO:26作为第一引物,SEQ ID NO:27和SEQ ID NO:28作为第二引物,SEQ ID NO:13作为测序引物。分离3’端基因组DNA引物组合包括SEQ ID NO:15和SEQ ID NO:29作为第一引物,SEQ ID NO:30和SEQ ID NO:31作为第二引物,SEQ ID NO:15作为测序引物,PCR反应条件如表3所示。
上述PCR扩增反应所获得的扩增产物在质量分数为2.0%琼脂糖凝胶上电泳以分离PCR扩增产物,随后使用胶回收试剂盒(QIAquick Gel Extraction Kit,目录#_28704,Qiagen Inc.,Valencia,CA)从琼脂糖基质分离目的片段。然后对纯化的PCR扩增产物测序(例如,使用ABIPrismTM 377,PEBiosystems,FosterCity,CA)并分析(例如,使用DNASTAR序列分析软件,DNASTARInc.,Madison,WI)。
使用标准PCR方法确认5’和3’侧翼序列和接合序列。5’侧翼序列和接合序列可使用SEQ ID NO:8或SEQ ID NO:12,组合SEQ ID NO:9、SEQ ID NO:13或SEQ ID NO:26来确认。3’侧翼序列和接合序列可使用SEQ ID NO:11或SEQ ID NO:14,组合SEQ ID NO:10、SEQ IDNO:1 5或SEQ ID NO:29来确认。PCR反应体系和扩增条件如表2和表3所示。本领域技术人员将理解,其它引物序列也可用于确认侧翼序列和接合序列。
PCR扩增产物的DNA测序提供了可以用于设计其他DNA分子的DNA,所述其他DNA分子作为引物和探针可用于鉴定来源于转基因大豆事件DBN8007的大豆植物或种子。
发现在SEQ ID NO:5的核苷酸1-5237位显示的为大豆基因组序列在转基因大豆事件DBN8007插入序列的右边界侧翼(5’侧翼序列),在SEQ ID NO:5的核苷酸11210-11935位显示的为大豆基因组序列在转基因大豆事件DBN8007插入序列的左边界侧翼(3’侧翼序列)。5’接合序列在SEQ ID NO:1中列出,3’接合序列在SEQ ID NO:2中列出。
3.3、PCR接合性测定
接合序列是相对短的多核苷酸分子,其是新的DNA序列,当在多核酸检测分析中检测到时对于转基因大豆事件DBN8007的DNA是诊断性的。SEQ ID NO:1和SEQ ID NO:2中的接合序列为转基因大豆事件DBN8007中转基因片段的插入位点和大豆基因组DNA的每一侧的11个多核苷酸。更长或更短的多核苷酸接合序列可以从SEQ ID NO:3或SEQ ID NO:4中选择。接合序列(5’连接区域SEQ ID NO:1,和3’连接区域SEQ ID NO:2)作为DNA探针或作为DNA引物分子在DNA检测方法中是有用的。接合序列SEQ ID NO:6和SEQ ID NO:7也是转基因大豆事件DBN8007中新的DNA序列,其也可以作为DNA探针或作为DNA引物分子检测转基因大豆事件DBN8007 DNA的存在。所述SEQ ID NO:6(SEQ ID NO:3的核苷酸794-1012位)跨越了pDBN4006构建体DNA序列和prAtAct2转录起始序列,所述SEQ ID NO:7(SEQ ID NO:4的核苷酸1-243位)跨越了t35S转录终止序列和pDBN4006构建体DNA序列。
此外,通过使用来自SEQ ID NO:3或SEQ ID NO:4的至少一个引物来产生扩增子,所述引物用于PCR方法中时产生转基因大豆事件DBN8007的诊断性扩增子。
具体地,从转基因插入序列的5’末端产生PCR扩增产物,该PCR扩增产物包含来源于转基因大豆事件DBN8007的植物材料的基因组中侧翼于T-DNA插入序列的5’末端的基因组DNA的一部分。这个PCR扩增产物包含SEQ ID NO:3。为了进行PCR扩增,设计与侧翼于转基因插入序列的5’末端的基因组DNA序列杂交的引物5(SEQ ID NO:8),和与之配对的位于转基因prAtAct2转录起始序列的引物6(SEQ ID NO:9)。
从转基因插入序列的3’末端产生PCR扩增产物,该PCR扩增产物为包含来源于转基因大豆事件DBN8007的植物材料的基因组中侧翼于T-DNA插入序列的3’末端的基因组DNA的一部分。这个PCR扩增产物包含SEQ ID NO:4。为了进行PCR扩增,设计位于转基因t35S转录终止序列的引物7(SEQ ID NO:10),和与之配对的与侧翼于转基因插入序列的3’末端的基因组DNA序列杂交的引物8(SEQ ID NO:11)。
表2和表3中说明的DNA扩增条件可以用于上述PCR接合性试验以产生转基因大豆事件DBN8007的诊断性扩增子。扩增子的检测可以通过使用Stratagene Robocycler、MJEngine、Perkin-Elmer 9700或Eppendorf Mastercycler Gradient热循环仪等进行,或通过本领域技术人员已知的方法和设备进行。
表2、用于转基因大豆事件DBN8007的5’末端转基因插入物/基因组接合区域鉴定的PCR步骤和反应混合物条件
Figure BDA0002452252810000181
Figure BDA0002452252810000191
表3、热循环仪扩增条件
Figure BDA0002452252810000192
轻轻地混合,如果热循环仪上没有保温帽,可以在每个反应液上方添加1-2滴矿物油。使用表3中的循环参数在Stratagene Robocycler(Stratagene,La Jolla,CA)、MJEngine(MJ R-Biorad,Hercules,CA)、Perkin-Elmer 9700(Perkin Elmer,Boston,MA)或EppendorfMastercycler Gradient(Eppendorf,Hamburg,Germany)热循环仪上进行PCR反应。MJ Engine或EppendorfMastercycler Gradient热循环仪应当在计算的模式下运行。Perkin-Elmer 9700热循环仪运行时要将变温速度(ramp speed)设定为最大值。
实验结果表明:引物5和6(SEQ ID NO:8和9),当其用在转基因大豆事件DBN8007基因组DNA的PCR反应中时,产生1407bp片段的扩增产物,当其用在未转化大豆基因组DNA和非DBN8007大豆基因组DNA的PCR反应中时,没有片段被扩增;引物7和8(SEQ ID NO:10和11),当其用在转基因大豆事件DBN8007基因组DNA的PCR反应中时,产生1022bp片段的扩增产物,当其用在未转化大豆基因组DNA和非DBN8007大豆基因组DNA的PCR反应中时,没有片段被扩增。
PCR接合性测定还可用于鉴定来源于转基因大豆事件DBN8007的材料是纯合子或是杂合子。将引物9(SEQ ID NO:12)、引物10(SEQ ID NO:13)和引物11(SEQ ID NO:14)用于扩增反应以产生转基因大豆事件DBN8007的诊断性扩增子。表4和表5中说明的DNA扩增条件可以用于上述接合性试验以产生转基因大豆事件DBN8007的诊断性扩增子。
表4、接合性测定反应液
Figure BDA0002452252810000193
Figure BDA0002452252810000201
表5、接合性测定的热循环仪扩增条件
Figure BDA0002452252810000202
使用表5中的循环参数在Stratagene Robocycler(Stratagene,La Jolla,CA)、MJEngine(MJ R-Biorad,Hercules,CA)、Perkin-Elmer 9700(Perkin Elmer,Boston,MA)或EppendorfMastercycler Gradient(Eppendorf,Hamburg,Germany)热循环仪上进行PCR反应。MJ Engine或EppendorfMastercycler Gradient热循环仪应当在计算的模式下运行。Perkin-Elmer 9700热循环仪运行时要将变温速度(ramp speed)设定为最大值。
在所述扩增反应中,含有模板DNA的生物样品含有诊断该样品中转基因大豆事件DBN8007的存在情况的DNA。或者扩增反应将由含有来源于大豆基因组的DNA的生物样品产生两个不同的DNA扩增子,所述来源于大豆基因组的DNA相对于转基因大豆事件DBN8007中存在的插入DNA对应的等位基因是杂合的。这两个不同的扩增子将对应于来源于野生型大豆基因组基因座的第一扩增子(SEQ ID NO:12和SEQ ID NO:14)和诊断转基因大豆事件DBN8007 DNA的存在情况的第二扩增子(SEQ ID NO:12和SEQ ID NO:13)。仅产生对应于针对杂合基因组描述的第二扩增子的单个扩增子的大豆DNA样品,可诊断确定该样品中转基因大豆事件DBN8007的存在,且该样品由相对于转基因大豆植物DBN8007中存在的插入DNA对应的等位基因为纯合的大豆种子所产生。
需要说明的是,转基因大豆事件DBN8007的引物对被用于产生对转基因大豆事件DBN8007基因组DNA为诊断性的扩增子。这些引物对包括但不限于,引物5和6(SEQ ID NO:8和9),和引物7和8(SEQ ID NO:10和11),用于所述的DNA扩增方法中。另外,用于扩增大豆内源基因的一个对照引物12和13(SEQ ID NO:22和23)被包括在内,其作为反应条件的一个内在标准。对转基因大豆事件DBN8007 DNA抽提样品的分析应该包括一个转基因大豆事件DBN8007的阳性组织DNA抽提物对照,一个来源于非转基因大豆事件DBN8007的阴性DNA抽提物对照和一个不含有模板大豆DNA抽提物的阴性对照。除了这些引物对之外,还可以使用来自SEQ ID NO:3或其互补序列、或者SEQ ID NO:4或其互补序列的任何引物对,当它们被用于DNA扩增反应时分别产生对于来源于转基因事件大豆植物DBN8007的组织为诊断性的包含SEQ ID NO:1或SEQ ID NO:2的扩增子。表2-表5中说明的DNA扩增条件可以用于使用合适的引物对以产生转基因大豆事件DBN8007的诊断性扩增子。当在DNA扩增方法中测试时产生对转基因大豆事件DBN8007为诊断性扩增子的、推定含有转基因大豆事件DBN8007的大豆植物或种子DNA的提取物,或来源于转基因大豆事件DBN8007的产物,可以被用作扩增的模板,来确定是否存在转基因大豆事件DBN8007。
第四实施例、利用Southern印迹杂交检测转基因大豆事件DBN8007
4.1、用于Southern印迹杂交的DNA提取
利用研钵和研杵,在液氮中研磨大约5-10g植物组织。在20mL CTAB裂解缓冲液(100mM Tris-HCl pH 8.0、20mM EDTA pH 8.0、1.4M NaCl、0.2%v/v β-疏基乙醇、2%w/vCTAB)中重悬浮约4-5g研磨过的植物组织,在温度65℃温育60min。在温育期间,每10min将样品颠倒混匀一次。温育后,加入等体积的苯酚/氯仿/异戊醇(25∶24∶1),轻轻颠倒混匀进行抽提,以转速4000rpm离心20min。取水相用等体积氯仿/异戊醇(24∶1)重复抽提一次。再次收集水相后加入等体积异丙醇,混匀后在温度-20℃放置1h以沉淀DNA,再以转速4000rpm离心5min得到DNA沉淀,然后在1mL TE缓冲液(10mM Tris-HCl、1mM EDTA,pH 8.0)中重悬浮DNA沉淀。为了降解任何存在的RNA,在温度37℃下,将DNA和40μL 10mg/mL RNase A温育30min,以4000rpm离心5min,并且在0.1倍体积浓度为3M醋酸钠(pH 5.2)和2倍体积无水乙醇存在的情况下,以转速12000rpm离心10min来沉淀DNA。弃掉上清液后,用70%(v/v)的1mL乙醇洗涤沉淀,室温干燥后在1mL TE缓冲液中将DNA重新溶解。
4.2、限制酶消化
用超微量分光光度计(NanoDrop 2000,Thermo Scientific)测定上述样品的基因组DNA浓度。
在100μL反应体系中,每次消化5μgDNA,用限制性内切酶Mfe I和Nco 1分别消化基因组DNA,以T-DNA上mVip3Aa基因和PAT基因的部分序列作为探针。对于每种酶,在适当的温度下过夜温育消化物。利用真空离心蒸发浓缩器(speed vacuum,Thermo Scientific)旋转样品以减少体积至20μL。
4.3、凝胶电泳
向来源于本实施例4.2中的每个样品添加溴酚蓝加样染料,并且将每个样品加样到含有溴化乙锭的0.7%琼脂糖凝胶上,在TAE电泳缓冲液(40mM Tris-醋酸、2mMEDTA,pH8.5)中电泳分离,在电压20V下电泳凝胶过夜。
电泳结束后,用0.25M HCl处理凝胶10min以使DNA脱嘌呤,然后分别用变性液(1.5M NaCl、0.5M NaOH)和中和液(1.5M NaCl、0.5M Tris-HCl,pH 7.2)处理凝胶各30min。在瓷盘中倒入5×SSC(3MNaCl、0.3M柠檬酸钠,pH 7.0),搭上一块玻璃板,然后依次放浸湿的滤纸桥、凝胶、带正电的尼龙膜(Roche,Cat.No.11417240001)、三张滤纸、纸塔、重物。在室温下转膜过夜后,在去离子水中漂洗尼龙膜2次,通过紫外交联仪(UVP,UV CrossiinkerCL-1000)将DNA固定在膜上。
4.4、杂交
用PCR扩增适合的DNA序列用于探针制备。所述DNA探针为SEQ ID NO:24或SEQ IDNO:25,或者与上述序列部分同源或互补。用DNA Labeling and Detection Starter KitII试剂盒(Roche,Cat.No.11585614910)进行探针的DIG标记、Southern印迹杂交、洗膜等操作,具体方法参考其产品说明书。最后用X光片(Roche,Cat.No.11666916001)检测探针结合的位置。
每个Southern上包括两种对照样品:(1)来自阴性(未转化的)的分离子的DNA,其用于鉴定任何可与元件-特异性探针杂交的内源大豆序列;(2)来自阴性分离子的DNA,其中引入了Hind III-消化的pDBN4006质粒,其量基于探针长度等价于一个拷贝数,其作为阳性对照以说明在检测大豆基因组内的单个基因拷贝时该实验的灵敏度。
杂交数据提供了确证的证据支持TaqManTM PCR分析,即大豆植物DBN8007含有mVip3Aa基因和PAT基因的单拷贝。利用该mVip3Aa基因探针,Mfe I和Nco I酶解后分别产生大小约5.7kb和17kb的单一条带;利用该PAT基因探针,Mfe I和Nco I酶解分别产生大小约7kb和10kb的单一条带,这表明mVip3Aa基因和PAT基因各一个拷贝存在于大豆转化事件DBN8007中。另外,对于骨架探针,未得到杂交条带,说明在转化过程中未有任何pDBN4006载体骨架序列进入大豆转化事件DBN8007基因组中。
第五实施例、通过ELISA检测转基因大豆事件DBN8007的蛋白质表达量
Vip3Aa和PAT蛋白质在转基因大豆事件DBN8007中的表达范围,可通过ELISA进行检测。
称取2mg经冷冻干燥处理后的转基因大豆事件DBN8007的叶片作为样品,液氮研磨后,加入1mL萃取缓冲液(8g/L NaCl、0.27g/L KH2PO4、1.42g/L Na2HPO4、0.2g/L KCl、5.5mL/L Tween-20,pH7.4),混匀,温度4℃下静置30min,12000rpm的转速下离心10min,取上清液用上述萃取缓冲液稀释至适当倍数,取80gL稀释后的上清液用于ELISA检测。
用ELISA(酶联免疫吸附测定法)检测试剂盒(ENVIROLOGIX公司,Vip3Aa试剂盒(AP085)和PAT试剂盒(AP014))对样品中蛋白质(Vip3Aa蛋白和PAT蛋白)量占叶片干重的比例进行检测分析,具体方法参考其产品说明书。同时以野生型大豆植株叶片(非转基因,NGM)作为对照,按照上述方法进行检测分析,每株重复6次。
转基因大豆事件DBN8007的蛋白质(Vip3Aa蛋白和PAT蛋白)含量的实验结果如表6所示。测得转基因大豆事件DBN8007和野生型大豆植株叶片中Vip3Aa蛋白平均表达量占叶片干重的比例(μg/g)分别为15.67和0;转基因大豆事件DBN8007和野生型大豆植株叶片中PAT蛋白平均表达量占叶片干重的比例(μg/g)分别为167.37和0。
表6、转基因大豆事件DBN8007的蛋白表达量(μg/g)测定平均结果
Figure BDA0002452252810000221
第六实施例、事件的昆虫抗性检测
6.1、大豆植物DBN8007在中国境内的生物测定
将大豆转化事件DBN8007和野生型大豆植株(非转基因,NGM)2种植株分别对棉铃虫[Helicoverpa armigera,CBW]、斜纹夜蛾[Spodoptera litura,TCW]、甜菜夜蛾[Spodoptera exigua,BAW]和豆天蛾[Clanisbilineata,BHM]按照如下方法进行生物测定:
分别取大豆转化事件DBN8007和野生型大豆植株(非转基因,NGM)2种植株的V3期倒二叶,用无菌水冲洗干净并用纱布将叶片上的水吸干,然后去除叶脉,同时剪成约2.5cm×3cm的形状,取1-3片(根据昆虫食量确定叶片数量)剪后的叶片放入圆形塑料培养皿底部的滤纸上,所述滤纸用蒸馏水润湿,每个培养皿中放10头人工饲养的初孵幼虫,虫试培养皿加盖后,在温度26-28℃、相对湿度70%-80%、光周期(光/暗)16:8的条件下放置3天后统计结果。统计幼虫发育进度、试虫死亡率和叶片损伤率三项指标,获得抗性总分(满分300分):抗性总分=100×死亡率+[100×死亡率+90×(初孵虫数/接虫总数)+60×(初孵-阴性对照虫数/接虫总数)+10×(阴性对照虫数/接虫总数)]+100×(1-叶片损伤率)。其中,接虫总数是指接虫的总数量,即每皿10头;幼虫发育进度已通过抗性总分公式体现;叶片损伤率是指被害虫取食的叶片面积占叶片总面积的比例。针对每一种害虫,从转基因大豆事件DBN8007和野生型大豆植株(非转基因,NGM)分别选5株进行测试,每株重复6次。结果如表7-8和图3-6所示。
表7、转基因大豆事件DBN8007在中国境内的抗虫生物测定结果-死亡率(%)
Figure BDA0002452252810000222
表8、转基因大豆事件DBN8007的抗虫生物测定结果-抗性总分(分)
Figure BDA0002452252810000231
结果表明:转基因大豆事件DBN8007对上述害虫的试虫死亡率和抗性总分均显著高于NGM,说明转基因大豆事件DBN8007对棉铃虫、斜纹夜蛾、甜菜夜蛾和豆天蛾均具有较好的抗性。
6.2、转基因大豆事件DBN8007在中国境内的田间测试
将转基因大豆事件DBN8007和野生型大豆植株(非转基因,NGM)种植于田间:随机区组设计,3次重复,小区面积为30m2(5m×6m),行距60cm,株距10cm,常规栽培管理,全生育期不喷施杀虫剂。
(1)棉铃虫
仅在棉铃虫自然发生较为严重的地区进行自然感虫(自然虫害发生条件:为害盛期在6-7月,发育最适温度在20-30℃)。在大豆植株生长至V3期(三片复叶),开始跟踪调查NGM叶片被棉铃虫幼虫取食的情况;当NGM的倒二叶和倒三叶不再被取食时,逐株调查棉铃虫对大豆植株的为害面积率(为害面积率=所有单株叶片为害面积的总和/总植株叶片面积×100%)。转基因大豆事件DBN8007对棉铃虫的抗性结果如表9所示。
表9、转基因大豆事件DBN8007自然感虫条件下对棉铃虫的抗性结果
Figure BDA0002452252810000232
结果表明:在棉铃虫自然发生条件下,与NGM相比,棉铃虫对转基因大豆事件DBN8007的为害面积率显著降低,由此说明转基因大豆事件DBN8007对棉铃虫具有较好的抗性,转基因大豆事件DBN8007在棉铃虫自然发生条件下的田间效果如图7所示。
(2)甜菜夜蛾
仅在甜菜夜蛾自然发生较为严重的地区进行自然感虫(自然虫害发生条件:为害盛期在6-7月,发育最适温度在20-30℃)。在大豆植株生长至V3期,开始跟踪调查NGM叶片被甜菜夜蛾幼虫取食的情况;当NGM的倒二叶和倒三叶不再被取食时,逐株调查甜菜夜蛾对大豆植株的为害面积率(为害面积率=所有单株叶片为害面积的总和/总植株叶片面积×100%)。转基因大豆事件DBN8007对甜菜夜蛾的抗性结果如表10所示。
表10、转基因大豆事件DBN8007自然感虫条件下对甜菜夜蛾的抗性结果
Figure BDA0002452252810000233
结果表明:在甜菜夜蛾自然发生条件下,与NGM相比,甜菜夜蛾对转基因大豆事件DBN8007的为害面积率显著降低,由此说明转基因大豆事件DBN8007对甜菜夜蛾具有较好的抗性,转基因大豆事件DBN8007在甜菜夜蛾自然发生条件下的田间效果如图8所示。
(3)斜纹夜蛾
在大豆植株V3期进行人工接虫,接虫2次,每小区选择中心区域附近100株进行接虫,在每株大豆植株的倒二叶上接人工饲养的初孵幼虫约10头,3天后重复等量接虫一次。在接虫5-21天后,逐株调查叶片取食面积。通常接虫后14天开始调查,若NGM叶片的为害面积率(为害面积率=所有单株叶片为害面积的总和/总植株叶片面积×100%)达到15%,则视为有效,若没有达到可适当推迟调查,但接虫后21天为害面积率仍未达15%,则本次接虫视为无效。计算各小区大豆植株V3期斜纹夜蛾对大豆叶片为害面积率平均值,转基因大豆事件DBN8007对斜纹夜蛾的抗性结果如表11所示。
表11、转基因大豆事件DBN8007人工接虫条件下对斜纹夜蛾的抗性结果
Figure BDA0002452252810000241
结果表明:在人工接虫条件下,转基因大豆转化事件DBN8007的为害面积率显著低于NGM,由此说明转基因大豆事件DBN8007对斜纹夜蛾具有较好的抗性,转基因大豆事件DBN8007接种斜纹夜蛾的田间效果如图9所示。
6.3、大豆植物DBN8007在阿根延的生物测定
将转基因大豆事件DBN8007和野生型大豆植株(非转基因,NGM)2种植株分别对大豆夜蛾[Chrysodeixis includens,SBL]、向日葵尺蠖[Rachiplusia nu,SFL]、草地贪夜蛾[Spodoptera frugiperda,FAW]和黑黏虫[Spodoptera cosmioides,BLAW]按照如下方法进行生物测定:
分别取转基因大豆事件DBN8007和野生型大豆植株(非转基因,NGM)2种植株的V3期倒二叶,用无菌水冲洗干净并用纱布将叶片上的水吸干,然后去除叶脉,同时剪成直径约1em的圆形,取1-3片(根据昆虫食量确定叶片数量)剪后的圆形叶片放入生测板(如图10所示)孔内的滤纸上,所述滤纸用蒸馏水润湿,每个孔内放1头初孵幼虫,盖上生测板盖,在温度26-28℃、相对湿度70%-80%、光周期(光/暗)16∶8的条件下放置5天后统计结果。统计试虫死亡率和叶片损伤率(叶片损伤率是指被害虫取食的叶片面积占叶片总面积的比例)。针对每一种害虫,从转基因大豆事件DBN8007和野生型大豆植株(非转基因,NGM)分别选长势相当的6株进行测试,每株重复32个生测孔。结果如表12和图10(草地贪夜蛾)所示。
表12、转基因大豆事件DBN8007在阿根延的生物测定结果
Figure BDA0002452252810000242
结果表明:转基因大豆事件DBN8007对上述害虫的试虫死亡率均显著高于NGM,叶片损伤率均低于NGM,说明转基因大豆事件DBN8007对大豆夜蛾、向日葵尺蠖、草地贪夜蛾和黑黏虫(南美洲典型的大豆害虫)均具有较好的抗性。
6.4、转基因大豆事件DBN8007在阿根延的田间测试
将转基因大豆事件DBN8007和野生型大豆植株(非转基因,NGM)2种植株种植于田间,并分别对大豆夜蛾[Chrysodeixis includens,SBL]、向日葵尺蠖[Rachiplusianu,SFL]、黎豆夜蛾[Anticarsia gemmatalis,VBC]和草地贪夜蛾[Spodoptera frugiperda,FAW]按照如下方法进行田间活体测试:
田间搭建大型生测笼(网状透气型),每个生测笼仅进行一种害虫测试,各生测笼间不相通,且各生测笼间通过人工种植的玉米及田间自然生长的杂草来进一步增加物理阻隔。将转基因大豆事件DBN8007和野生型大豆植株(非转基因,NGM)随机种植于每个生测笼内,每种植株设3个重复,每个重复种植一行(行长3m,30株/行,行距50cm),常规栽培管理,全生育期不喷施杀虫剂。待植株生长至V5(五片复叶)左右,释放适量上述害虫成虫入笼,10天后调查叶片损伤率(叶片损伤率是指被害虫取食的叶片面积占叶片总面积的比例)。结果如表13所示。
表13、转基因大豆事件DBN8007在阿根廷人工接虫条件下对害虫的抗性结果
Figure BDA0002452252810000251
结果表明:在人工接虫条件下,转基因大豆事件DBN8007的叶片损伤率均低于NGM,说明转基因大豆事件DBN8007对大豆夜蛾、向日葵尺蠖、黎豆夜蛾和草地贪夜蛾(南美洲典型的大豆害虫)均具有较好的抗性。
第七实施例、事件的除草剂耐受性检测
本试验选用保试达(Basta)除草剂(有效成分为18%的草铵膦铵盐水剂)进行喷施。采用随机区组设计,3次重复。小区面积为15m2(5m×3m),行距60cm,株距25cm,常规栽培管理,小区之间有1m的宽隔离带。将转基因大豆事件DBN8007进行如下2种处理:(1)不喷施,在处理(2)喷洒除草剂的同时,喷洒等体积的清水;(2)按800g a.i./ha(a.i./ha是指“活性成分每公顷”)剂量在V2-V3叶期(2-3片复叶)喷洒保试达除草剂。需要说明的是,草铵膦除草剂(如Basta)为触杀型除草剂,如田间使用操作不当,如局部积累药液过多,可出现药害状,并非转基因大豆事件DBN8007耐受性存在问题;不同含量和剂型的草铵膦除草剂换算成上述等量有效成分草铵膦均适用于以下结论。
分别在用药后1周和2周调查药害症状,并在收获时测定小区的产量;药害症状分级如表14所示。用除草剂受害率作为评价转化事件的除草剂耐受性的指标,具体地,除草剂受害率(%)=∑(同级受害株数×级别数)/(总株数×最高级别);其中除草剂受害率是指草铵膦受害率,草铵膦受害率是根据草铵膦处理后2周的药害调查结果而确定的,并由除草剂(草铵膦)受害率判别大豆对除草剂的耐受水平。每个小区的大豆产量是称量各小区中间3行的大豆粒总产量(重量),不同处理间的产量差异以产量百分率的形式进行度量,产量百分率(%)=喷施产量/不喷施产量。转基因大豆事件DBN8007对除草剂耐受性的结果和大豆产量结果如表15所示。
表14、草铵膦除草剂对大豆药害程度的分级标准
药害级别 症状描述
1 生长正常,无任何受害症状
2 轻微药害,药害少于10%
3 中等药害,以后能恢复,不影响产量
4 药害较重,难以恢复,造成减产
5 药害严重,不能恢复,造成明显减产或绝产
表15、转基因大豆事件DBN8007对草铵膦除草剂耐受性的结果和大豆产量结果
Figure BDA0002452252810000252
Figure BDA0002452252810000261
结果说明,在草铵膦除草剂受害率方面:转基因大豆事件DBN8007在草铵膦除草剂(800g a.i./ha)处理下受害率为0;由此,转基因大豆事件DBN8007具有良好的草铵膦除草剂耐受性。
在产量方面:转基因大豆事件DBN8007在不喷施和喷施800g a.i./ha草铵膦2种处理下产量没有明显差异,由此,进一步表明转基因大豆事件DBN8007具有良好的草铵膦除草剂耐受性,且对产量无影响。
第八实施例
可由转基因大豆事件DBN8007生产诸如农产品或商品。如果在所述农产品或商品中检测到足够的表达量,所述农产品或商品预期含有能够诊断转基因大豆事件DBN8007材料在所述农产品或商品中存在的核苷酸序列。所述农产品或商品包括但不限于大豆饼、粉和油,具体可以为卵磷脂、脂肪酸、甘油、固醇、食用油、脱脂大豆片、包括脱脂的和烘烤的大豆粉、豆浆凝块、豆腐、大豆蛋白浓缩物、分离的大豆蛋白、水解植物蛋白、组织化大豆蛋白和大豆蛋白纤维、以及将要作为食物源供动物消费的任何其它食品等。基于探针或引物对的核酸检测方法和/或试剂盒可以被开发以检测生物样品中诸如SEQ ID NO:1或SEQ IDNO:2所示的来源于转基因大豆事件DBN8007的核苷酸序列,其中探针序列或引物序列选自如SEQ ID NO:1、SEQ ID NO:2、SEQ ID NO:3、SEQ ID NO:4和SEQ ID NO:5中所示的序列或其部分,以诊断转基因大豆事件DBN8007的存在。
综上所述,本发明转基因大豆事件DBN8007对鳞翅目昆虫具有较好的抗性,同时对草铵膦除草剂具有较高的耐受性,对产量无影响,且检测方法可以准确快速的鉴定生物样品中是否包含转基因大豆事件DBN8007的DNA分子。
对应于转基因大豆事件DBN8007的种子已根据布达佩斯条约于2019年2月19日保藏在中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,邮编100101),分类命名:大豆(Glycine max),保藏状态:存活,保藏编号为CGMCC No.17300。保藏物将在保藏处保藏30年。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。
序列表
<110> 北京大北农生物技术有限公司
<120> 用于检测大豆植物DBN8007的核酸序列及其检测方法
<130> CP1190647P-CN/CB
<160> 31
<170> SIPOSequenceListing 1.0
<210> 1
<211> 22
<212> DNA
<213> 人工序列-DBN8007中在插入序列5’末端位于插入接合部位附近的一个长度为22个核苷酸的序列(Artificial Sequence)
<400> 1
ttttactagg agggaaacga ca 22
<210> 2
<211> 22
<212> DNA
<213> 人工序列-DBN8007中在插入序列3’末端位于插入接合部位附近的一个长度为22个核苷酸的序列(Artificial Sequence)
<400> 2
tacaccacaa tatatgatga at 22
<210> 3
<211> 1407
<212> DNA
<213> 人工序列-DBN8007中在插入序列的5’末端位于插入接合部位附近的一个长度为1407个核苷酸的序列(Artificial Sequence)
<400> 3
caccacaaac aagaactttc caagtgtgtt aatgaatcat gtgatcatgc atgttgtggt 60
gtggtggagg agaaatggta aaatttggaa ggatgttgat aaatcgcctt ctgtgatcaa 120
tcaaagagta aaagatattt tgtttgattg ggggagttag aagtagaaaa cagaatctgc 180
aacataacat taattgtatt tccagttgga agaaacctcc ttttggtgtg attaagtgca 240
atttagatgc taccttattt gctaatcaaa gatgttttgg tattggttta tacttacggg 300
atgatttggg tcagtttatc cttgcaaaga caagcatttt ttaaggcctt ttgtagccag 360
ttgaagcgaa actatggccc ttttagaggc tatagggtgg gttcgtgata atttaatcag 420
attgtaaaac tgtggttgat aattttaatg ttagatgtac aactcaataa gaattaagag 480
tcatacttag gttgtgtaaa gataggctct ctcttttttt acaaacatag acatatgttt 540
tattttacta ggagggaaac gacaatctga tcatgagcgg agaattaagg gagtcacgtt 600
atgacccccg ccgatgacgc gggacaagcc gttttacgtt tggaactgac agaaccgcaa 660
cgctgcagga attggccgca ggtggatttg tattaaacta atgactaatt agtggcacta 720
gcctcaccga cttcgcagac gaggccgcta agtcgcagct acgctctcaa cggcactgac 780
taggtagttt aaacgtgcac ttaattaagg taccgggaat ttaaatcccg ggaggtctcg 840
cagacctagc tagttagaat cccgagacct aagtgactag ggtcacgtga ccctagtcac 900
ttaaagcttg tcgacaaaat ttagaacgaa cttaattatg atctcaaata cattgataca 960
tatctcatct agatctaggt tatcattatg taagaaagtt ttgacgaata tggcacgaca 1020
aaatggctag actcgatgta attggtatct caactcaaca ttatacttat accaaacatt 1080
agttagacaa aatttaaaca actatttttt atgtatgcaa gagtcagcat atgtataatt 1140
gattcagaat cgttttgacg agttcggatg tagtagtagc cattatttaa tgtacatact 1200
aatcgtgaat agtgaatatg atgaaacatt gtatcttatt gtataaatat ccataaacac 1260
atcatgaaag acactttctt tcacggtctg aattaattat gatacaattc taatagaaaa 1320
cgaattaaat tacgttgaat tgtatgaaat ctaattgaac aagccaacca cgacgacgac 1380
taacgttgcc tggattgact cggttta 1407
<210> 4
<211> 1022
<212> DNA
<213> 人工序列-DBN8007中在插入序列的3’末端位于插入接合部位附近的一个长度为1022个核苷酸的序列(Artificial Sequence)
<400> 4
gtgagtagtt cccagataag ggaattaggg ttcttatagg gtttcgctca tgtgttgagc 60
atataagaaa cccttagtat gtatttgtat ttgtaaaata cttctatcaa taaaatttct 120
aattcctaaa accaaaatcc agtggcctgc agggaattct taattaagtg cacgcggccg 180
cctacttagt caagagcctc gcacgcgact gtcacgcggc caggatcgcc tcgtgagcct 240
cgcaatctgt acctagttta gctagttagg acgttaacag ggacgcgcct ggccgtatcc 300
gcaatgtgtt attaagttgt ctaagcgtca atttgtttac accacaatat atgatgaata 360
atgaaacgca tttatttcta aaatgatcaa taattaaaac actcaagaaa tatacaagat 420
attgcatagt aaaaagagta tagaatatag agtgagagag agatgagaaa agagattcta 480
tactagtcta gtcactatca aaagcttgca tcgatctagt ccccaataaa acttactaag 540
attttcgcta atcttacaaa gtcctttaca tcaagaacta ctcgatgctt attacatcga 600
gacgcaatta aaaaaatggc atcggtgata ggataaaaag ccacggacta tcaaactttt 660
gtttaactta attaaactcc ccgtaatttc ttaacgtaaa aaacaaaaca atcatatgtt 720
attgccaaat acgtgttaat tcccgagtca tctcaatctc aagtgacaat tagtaatatt 780
ttaagacaat ttaatttatt cgatattctc tttaatttgt agtactcatt taatgaaaac 840
aacataaaat ttcacttaat atttatttta aaattcctcc cctttcgcac acgctgttct 900
ccaggtatta ttacgttcat gacgattgat cattggagag gaccttacat aaaaatatgt 960
atatgttacg tatttggacc acactattaa aatccctatg cgcgccacgg catattgtac 1020
at 1022
<210> 5
<211> 11935
<212> DNA
<213> 人工序列-整个T-DNA序列、5’和3’末端的大豆基因组侧翼序列(ArtificialSequence)
<400> 5
atattaggtc acctgtgtag ctagcctatg gcatgaacag gcatgtaagc acccaacaac 60
tagggggagt tcatccacaa agtactagta cagttagctg gttgtgatct tgatccaatc 120
ctcactccaa atcagctttc atgtgcagag tagttctcaa tgattgctga ttggtgtagg 180
attgcagagg caagagcaaa actcaacgat atgtatgtta gacacattat ttttaaagat 240
ttattcgtat attgtataat ttttttagga tataataggc ctttccacaa caaaaactaa 300
caagaataag aaaaagaaat cagagaaaaa aagagagtaa aaagcaaaat tgttttttgt 360
tttttgtgtg tttgaaacgg aagataaagg acaatattta taagataatt acgaaaaaca 420
taaaaatggt aacaaaataa ttgagataat tagattgttt taaataaaaa cagaaaaaag 480
taattgaggt aattagaata aaacagaaag aaaataaaaa gaattttcaa aatagacaca 540
gaaaaatcta aaacattaaa tacatcattt taaattcaaa tattttgaaa tactcaaaaa 600
aaaaaaaaca cacatatgta ctcatgtgat atcagaatct ctttaaatcg acatacttct 660
ccccattccc gttcactata tattacttag tccccacaaa tataatttat ccttttctac 720
aaaagcaaat ataagagagt gggcgagatc actctttttg gacatattaa ctaagaaaat 780
gattcgtgta atcttctttt ctaaagcatg gtgatttttt tgttagccat tacttgattc 840
ggtatcccct ttgattctag taaagattat aaagcacgta atgggtcttg ttccctccgt 900
tgaaaaaaaa aacaggtaaa taagcatttt tgtcttaaat atgtttcaag ttcccataaa 960
tttggaatat gcctttttca atctctcaaa ttataattat ttacattttt tagtctattg 1020
aatttttgaa atatttcttt taatctcttt tggtaacaaa atcatcacaa tttgttcatt 1080
cagacagaca aaaatcagtc aagctaaaaa aactaaaaat atattttata aattttaagg 1140
actaaatatt aaaatttttg tttgaagaaa aaaatattat tcctacaaat tttagggact 1200
aaagattgta acatttattt ggttcggtaa aactaaatat ccgtaatcat tcctacaatt 1260
cgtgtaaaaa attaaactaa taaaaaaata ctttaaaaga aatctaagac atctatttag 1320
cacatatgaa catctcaaaa aagaaattat gcaatacttt aaaataatgt taaaatctca 1380
ataattaatg taataaaact aatattagtt atgatatatg actagacata gttactcgtt 1440
atctttttat agcacaattc atgtcgtcta atataaaaat caagtgatat acaggtgtag 1500
ctagacataa caatgtttag atcaacaagc acgtaagaaa aatataagac tcttcaactc 1560
gtacctttta tcaacttaac cattacacaa attgttttca gtttacgtat acacccttcg 1620
gtaaataaaa ataatatatt gaaaatataa aataaaaaaa gagaaaagga aaaaaaataa 1680
ctaaagattc aatcatcatt tactttgacc caatttaata tagaactcaa aatatatgtt 1740
ttactatatt taattttttt ttgttttttt taaggaagga aattaattca tatcatattt 1800
tatgagattc tgaatacact taggaatgtc aacaaaaagc tggcggctag catataattg 1860
tgtctccccc cccccagcta aagagtgatc ttaaatagtc taaatcaatg taaagagtat 1920
aaggagccaa attaaagcct tatgttttta gctaaggtca aactaagaac cagcaaaacc 1980
tagcttataa attcattttt aaatatcaat gtcatggcta atattaactt tttcgactct 2040
aaaatgttga actcatatat attatgtatc gttaaaagct ttcgctccct cttttatcga 2100
tcattaaaat atctcttttt ctttattttc aatttacaac acattttgtg aaaaccgacc 2160
tttcttacat tatggtgaag gatcttttaa ttaaaacaaa taaattttaa aataattttg 2220
atttggttgt ttcaatcttg ttcactcttt cacttacccg cgggacagaa tcccaagttg 2280
attctctcat cgatgtgctt gttgtggata cgtcatactt agttataaac cactaattag 2340
ttaattgatt aacaatttaa tgaattatca ttacgtacta atgtaattgt ttgatgttgg 2400
cccagcctca cataagaaat atatttaaag tgttttcacc ctcaataata ttattccacg 2460
tgttggtagg gtttgggaca gtggacacaa tggtgggggc tgaccaaata cttttttctt 2520
gaaatgttta gtttatacac gaagaacgta tagaatgtat agactatatc gagcctgccc 2580
aattaataat ctgcccattt gtattaatta atattatcat ttctacaacg tacgcggctt 2640
tttttgttaa gctatgatta gcaaagttac agagttattt aggcaaccat ttttgttctt 2700
ctttaattgc aaatgcttga aaagggaaga ctatcttatt tttaaagtaa aagtacatga 2760
cacatgcctc taaacaaaga aatcttagat attcacagtg taatactttc aataatttag 2820
atcgtatcta aatttattat aatttttaaa ataaataatc tgttgggtgc tttgatatat 2880
ttgtgctagc tatatgttgt gttttgaatt gaagcactat taaagttcac gagagatttt 2940
ttttccatat acacgtactt atagctaaat aaagaaaact tgttggcaaa aatcaaatca 3000
aatacgcatg gcaacgggat ggatcgagtt ttcttgtttt gtctttaatt ttatcttgtt 3060
tttttattca taaaaatgaa aaaataagat aattttttta attggattga atctattaca 3120
acatattaaa ttaaaatttt aagtaaaaat tgtttaatct catttatttt ttaataactt 3180
aaaaatataa taatcataac accttattta ctaaagttaa aattacaagt acttaaaaat 3240
agactaagta aaaaaaattt attctcattt attttttgag ctcaacatga aattaagaaa 3300
attatacaca attataagaa aaatagtgat ttcatacata aaacaaacat taatctatta 3360
aaattataag attataatag taatttaaaa tatttattat attagaatag tagtgaaacg 3420
agaataggaa ccagcatacc tgatcttatc tcagaatcta actttttcaa ttggagaaaa 3480
tctaaatcca aatccgatca attccatttt tttccatcaa agtcaaagcg agtctgaatc 3540
gattctcacg gtgacggata tacttgtcat gcctaaaatc aaagccttaa aatagtagta 3600
gttaatgttt gatagtattt ttttttataa aggaagtaga tatatgagaa tatgatttat 3660
tcaatgtaaa atttatcttt atataagggc agaagagagt gtaaggggga tggtttggcc 3720
cgagttagac ttcttaattg aagttttaga gaaaaattct attatatatt tttttttggt 3780
acagaattca gtgcatttcc actgatataa actgttgaat acaaaggcaa gtataatgga 3840
atttataact gtgtggcaac tctattggca ttgataactt tatggttttg ttccactagt 3900
ttctacatag cttagctttc tgatatgcct cagactggat tttcctatga ttgtaatgtt 3960
ttgttaccta tgtgggtatc acttttaccc atagtgacat ataattatct ttgcctacaa 4020
aagaaaaaaa attctatatc gacattcttg ctaaagaatg agcatctttt tgtttttttt 4080
ttgggtggag gaatgagtca ccttattagt gtttttgcta gcaaactgaa tcataaaacc 4140
tggatgtgca tttagaattt gcttgatatg gtcaataacg acaccacatt cagtaatgtt 4200
gtttcttcca ccctttaagt tttcaactaa ggttttgcag tcagtctcga aaatcactgt 4260
gatatataag gtaattgcgc aacccatttt ataacttgta acaaagcaaa ggcctccttt 4320
ccttgacata ttgtctttaa ttatagttag ataatatatt tttgagttat ttaattttca 4380
ttaaaatata tgaagttgat tttgatttat agggtagagt gtgaattgta aatctttctt 4440
ctaatttttc aaggatgtaa agaacatctt aatgaataag tatgatttaa attatgacat 4500
tgtcttttca tgctacccaa cataaaaaaa gagagtcatt aactttattt ttctcttaaa 4560
aagttctcta ttttttctat attttatctt tatctaccta tataaaattg agtgtttaca 4620
catttatttt attttattat tttattaatt tgtaaatttt taagttgata ttttcttaaa 4680
attacaccac aaacaagaac tttccaagtg tgttaatgaa tcatgtgatc atgcatgttg 4740
tggtgtggtg gaggagaaat ggtaaaattt ggaaggatgt tgataaatcg ccttctgtga 4800
tcaatcaaag agtaaaagat attttgtttg attgggggag ttagaagtag aaaacagaat 4860
ctgcaacata acattaattg tatttccagt tggaagaaac ctccttttgg tgtgattaag 4920
tgcaatttag atgctacctt atttgctaat caaagatgtt ttggtattgg tttatactta 4980
cgggatgatt tgggtcagtt tatccttgca aagacaagca ttttttaagg ccttttgtag 5040
ccagttgaag cgaaactatg gcccttttag aggctatagg gtgggttcgt gataatttaa 5100
tcagattgta aaactgtggt tgataatttt aatgttagat gtacaactca ataagaatta 5160
agagtcatac ttaggttgtg taaagatagg ctctctcttt ttttacaaac atagacatat 5220
gttttatttt actaggaggg aaacgacaat ctgatcatga gcggagaatt aagggagtca 5280
cgttatgacc cccgccgatg acgcgggaca agccgtttta cgtttggaac tgacagaacc 5340
gcaacgctgc aggaattggc cgcaggtgga tttgtattaa actaatgact aattagtggc 5400
actagcctca ccgacttcgc agacgaggcc gctaagtcgc agctacgctc tcaacggcac 5460
tgactaggta gtttaaacgt gcacttaatt aaggtaccgg gaatttaaat cccgggaggt 5520
ctcgcagacc tagctagtta gaatcccgag acctaagtga ctagggtcac gtgaccctag 5580
tcacttaaag cttgtcgaca aaatttagaa cgaacttaat tatgatctca aatacattga 5640
tacatatctc atctagatct aggttatcat tatgtaagaa agttttgacg aatatggcac 5700
gacaaaatgg ctagactcga tgtaattggt atctcaactc aacattatac ttataccaaa 5760
cattagttag acaaaattta aacaactatt ttttatgtat gcaagagtca gcatatgtat 5820
aattgattca gaatcgtttt gacgagttcg gatgtagtag tagccattat ttaatgtaca 5880
tactaatcgt gaatagtgaa tatgatgaaa cattgtatct tattgtataa atatccataa 5940
acacatcatg aaagacactt tctttcacgg tctgaattaa ttatgataca attctaatag 6000
aaaacgaatt aaattacgtt gaattgtatg aaatctaatt gaacaagcca accacgacga 6060
cgactaacgt tgcctggatt gactcggttt aagttaacca ctaaaaaaac ggagctgtca 6120
tgtaacacgc ggatcgagca ggtcacagtc atgaagccat caaagcaaaa gaactaatcc 6180
aagggctgag atgattaatt agtttaaaaa ttagttaaca cgagggaaaa ggctgtctga 6240
cagccaggtc acgttatctt tacctgtggt cgaaatgatt cgtgtctgtc gattttaatt 6300
atttttttga aaggccgaaa ataaagttgt aagagataaa cccgcctata taaattcata 6360
tattttcctc tccgctttga attgtctcgt tgtcctcctc actttcatca gccgttttga 6420
atctccggcg acttgacaga gaagaacaag gaagaagact aagagagaaa gtaagagata 6480
atccaggaga ttcattctcc gttttgaatc ttcctcaatc tcatcttctt ccgctctttc 6540
tttccaaggt aataggaact ttctggatct actttatttg ctggatctcg atcttgtttt 6600
ctcaatttcc ttgagatctg gaattcgttt aatttggatc tgtgaacctc cactaaatct 6660
tttggtttta ctagaatcga tctaagttga ccgatcagtt agctcgatta tagctaccag 6720
aatttggctt gaccttgatg gagagatcca tgttcatgtt acctgggaaa tgatttgtat 6780
atgtgaattg aaatctgaac tgttgaagtt agattgaatc tgaacactgt caatgttaga 6840
ttgaatctga acactgttta aggttagatg aagtttgtgt atagattctt cgaaacttta 6900
ggatttgtag tgtcgtacgt tgaacagaaa gctatttctg attcaatcag ggtttatttg 6960
actgtattga actctttttg tgtgtttgca gctcataaaa agagctcatg aacaagaaca 7020
acaccaagct ctccacacgg gcacttccct cctttattga ctactttaat ggcatctatg 7080
ggtttgctac ggggatcaag gacattatga acatgatctt caagacagac actggcgggg 7140
atcttacgct cgacgagatt cttaagaatc agcaactcct gaacgatatc tctggcaagc 7200
tggacggcgt gaatgggtca cttaacgacc tcatcgctca ggggaatctc aacacagaac 7260
tgtctaagga gatcctcaag attgcaaatg agcagaacca agttcttaat gatgtgaaca 7320
ataagctcga cgccatcaac acaatgcttc gcgtgtacct cccaaagatt actagcatgc 7380
tctcggacgt catgaagcag aactacgcgc tgtcccttca aattgagtat ctgagcaagc 7440
agcttcaaga aatctcggac aagctggata tcattaatgt gaacgtcctc atcaacagca 7500
ccctgacgga gattacaccg gcgtaccaga ggatcaagta tgtgaatgag aagttcgagg 7560
aactcacttt tgctacagaa acttccagca aggtcaagaa ggatggctca ccagccgaca 7620
tcctggatga gcttacagaa ctcactgagc tggcgaagtc cgtgaccaag aatgacgtcg 7680
atggcttcga gttttacctg aacacgttcc acgacgttat ggtgggcaac aatctttttg 7740
ggcggagcgc tctcaagact gcatcggaac tgatcaccaa ggagaacgtt aagacgagcg 7800
gctcggaggt cgggaatgtt tacaacttcc ttatcgtcct caccgcactc caggcccaag 7860
cgtttctcac gctgaccacc tgccgcaagc tcctcggcct cgcagacatc gattacacct 7920
ccatcatgaa cgagcacctg aacaaggaga aggaggagtt ccgcgtgaat atccttccga 7980
cactctcgaa cactttttct aatccaaact acgctaaggt caagggctcc gacgaagatg 8040
caaagatgat cgttgaggcc aagcctggcc atgcgctcat cgggttcgag atttctaacg 8100
actcaattac cgtgctgaag gtctacgagg cgaagctcaa gcagaattat caagtggaca 8160
aggattctct gtcagaggtt atctacggcg acatggataa gctgctttgc cctgatcagt 8220
ccgagcaaat ctactatacg aacaatattg tcttccccaa cgaatacgtg atcaccaaga 8280
ttgactttac gaagaagatg aagacactcc ggtacgaggt gacggctaac ttctatgatt 8340
cgtctacggg cgagatcgac ctcaacaaga agaaggtcga atcatccgag gccgaataca 8400
gaaccctgtc ggcgaacgac gatggcgtgt atatgcctct tggggtcatt tctgagacct 8460
tcctcacgcc catcaatggc tttgggctcc aggcagatga gaactcccgc ctgatcaccc 8520
ttacgtgcaa gagctacctc agggagctgc tgcttgccac cgacctctct aacaaggaaa 8580
cgaagctgat cgttccgcca tcaggcttca tctccaatat tgtggagaac gggtcaattg 8640
aggaagataa tctggaaccg tggaaggcta acaataagaa cgcatacgtt gaccacacag 8700
gcggggtgaa tggcactaag gcgctctatg tgcataagga tggtggcatc tcccagttca 8760
ttggcgacaa gctgaagccg aagacagaat acgtgattca atatactgtg aagggcaagc 8820
caagcatcca cctcaaggat gagaacacag ggtacatcca ttacgaagat actaacaaca 8880
acctggagga ctaccagaca atcaataaga ggttcacaac tggcactgac ctgaaggggg 8940
tctatcttat tctcaagtcc cagaatggcg atgaggcctg gggcgacaac ttcatcattc 9000
tcgaaatctc ccctagcgag aagctcctga gccccgagct gattaacacc aataactgga 9060
catccactgg cagcacgaat atctcgggga acaccctgac gctttaccag ggcgggagag 9120
gcattctgaa gcagaacctc caactggatt cgttctctac ctacagagtc tatttttcag 9180
tttccggcga cgcgaatgtg cgcatcagga actcgcggga agtcctcttc gagaagagat 9240
acatgtctgg cgctaaggat gtgtcagaaa tgttcaccac gaagtttgag aaggacaact 9300
tttatatcga actgtcccaa gggaataacc tctacggcgg ccccattgtt catttttacg 9360
acgtgagcat caagtgaggc gccgatcgtt caaacatttg gcaataaagt ttcttaagat 9420
tgaatcctgt tgccggtctt gcgatgatta tcatataatt tctgttgaat tacgttaagc 9480
atgtaataat taacatgtaa tgcatgacgt tatttatgag atgggttttt atgattagag 9540
tcccgcaatt atacatttaa tacgcgatag aaaacaaaat atagcgcgca aactaggata 9600
aattatcgcg cgcggtgtca tctatgttac tagatcggcg cgccagtaag tgactagagt 9660
cacgtgaccc tagtcactta aatcctaggc catggagtca aagattcaaa tagaggacct 9720
aacagaactc gccgtaaaga ctggcgaaca gttcatacag agtctcttac gactcaatga 9780
caagaagaaa atcttcgtca acatggtgga gcacgacacg cttgtctact ccaaaaatat 9840
caaagataca gtctcagaag accaaagggc aattgagact tttcaacaaa gggtaatatc 9900
cggaaacctc ctcggattcc attgcccagc tatctgtcac tttattgtga agatagtgga 9960
aaaggaaggt ggctcctaca aatgccatca ttgcgataaa ggaaaggcca tcgttgaaga 10020
tgcctctgcc gacagtggtc ccaaagatgg acccccaccc acgaggagca tcgtggaaaa 10080
agaagacgtt ccaaccacgt cttcaaagca agtggattga tgtgatatct ccactgacgt 10140
aagggatgac gcacaatccc actatccttc gcaagaccct tcctctatat aaggaagttc 10200
atttcatttg gagaggacag ggtacccggg gatccaccat gtctccggag aggagaccag 10260
ttgagattag gccagctaca gcagctgata tggccgcggt ttgtgatatc gttaaccatt 10320
acattgagac gtctacagtg aactttagga cagagccaca aacaccacaa gagtggattg 10380
atgatctaga gaggttgcaa gatagatacc cttggttggt tgctgaggtt gagggtgttg 10440
tggctggtat tgcttacgct gggccctgga aggctaggaa cgcttacgat tggacagttg 10500
agagtactgt ttacgtgtca cataggcatc aaaggttggg cctaggatcc acattgtaca 10560
cacatttgct taagtctatg gaggcgcaag gttttaagtc tgtggttgct gttataggcc 10620
ttccaaacga tccatctgtt aggttgcatg aggctttggg atacacagcc cggggtacat 10680
tgcgcgcagc tggatacaag catggtggat ggcatgatgt tggtttttgg caaagggatt 10740
ttgagttgcc agctcctcca aggccagtta ggccagttac ccagatctga gtcgacctgc 10800
aggcatgccc gctgaaatca ccagtctctc tctacaaatc tatctctctc tataataatg 10860
tgtgagtagt tcccagataa gggaattagg gttcttatag ggtttcgctc atgtgttgag 10920
catataagaa acccttagta tgtatttgta tttgtaaaat acttctatca ataaaatttc 10980
taattcctaa aaccaaaatc cagtggcctg cagggaattc ttaattaagt gcacgcggcc 11040
gcctacttag tcaagagcct cgcacgcgac tgtcacgcgg ccaggatcgc ctcgtgagcc 11100
tcgcaatctg tacctagttt agctagttag gacgttaaca gggacgcgcc tggccgtatc 11160
cgcaatgtgt tattaagttg tctaagcgtc aatttgttta caccacaata tatgatgaat 11220
aatgaaacgc atttatttct aaaatgatca ataattaaaa cactcaagaa atatacaaga 11280
tattgcatag taaaaagagt atagaatata gagtgagaga gagatgagaa aagagattct 11340
atactagtct agtcactatc aaaagcttgc atcgatctag tccccaataa aacttactaa 11400
gattttcgct aatcttacaa agtcctttac atcaagaact actcgatgct tattacatcg 11460
agacgcaatt aaaaaaatgg catcggtgat aggataaaaa gccacggact atcaaacttt 11520
tgtttaactt aattaaactc cccgtaattt cttaacgtaa aaaacaaaac aatcatatgt 11580
tattgccaaa tacgtgttaa ttcccgagtc atctcaatct caagtgacaa ttagtaatat 11640
tttaagacaa tttaatttat tcgatattct ctttaatttg tagtactcat ttaatgaaaa 11700
caacataaaa tttcacttaa tatttatttt aaaattcctc ccctttcgca cacgctgttc 11760
tccaggtatt attacgttca tgacgattga tcattggaga ggaccttaca taaaaatatg 11820
tatatgttac gtatttggac cacactatta aaatccctat gcgcgccacg gcatattgta 11880
catataaaat tagctagatt atgggattat ctaaaattgg agccactgtc tacat 11935
<210> 6
<211> 219
<212> DNA
<213> 人工序列-位于SEQ ID NO:3上的序列,跨越了pDBN4006构建体DNA序列和prAtAct2转录起始序列(Artificial Sequence)
<400> 6
cgtgcactta attaaggtac cgggaattta aatcccggga ggtctcgcag acctagctag 60
ttagaatccc gagacctaag tgactagggt cacgtgaccc tagtcactta aagcttgtcg 120
acaaaattta gaacgaactt aattatgatc tcaaatacat tgatacatat ctcatctaga 180
tctaggttat cattatgtaa gaaagttttg acgaatatg 219
<210> 7
<211> 243
<212> DNA
<213> 人工序列-位于SEQ ID NO:4上的序列,跨越了t35S转录终止子序列和pDBN4006构建体DNA序列(Artificial Sequence)
<400> 7
gtgagtagtt cccagataag ggaattaggg ttcttatagg gtttcgctca tgtgttgagc 60
atataagaaa cccttagtat gtatttgtat ttgtaaaata cttctatcaa taaaatttct 120
aattcctaaa accaaaatcc agtggcctgc agggaattct taattaagtg cacgcggccg 180
cctacttagt caagagcctc gcacgcgact gtcacgcggc caggatcgcc tcgtgagcct 240
cgc 243
<210> 8
<211> 22
<212> DNA
<213> 人工序列-扩增SEQ ID NO:3的第一引物(Artificial Sequence)
<400> 8
caccacaaac aagaactttc ca 22
<210> 9
<211> 19
<212> DNA
<213> 人工序列-扩增SEQ ID NO:3的第二引物(Artificial Sequence)
<400> 9
taaaccgagt caatccagg 19
<210> 10
<211> 20
<212> DNA
<213> 人工序列-扩增SEQ ID NO:4的第一引物(Artificial Sequence)
<400> 10
gtgagtagtt cccagataag 20
<210> 11
<211> 20
<212> DNA
<213> 人工序列-扩增SEQ ID NO:4的第二引物(Artificial Sequence)
<400> 11
atgtacaata tgccgtggcg 20
<210> 12
<211> 23
<212> DNA
<213> 人工序列-5’侧翼基因组序列上的引物(Artificial Sequence)
<400> 12
acttaggttg tgtaaagata ggc 23
<210> 13
<211> 24
<212> DNA
<213> 人工序列-与SEQ ID NO:12配对的位于T-DNA上的引物(Artificial Sequence)
<400> 13
ctacctagtc agtgccgttg agag 24
<210> 14
<211> 21
<212> DNA
<213> 人工序列-3’侧翼基因组序列上的引物,其与SEQ ID NO:12配对可以检测转基因是纯合子或是杂合子(Artificial Sequence)
<400> 14
caaaagtttg atagtccgtg g 21
<210> 15
<211> 21
<212> DNA
<213> 人工序列-与SEQ ID NO:14配对的位于T-DNA上的引物(Artificial Sequence)
<400> 15
attcttaatt aagtgcacgc g 21
<210> 16
<211> 21
<212> DNA
<213> 人工序列-Taqman 检测mVip3Aa基因的第一引物(Artificial Sequence)
<400> 16
cgaatacaga accctgtcgg c 21
<210> 17
<211> 24
<212> DNA
<213> 人工序列-Taqman 检测mVip3Aa基因的第二引物(Artificial Sequence)
<400> 17
cgtgaggaag gtctcagaaa tgac 24
<210> 18
<211> 27
<212> DNA
<213> 人工序列-Taqman 检测mVip3Aa基因的探针(Artificial Sequence)
<400> 18
cgacgatggc gtgtatatgc ctcttgg 27
<210> 19
<211> 22
<212> DNA
<213> 人工序列-Taqman 检测PAT基因的第一引物(Artificial Sequence)
<400> 19
gagggtgttg tggctggtat tg 22
<210> 20
<211> 23
<212> DNA
<213> 人工序列-Taqman 检测PAT基因的第二引物(Artificial Sequence)
<400> 20
tctcaactgt ccaatcgtaa gcg 23
<210> 21
<211> 25
<212> DNA
<213> 人工序列-Taqman 检测PAT基因的探针(Artificial Sequence)
<400> 21
cttacgctgg gccctggaag gctag 25
<210> 22
<211> 25
<212> DNA
<213> 人工序列-大豆内源基因lectin的第一引物(Artificial Sequence)
<400> 22
tgccgaagca accaaacatg atcct 25
<210> 23
<211> 25
<212> DNA
<213> 人工序列-大豆内源基因lectin的第二引物(Artificial Sequence)
<400> 23
tgatggatct gatagsattg acgtt 25
<210> 24
<211> 346
<212> DNA
<213> 人工序列-Southern杂交检测中mVip3Aa基因的探针(Artificial Sequence)
<400> 24
acagaactca ctgagctggc gaagtccgtg accaagaatg acgtcgatgg cttcgagttt 60
tacctgaaca cgttccacga cgttatggtg ggcaacaatc tttttgggcg gagcgctctc 120
aagactgcat cggaactgat caccaaggag aacgttaaga cgagcggctc ggaggtcggg 180
aatgtttaca acttccttat cgtcctcacc gcactccagg cccaagcgtt tctcacgctg 240
accacctgcc gcaagctcct cggcctcgca gacatcgatt acacctccat catgaacgag 300
cacctgaaca aggagaagga ggagttccgc gtgaatatcc ttccga 346
<210> 25
<211> 310
<212> DNA
<213> 人工序列-Southern杂交检测中PAT基因的探针(Artificial Sequence)
<400> 25
cagacttaaa accttgcgcc tccatagact taagcaaatg tgtgtacaat gtggatccta 60
ggcccaacct ttgatgccta tgtgacacgt aaacagtact ctcaactgtc caatcgtaag 120
cgttcctagc cttccagggc ccagcgtaag caataccagc cacaacaccc tcaacctcag 180
caaccaacca agggtatcta tcttgcaacc tctctagatc atcaatccac tcttgtggtg 240
tttgtggctc tgtcctaaag ttcactgtag acgtctcaat gtaatggtta acgatatcac 300
aaaccgcggc 310
<210> 26
<211> 20
<212> DNA
<213> 人工序列-位于T-DNA上的引物,与SEQ ID NO:13方向一致(ArtificialSequence)
<400> 26
cgtgacccta gtcacttagg 20
<210> 27
<211> 21
<212> DNA
<213> 人工序列-位于T-DNA上的引物,与SEQ ID NO:13方向相反,用作获得侧翼序列(Artificial Sequence)
<400> 27
cgttatcttt acctgtggtc g 21
<210> 28
<211> 19
<212> DNA
<213> 人工序列-位于T-DNA上的引物,与SEQ ID NO:13方向相反,用作获得侧翼序列(Artificial Sequence)
<400> 28
cgctctttct ttccaaggt 19
<210> 29
<211> 20
<212> DNA
<213> 人工序列-位于T-DNA上的引物,与SEQ ID NO:15方向一致(ArtificialSequence)
<400> 29
ttaggccagt tacccagatc 20
<210> 30
<211> 22
<212> DNA
<213> 人工序列-位于T-DNA上的引物,与SEQ ID NO:15方向相反,用作获得侧翼序列(Artificial Sequence)
<400> 30
aaccttgcgc ctccatagac tt 22
<210> 31
<211> 22
<212> DNA
<213> 人工序列-位于T-DNA上的引物,与SEQ ID NO:15方向相反,用作获得侧翼序列(Artificial Sequence)
<400> 31
gtggtgtttg tggctctgtc ct 22
PCT/RO/134表
Figure 000001

Claims (13)

1.一种核酸序列,其特征在于,具有SEQ ID NO:3或其互补序列第1-553位中至少11个连续的核苷酸和SEQ ID NO:3或其互补序列第554-1407位中至少11个连续的核苷酸、和/或SEQ ID NO:4或其互补序列第1-348位中至少11个连续的核苷酸和SEQ ID NO:4或其互补序列第349-1022位中至少11个连续的核苷酸;
优选地,所述核酸序列具有SEQ ID NO:3或其互补序列第1-553位中22-25个连续的核苷酸和SEQ ID NO:3或其互补序列第554-1407位中22-25个连续的核苷酸、和/或SEQ IDNO:4或其互补序列第1-348位中22-25个连续的核苷酸和SEQ ID NO:4或其互补序列第349-1022位中22-25个连续的核苷酸;
优选地,所述核酸序列包含SEQ ID NO:1或其互补序列、和/或SEQ ID NO:2或其互补序列;
优选地,所述核酸序列包含SEQ ID NO:3或其互补序列、和/或SEQ ID NO:4或其互补序列。
2.根据权利要求1所述的核酸序列,其特征在于,所述核酸序列包含SEQ ID NO:5或其互补序列。
3.一种检测样品中转基因大豆事件DBN8007的DNA存在的方法,其特征在于,包括:
使待检测样品与用于扩增目标扩增产物的至少两种引物在核酸扩增反应中接触;
进行核酸扩增反应;和
检测所述目标扩增产物的存在;
所述目标扩增产物包含权利要求1或2所述核酸序列;优选地,所述目标扩增产物包含SEQ ID NO:1或其互补序列、SEQ ID NO:2或其互补序列、SEQ ID NO:6或其互补序列、和/或SEQ ID NO:7或其互补序列。
4.根据权利要求3所述检测样品中转基因大豆事件DBN8007的DNA存在的方法,其特征在于,所述引物包括第一引物和第二引物,所述第一引物选自SEQ ID NO:1、SEQ ID NO:8和SEQ ID NO:10;所述第二引物选自SEQ ID NO:2、SEQ ID NO:9和SEQ ID NO:11。
5.一种检测样品中转基因大豆事件DBN8007的DNA存在的方法,其特征在于,包括:
使待检测样品与探针接触,所述探针包含权利要求1所述核酸序列;优选地,所述探针包含SEQ ID NO:1或其互补序列、SEQ ID NO:2或其互补序列、SEQ ID NO:6或其互补序列、和/或SEQ ID NO:7或其互补序列;
使所述待检测样品和所述探针在严格杂交条件下杂交;和
检测所述待检测样品和所述探针的杂交情况。
6.根据权利要求5所述检测样品中转基因大豆事件DBN8007的DNA存在的方法,其特征在于,至少一个所述探针用至少一种荧光基团标记。
7.一种检测样品中转基因大豆事件DBN8007的DNA存在的方法,其特征在于,包括:
使待检测样品与标记物核酸分子接触,所述标记物核酸分子包括权利要求1所述核酸序列;优选地,所述标记物核酸分子包括选自以下的至少一种:SEQ ID NO:1或其互补序列、SEQ ID NO:2或其互补序列、和/或SEQ ID NO:6-11或其互补序列;
使所述待检测样品和所述标记物核酸分子在严格杂交条件下杂交;
检测所述待检测样品和所述标记物核酸分子的杂交情况,进而通过标记物辅助育种分析以确定昆虫抗性和/或除草剂耐受性与标记物核酸分子在遗传学上是连锁的。
8.一种DNA检测试剂盒,其特征在于,包括至少一个DNA分子,所述DNA分子包含权利要求1所述核酸序列,其可以作为对于转基因大豆事件DBN8007或其后代具有特异性的DNA引物之一或探针;优选地,所述DNA分子包含SEQ ID NO:1或其互补序列、SEQ ID NO:2或其互补序列、SEQ ID NO:6或其互补序列、和/或SEQ ID NO:7或其互补序列。
9.一种保护大豆植物免于昆虫侵袭的方法,其特征在于,包括在靶昆虫的膳食中提供至少一种转基因大豆植物细胞,所述转基因大豆植物细胞在其基因组中包含SEQ ID NO:1和/或SEQ ID NO:2所示的序列,摄食所述转基因大豆植物细胞的靶昆虫被抑制进一步摄食所述转基因大豆植物;
优选地,所述转基因大豆植物细胞在其基因组中包含SEQ ID NO:3和/或SEQ ID NO:4所示的序列;
优选地,所述转基因大豆植物细胞在其基因组中依次包含SEQ ID NO:1、SEQ ID NO:5第5594-11006位核酸序列和SEQ ID NO:2,或者包含SEQ ID NO:5所示的序列。
10.一种保护大豆植物免受由除草剂引起的损伤或控制种植大豆植物的大田中杂草的方法,其特征在于,包括将含有有效剂量草铵膦除草剂施加到种植至少一种转基因大豆植物的大田中,所述转基因大豆植物在其基因组中包含SEQ ID NO:1和/或SEQ ID NO:2所示的序列,所述转基因大豆植物对草铵膦除草剂具有耐受性;
优选地,所述转基因大豆植物在其基因组中包含SEQ ID NO:3和/或SEQ ID NO:4所示的序列;
优选地,所述转基因大豆植物在其基因组中依次包含SEQ ID NO:1、SEQ ID NO:5第5594-11006位核酸序列和SEQ ID NO:2,或者包含SEQ ID NO:5所示的序列。
11.一种培养对昆虫具有抗性和/或耐受草铵膦除草剂的大豆植物的方法,其特征在于,包括:
种植至少一粒大豆种子,所述大豆种子的基因组中包含编码昆虫抗性Vip3Aa蛋白的核酸序列和/或编码草铵膦除草剂耐受性PAT蛋白的核酸序列、和特定区域的核酸序列,或者所述大豆种子的基因组中包含SEQ ID NO:5所示的核酸序列;
使所述大豆种子长成大豆植株;
用靶昆虫侵袭所述大豆植株和/或用有效剂量草铵膦除草剂喷洒所述大豆植株,收获与其他不具有特定区域的核酸序列的植株相比具有减弱的植物损伤的植株;
所述特定区域的核酸序列为SEQ ID NO:1和/或SEQ ID NO:2所示的序列;优选地,所述特定区域的核酸序列为SEQ ID NO:3和/或SEQ ID NO:4所示的序列。
12.一种产生对昆虫具有抗性和/或对草铵膦除草剂具有耐受性的大豆植株的方法,其特征在于,包括将第一大豆植物基因组中包含的编码昆虫抗性Vip3Aa蛋白的核酸序列和/或编码草铵膦耐受性PAT蛋白的核酸序列、和特定区域的核酸序列,或者将所述第一大豆植物基因组中包含的SEQ ID NO:5所示的核酸序列,引入第二大豆植物,从而产生大量子代植株;选择具有所述特定区域的核酸序列的所述子代植株,且所述子代植株对昆虫具有抗性和/或对草铵膦除草剂具有耐受性;所述特定区域的核酸序列为SEQ ID NO:1和/或SEQ IDNO:2所示的序列;优选地,所述特定区域的核酸序列为SEQ ID NO:3和/或SEQID NO:4所示的序列;
优选地,所述方法包括将转基因大豆事件DBN8007与缺少昆虫抗性和/或草铵膦耐受性的大豆植株进行有性杂交,从而产生大量子代植株,选择具有所述特定区域的核酸序列的所述子代植株;
用靶昆虫侵袭和/或用草铵膦处理所述子代植株;
选择对昆虫具有抗性和/或对草铵膦除草剂具有耐受性的所述子代植株。
13.一种产生自转基因大豆事件DBN8007的农产品或商品,其特征在于,所述农产品或商品为卵磷脂、脂肪酸、甘油、固醇、大豆片、大豆粉、大豆蛋白或其浓缩物、大豆油、大豆蛋白纤维、豆浆凝块或豆腐。
CN201980005159.3A 2019-08-09 2019-08-09 用于检测大豆植物dbn8007的核酸序列及其检测方法 Active CN111247255B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099996 WO2021026689A1 (zh) 2019-08-09 2019-08-09 用于检测大豆植物dbn8007的核酸序列及其检测方法

Publications (2)

Publication Number Publication Date
CN111247255A true CN111247255A (zh) 2020-06-05
CN111247255B CN111247255B (zh) 2023-06-27

Family

ID=70875658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980005159.3A Active CN111247255B (zh) 2019-08-09 2019-08-09 用于检测大豆植物dbn8007的核酸序列及其检测方法

Country Status (2)

Country Link
CN (1) CN111247255B (zh)
WO (1) WO2021026689A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155193A1 (zh) * 2022-02-21 2023-08-24 北京大北农生物技术有限公司 用于检测大豆植物dbn8205的核酸序列及其检测方法
CN116656870A (zh) * 2023-07-25 2023-08-29 隆平生物技术(海南)有限公司 转基因大豆事件lp086-3及其检测方法
CN116694815A (zh) * 2023-08-01 2023-09-05 隆平生物技术(海南)有限公司 转基因大豆事件lp012-2及其检测方法
CN116694813A (zh) * 2023-07-25 2023-09-05 隆平生物技术(海南)有限公司 转基因大豆事件lp086-1及其检测方法
CN116694812A (zh) * 2023-07-25 2023-09-05 隆平生物技术(海南)有限公司 转基因大豆事件lp086-2及其检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103719136A (zh) * 2013-11-15 2014-04-16 北京大北农科技集团股份有限公司 控制害虫的方法
CN104878096A (zh) * 2015-04-30 2015-09-02 北京大北农科技集团股份有限公司 用于检测除草剂耐受性玉米植物dbn9868的核酸序列及其检测方法
CN106086011A (zh) * 2016-06-18 2016-11-09 北京大北农科技集团股份有限公司 用于检测除草剂耐受性大豆植物dbn9004的核酸序列及其检测方法
CN106119245A (zh) * 2016-06-18 2016-11-16 北京大北农科技集团股份有限公司 用于检测除草剂耐受性大豆植物dbn9001的核酸序列及其检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012028848A2 (pt) * 2010-05-10 2018-05-15 Texas A & M Univ Sys composições, organismos, sistemas e métodos para expressar um produto de gene em plantas
US9861105B2 (en) * 2011-07-28 2018-01-09 Syngenta Participations Ag Methods and compositions for controlling nematode pests
EP3296403A1 (en) * 2013-06-14 2018-03-21 Monsanto Technology LLC Soybean transgenic event mon87751 and methods for detection and use thereof
CN105567682B (zh) * 2016-01-12 2019-01-29 吉林省农业科学院 转基因大豆事件b4j8049外源插入片段旁侧序列及其应用
CN106086010B (zh) * 2016-06-18 2019-10-18 北京大北农科技集团股份有限公司 用于检测除草剂耐受性大豆植物dbn9008的核酸序列及其检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103719136A (zh) * 2013-11-15 2014-04-16 北京大北农科技集团股份有限公司 控制害虫的方法
CN104878096A (zh) * 2015-04-30 2015-09-02 北京大北农科技集团股份有限公司 用于检测除草剂耐受性玉米植物dbn9868的核酸序列及其检测方法
CN106086011A (zh) * 2016-06-18 2016-11-09 北京大北农科技集团股份有限公司 用于检测除草剂耐受性大豆植物dbn9004的核酸序列及其检测方法
CN106119245A (zh) * 2016-06-18 2016-11-16 北京大北农科技集团股份有限公司 用于检测除草剂耐受性大豆植物dbn9001的核酸序列及其检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOSEP CASACUBERTA ET AL.: "Risk assessment of new sequencing information on genetically modified soybean event 305423", 《EFSA J》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155193A1 (zh) * 2022-02-21 2023-08-24 北京大北农生物技术有限公司 用于检测大豆植物dbn8205的核酸序列及其检测方法
CN116656870A (zh) * 2023-07-25 2023-08-29 隆平生物技术(海南)有限公司 转基因大豆事件lp086-3及其检测方法
CN116694813A (zh) * 2023-07-25 2023-09-05 隆平生物技术(海南)有限公司 转基因大豆事件lp086-1及其检测方法
CN116694812A (zh) * 2023-07-25 2023-09-05 隆平生物技术(海南)有限公司 转基因大豆事件lp086-2及其检测方法
CN116656870B (zh) * 2023-07-25 2023-09-22 隆平生物技术(海南)有限公司 转基因大豆事件lp086-3及其检测方法
CN116694813B (zh) * 2023-07-25 2023-10-03 隆平生物技术(海南)有限公司 转基因大豆事件lp086-1及其检测方法
CN116694812B (zh) * 2023-07-25 2023-10-03 隆平生物技术(海南)有限公司 转基因大豆事件lp086-2及其检测方法
CN116694815A (zh) * 2023-08-01 2023-09-05 隆平生物技术(海南)有限公司 转基因大豆事件lp012-2及其检测方法
CN116694815B (zh) * 2023-08-01 2023-10-03 隆平生物技术(海南)有限公司 转基因大豆事件lp012-2及其检测方法

Also Published As

Publication number Publication date
WO2021026689A1 (zh) 2021-02-18
CN111247255B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN109868273B (zh) 用于检测玉米植物dbn9501的核酸序列及其检测方法
RU2707527C2 (ru) Растение маиса dbn9936 и способ применения в детектировании его последовательности нуклеиновой кислоты
CN112852801B (zh) 转基因玉米事件lp007-1及其检测方法
CN111247255B (zh) 用于检测大豆植物dbn8007的核酸序列及其检测方法
CN116144818B (zh) 转基因玉米事件lp026-2及其检测方法
CN111406117B (zh) 用于检测大豆植物dbn8002的核酸序列及其检测方法
CN112831585B (zh) 转基因玉米事件lp007-4及其检测方法
CN116144817B (zh) 转基因玉米事件lp026-4及其检测方法
CN109971880B (zh) 用于检测玉米植物dbn9508的核酸序列及其检测方法
CN112852991A (zh) 转基因玉米事件lp007-7及其检测方法
WO2023155193A1 (zh) 用于检测大豆植物dbn8205的核酸序列及其检测方法
CN113151534A (zh) 转基因玉米事件lp007-5及其检测方法
CN113278721A (zh) 转基因玉米事件lw2-2及其检测方法
RU2818368C2 (ru) Последовательность нуклеиновой кислоты для выявления растения сои dbn8002 и способ ее выявления
CN116640761B (zh) 转基因玉米事件lp018-1及其检测方法
CN116694812B (zh) 转基因大豆事件lp086-2及其检测方法
CN113980958B (zh) 转基因玉米事件lp007-8及其检测方法
CN116694813B (zh) 转基因大豆事件lp086-1及其检测方法
CN116656870B (zh) 转基因大豆事件lp086-3及其检测方法
CN116574724B (zh) 抗虫耐草甘膦转基因玉米事件kj1003及其检测方法
RU2815214C2 (ru) Последовательность нуклеиновой кислоты для выявления растения кукурузы dbn9501 и способ его выявления
CN116732215A (zh) 用于检测玉米植物dbn9229的核酸序列及其检测方法
CN116219063A (zh) 用于检测玉米植物dbn9235的核酸序列及其检测方法
CN116716293A (zh) 抗虫耐草甘膦转基因玉米事件kj1004及其检测方法
CN116574725A (zh) 抗虫耐草甘膦转基因玉米事件kj1183及其检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant