CN111240299A - 焦炉车辆故障智能化诊断装置及其使用方法 - Google Patents

焦炉车辆故障智能化诊断装置及其使用方法 Download PDF

Info

Publication number
CN111240299A
CN111240299A CN201811435956.9A CN201811435956A CN111240299A CN 111240299 A CN111240299 A CN 111240299A CN 201811435956 A CN201811435956 A CN 201811435956A CN 111240299 A CN111240299 A CN 111240299A
Authority
CN
China
Prior art keywords
fault
diagnosis
information
wireless
intelligent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811435956.9A
Other languages
English (en)
Inventor
王宁
田栋全
徐雪
李劲松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baosteel Engineering and Technology Group Co Ltd
Original Assignee
Baosteel Engineering and Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baosteel Engineering and Technology Group Co Ltd filed Critical Baosteel Engineering and Technology Group Co Ltd
Priority to CN201811435956.9A priority Critical patent/CN111240299A/zh
Publication of CN111240299A publication Critical patent/CN111240299A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods

Abstract

本发明涉及炼焦设备的控制领域,具体为一种焦炉车辆故障智能化诊断装置及其使用方法。一种焦炉车辆故障智能化诊断装置,其特征是:包括监控传感装置(1)、信息汇集器(2)、无线发射器(31)、无线接收器(32)、采集服务器(41)、集中监控终端(51)、无线信号塔(6),监控传感装置(1)都通过信号线连接信息汇集器(2),信息汇集器(2)通过信号线连接无线发射器(31),无线接收器(32)通过信号线连接采集服务器(41),采集服务器(41)、数据服务器(42)、集中监控终端(51)和无线信号塔(6)都通过信号线连接通信网(71)。本发明反应迅速,控制准确。

Description

焦炉车辆故障智能化诊断装置及其使用方法
技术领域
本发明涉及炼焦设备的控制领域,具体为一种焦炉车辆故障智能化诊断装置及其使用方法。
背景技术
焦炉四大车系统作为焦炉生产的关键性系统,其故障智能化诊断方法的相关技术研究目前在国内并没有得到重视,国内外也没有相关详细的报道,随着焦炉四大车无人化运行模式的推进,其安全运行的保障措施就显得十分重要。
故障诊断技术的研究大部分仍然停留在具有应用背景、计算机仿真或实验阶段,对于复杂工业过程与生俱来的非线性、动态、多模态、多时段、高维度、间歇等特性,使得传统的基于过程机理模型的过程监控方法很难适应实际工业过程的复杂程度。
发明内容
为了克服现有技术的缺陷,提供一种控制及时准确、安全可靠的炼焦控制设备,本发明公开了一种焦炉车辆故障智能化诊断装置及其使用方法。
本发明通过如下技术方案达到发明目的:
一种焦炉车辆故障智能化诊断装置,其特征是:包括监控传感装置、信息汇集器、无线发射器、无线接收器、采集服务器、集中监控终端、无线信号塔,
监控传感装置包括温/湿度传感器、电压传感器、电流传感器、电弧传感器、超声波传感器和行程开关,焦炉生产区域的推焦车、导焦车、装煤车和电车这四者上各设一个监控传感装置,监控传感装置都通过信号线连接信息汇集器的信号输入端,信息汇集器的信号输出端通过信号线连接无线发射器的信号输入端,无线接收器的信号输出端通过信号线连接采集服务器,采集服务器、数据服务器、集中监控终端和无线信号塔都通过信号线连接通信网。
所述的焦炉车辆故障智能化诊断装置,其特征是:还包括远程监控终端,远程监控终端通过互联网连接通信网。
所述的焦炉车辆故障智能化诊断装置的使用方法,其特征是:按如下步骤依次实施:
监控传感装置将温/湿度传感器、电压传感器、电流传感器、电弧传感器、超声波传感器和行程开关所采集到的焦炉生产区域的推焦车、导焦车、装煤车和电车这四者的温/湿度信息、电压信息、电流信息、电弧信息、间距信息、位置信息都传输至信息汇集器,信息汇集器将接收到的信息转换成数字信号后输入无线发射器,无线发射器将接收到的数字信号转换成无线信号后通过发射天线对外发射,无线接收器将接收到无线信号转换成数字信号后输入采集服务器,数据服务器通过通信网获得数字信号;
数据服务器内置基于四车运行知识的智能故障诊断模型、基于无线传感器网络的设备状态监测系统、设备运行状态与故障征兆之间的本体映射算法、基于本体的故障诊断网络、设备维护群组决策方法,
应用基于四车运行知识的智能故障诊断(即Intelligent Fault Diagnosis Model,简称IFDM)模型,IFDM模型以诊断维护车辆本体为基础,结合不确定性知识管理和传感器网络技术,实现四车故障诊断维护知识的集成与推理,形成以诊断维护过程为中心的智能维护模式;
采用基于无线传感器网络的设备状态监测系统原型,设计基于超低功耗微控制单元的智能传感器网络节点;
设备运行状态与故障征兆之间的本体映射算法根据征兆空间到故障案例空间的映射关系进行实例匹配,完成静态维护知识与动态诊断过程的统一;
针对纳入监测诊断的故障点信息与相关设备建立故障数据库;
建立故障智能诊断模型,利用模型将监控传感装置采集的故障信号与故障数据库对比分析,计算、分析、排查出具体哪个设备故障导致出现故障信号,即通过故障反馈智能排查出故障设备信息,以指引设备维修人员找到引起设备故障的根本原因。
所述的焦炉车辆故障智能化诊断装置的使用方法,其特征是:构建基于本体的故障诊断网络,给出基于最大可能解释(即Most Probable Explanation,简称MPE)的故障概率推理算法,根据运行工况、故障征兆和证据信息推理获得故障诊断解释;
设备维护群组决策方法,在多源异构的制造过程知识集成与建模基础上,进行诊断推理与故障成因分析,结合诊断专家的经验知识给出优化的维护决策方案。
本发明主要通过具有安全保障功能的车载单元装置实现的,相关的安全装置具有自主感知和仿人智能功能,能够协助无人驾驶的设备采取合理的故障自诊断处理与驾驶操作措施,以避免车辆发生行车危险与故障停车。
本发明建立涵盖知识表示、故障评估、诊断推理及维护决策的智能故障诊断模型,采用智能故障严重度与故障概率评估方法,建立基于不确定性知识与贝叶斯网络的智能诊断推理体系,给出优化的智能诊断维护群组决策方案,结合焦炉四大车的设备维护与故障诊断需求,设计出的面向知识模型的智能故障诊断与控制系统,具体如下所述:
1. 结合诊断维护知识资源管理的需求,提出了基于四车运行知识的智能故障诊断(即Intelligent Fault Diagnosis Model,简称IFDM)模型。IFDM模型以诊断维护车辆本体为基础,结合不确定性知识管理和传感器网络技术,实现四车故障诊断维护知识的集成与推理,形成以诊断维护过程为中心的智能维护模式。对模型进行形式化定义,辨识模型的组成要素;探讨模型的内涵、特征和应用;从工程实践的角度设计模型的体系结构和支撑系统。
2. 针对现有的四大车设备状态监测系统应用中存在的集成度不高、适应性差和状态数据利用率低等问题,研究并建立基于无线传感器网络的设备状态监测系统原型,核心是设计基于超低功耗微控制单元的智能传感器网络节点;利用嵌入式处理器的信号分析能力进行状态数据的本地化处理和数据融合,实现数据采集与信号处理相结合的分布式状态监测,形成具有自我分析诊断能力的状态维护传感器网络。
3. 引入了诊断维护知识的本体语义表示方法。通过对设备结构信息、维护经验知识以及诊断行为过程建模,建立了本体驱动的故障诊断推理模型。提出设备运行状态与故障征兆之间的本体映射算法,并根据征兆空间到故障案例空间的映射关系进行实例匹配,完成静态维护知识与动态诊断过程的统一,从而为实现自动化、智能化的故障诊断与维护决策奠定基础。
4. 提出一种本体语义表示故障概率推理框架,构建基于本体的故障诊断网络,给出基于最大可能解释(即Most Probable Explanation,简称MPE)的故障概率推理算法,从而根据运行工况、故障征兆和证据信息推理获得故障诊断解释。
5. 由于故障诊断与维护决策过程存在着大量的不确定性,针对这些不确定性提出一种设备维护群组决策方法,在多源异构的制造过程知识集成与建模基础上,进行诊断推理与故障成因分析,结合诊断专家的经验知识给出优化的维护决策方案。
6. 为使IFDM模型具有实践指导意义,结合四大车的设备维护与故障诊断需求,设计开发基于IFDM模型的原型系统,并进行验证;结合背景企业的智能故障诊断应用,探讨IFDM模型的实施方法。希望在实际系统中得到应用,证明IFDM模型在四大车运行中的有效性与可行性。
附图说明
图1是本发明的结构示意图,
图2是本发明的面向知识的智能故障诊断模型框架图,
图3是本发明的面向知识的智能故障诊断模型功能层次图,
图4是本发明的智能故障诊断模型的体系结构图。
具体实施方式
以下通过具体实施例进一步说明本发明。
实施例1
一种焦炉车辆故障智能化诊断装置,括监控传感装置1、信息汇集器2、无线发射器31、无线接收器32、采集服务器41、集中监控终端51、无线信号塔6,如图1所示,具体结构是:
监控传感装置1包括温/湿度传感器、电压传感器、电流传感器、电弧传感器、超声波传感器和行程开关,焦炉生产区域的推焦车、导焦车、装煤车和电车这四者上各设一个监控传感装置1,监控传感装置1都通过信号线连接信息汇集器2的信号输入端,信息汇集器2的信号输出端通过信号线连接无线发射器31的信号输入端,无线接收器32的信号输出端通过信号线连接采集服务器41,采集服务器41、数据服务器42、集中监控终端51和无线信号塔6都通过信号线连接通信网71。
本实施例还包括远程监控终端52,远程监控终端52通过互联网72连接通信网71。
本实施例使用时,按如下步骤依次实施:
监控传感装置1将温/湿度传感器、电压传感器、电流传感器、电弧传感器、超声波传感器和行程开关所采集到的焦炉生产区域的推焦车、导焦车、装煤车和电车这四者的温/湿度信息、电压信息、电流信息、电弧信息、间距信息、位置信息都传输至信息汇集器2,信息汇集器2将接收到的信息转换成数字信号后输入无线发射器31,无线发射器31将接收到的数字信号转换成无线信号后通过发射天线对外发射,无线接收器32将接收到无线信号转换成数字信号后输入采集服务器41,数据服务器41通过通信网71获得数字信号;
数据服务器41内置基于四车运行知识的智能故障诊断模型、基于无线传感器网络的设备状态监测系统、设备运行状态与故障征兆之间的本体映射算法、基于本体的故障诊断网络、设备维护群组决策方法,
面向知识的智能故障诊断模型框架图如图2所示,面向知识的智能故障诊断模型功能层次图如图3所示,智能故障诊断模型的体系结构图如图4所示。
应用基于四车运行知识的智能故障诊断(即Intelligent Fault DiagnosisModel,简称IFDM)模型,IFDM模型以诊断维护车辆本体为基础,结合不确定性知识管理和传感器网络技术,实现四车故障诊断维护知识的集成与推理,形成以诊断维护过程为中心的智能维护模式;
采用基于无线传感器网络的设备状态监测系统原型,设计基于超低功耗微控制单元的智能传感器网络节点;
设备运行状态与故障征兆之间的本体映射算法根据征兆空间到故障案例空间的映射关系进行实例匹配,完成静态维护知识与动态诊断过程的统一;
针对纳入监测诊断的故障点信息与相关设备建立故障数据库;
建立故障智能诊断模型,利用模型将监控传感装置1采集的故障信号与故障数据库对比分析,计算、分析、排查出具体哪个设备故障导致出现故障信号,即通过故障反馈智能排查出故障设备信息,以指引设备维修人员找到引起设备故障的根本原因。
本实施例使用时,给出基于最大可能解释(即Most Probable Explanation,简称MPE)的故障概率推理算法,根据运行工况、故障征兆和证据信息推理获得故障诊断解释;
设备维护群组决策方法,在多源异构的制造过程知识集成与建模基础上,进行诊断推理与故障成因分析,结合诊断专家的经验知识给出优化的维护决策方案。
具体来说:
1. 现场故障数据采集、测定、建模、诊断、决策与控制及维护指导:
焦炉故障信息的统计对焦炉周边环境故障数据、装煤车运行故障数据、推焦车运行故障数据、导焦车运行故障数据、电车运行故障数据的采集、焦炉地下室(煤气供给管道层)故障数据的采集信息共计约260个信息点,1500多种故障信息,信息类型主要为开关量、模拟量、数字量、图像、激光和超短波等。
对采集的260个信息点的实时数据进行特征提取,获得诊断推理过程所需的重要特征信息。特征信息以特征量或条件指标的形式从数据集合中抽取出来,并作为诊断推理算法的输入,其目的是对设备失效或异常状态做出初步判断。
构建维护诊断维护核心本体,将设备结构信息、状态监测数据以及诊断维护经验转换为诊断语义知识。建立四大车IFDM智能故障诊断模型,构建IFDM模型使用本体编辑工具Protégé和OWL本体语言图形化构建诊断维护本体。
依据IFDM建立四大车故障诊断推理模块组件,该组件将数据采集与维护决策支持组件连接起来,通过四大车故障的定位与识别为维护方案的科学决策提供依据。
通过建立的IFDM,确立四大车的诊断推理模块,实现对四大车诊断知识资源的概率推理。根据诊断本体库中的知识语义描述与概率信息,结合诊断贝叶斯网络实现焦炉不确定性诊断知识的精确推理,最后形成初步的诊断结论或估计。
依据获得的故障初步的诊断结论或估计,建立决策支持模块,以系统服务的形式提供监测设备异常状况下的故障诊断和正常运行状态下的趋势预测分析,并在此基础上为设备管理人员提供科学准确的维护决策支持。
结合焦炉四大车的监控与信息系统,应用支持模块提供与知识应用相关活动的创建、配置等服务,为诊断维护过程的知识供应提供支持,在软件平台Microsoft.Net下进行构建,完成组态设置、数据存储、数据交换和业务集成等,使运行和维护人员能够很方便地获得四大车设备运行状态与相关信息,同时提供针对焦炉特定设备的故障诊断预警提示,进行连续实时的事件监测和信号分析,实现IFDC。
2. 面向知识的智能故障诊断与控制技术方案:
硬件结构见图1。
3. 现场试验与测试:
具备的基本条件:焦炉现场设施、试验设施、试验环境、实验人员及安保设施等。
1) 现场检控试验与故障测试:
煤车、推焦车、电车、导焦车故障试验与测试;
通过诊断知识资源的概率推理和维护决策支持系统推算出影响设备运行的故障度参数γ,γ∈(0,1),γ≥0.5为重大故障,γ∈(0.2,0.5)范围内为重要故障,γ≤0.2为轻型故障等,共计分为赤橙黄绿青蓝紫七个对应等级。
(1) 煤车试验测试项目:
(2) 推焦车试验测试项目:
(3) 电车试验测试项目:
(4) 导焦车试验测试项目:
2) 故障模型试验与测试:
(1) 激光定位模型试验与测试:
激光定位主要是测试推焦机器人等需要精准定位的焦炉设备故障,故障测试实验主要包括炉门镜面、内壁、底端和淌焦板。
(2) 运行故障处理模型与算法试验结果:
以煤车传动运行系统为例,其传动基频幅值变化与先验概率见下表。
还可以看出,当新监测到的证据 E (振动幅值为8.9μm)时,根据故障征兆特征判决函数E应视为基频幅值增速异常征兆。
诊断对象的异常征兆判定之后,正常工况状态和故障征兆以先验概率值的形式与设备故障联系起来,结合诊断对象常见故障的先验概率就可以进行故障概率推理计算。

Claims (4)

1.一种焦炉车辆故障智能化诊断装置,其特征是:包括监控传感装置(1)、信息汇集器(2)、无线发射器(31)、无线接收器(32)、采集服务器(41)、集中监控终端(51)、无线信号塔(6),
监控传感装置(1)包括温/湿度传感器、电压传感器、电流传感器、电弧传感器、超声波传感器和行程开关,焦炉生产区域的推焦车、导焦车、装煤车和电车这四者上各设一个监控传感装置(1),监控传感装置(1)都通过信号线连接信息汇集器(2)的信号输入端,信息汇集器(2)的信号输出端通过信号线连接无线发射器(31)的信号输入端,无线接收器(32)的信号输出端通过信号线连接采集服务器(41),采集服务器(41)、数据服务器(42)、集中监控终端(51)和无线信号塔(6)都通过信号线连接通信网(71)。
2.如权利要求1所述的焦炉车辆故障智能化诊断装置,其特征是:还包括远程监控终端(52),远程监控终端(52)通过互联网(72)连接通信网(71)。
3.如权利要求1或2所述的焦炉车辆故障智能化诊断装置的使用方法,其特征是:按如下步骤依次实施:
监控传感装置(1)将温/湿度传感器、电压传感器、电流传感器、电弧传感器、超声波传感器和行程开关所采集到的焦炉生产区域的推焦车、导焦车、装煤车和电车这四者的温/湿度信息、电压信息、电流信息、电弧信息、间距信息、位置信息都传输至信息汇集器(2),信息汇集器(2)将接收到的信息转换成数字信号后输入无线发射器(31),无线发射器(31)将接收到的数字信号转换成无线信号后通过发射天线对外发射,无线接收器(32)将接收到无线信号转换成数字信号后输入采集服务器(41),数据服务器(41)通过通信网(71)获得数字信号;
数据服务器(41)内置基于四车运行知识的智能故障诊断模型、基于无线传感器网络的设备状态监测系统、设备运行状态与故障征兆之间的本体映射算法、基于本体的故障诊断网络、设备维护群组决策方法,
应用基于四车运行知识的智能故障诊断模型,智能故障诊断模型以诊断维护车辆本体为基础,结合不确定性知识管理和传感器网络技术,实现四车故障诊断维护知识的集成与推理,形成以诊断维护过程为中心的智能维护模式;
采用基于无线传感器网络的设备状态监测系统原型,设计基于超低功耗微控制单元的智能传感器网络节点;
设备运行状态与故障征兆之间的本体映射算法根据征兆空间到故障案例空间的映射关系进行实例匹配,完成静态维护知识与动态诊断过程的统一;
针对纳入监测诊断的故障点信息与相关设备建立故障数据库;
建立故障智能诊断模型,利用模型将监控传感装置(1)采集的故障信号与故障数据库对比分析,计算、分析、排查出具体哪个设备故障导致出现故障信号,即通过故障反馈智能排查出故障设备信息,以指引设备维修人员找到引起设备故障的根本原因。
4.如权利要求3所述的焦炉车辆故障智能化诊断装置的使用方法,其特征是:构建基于本体的故障诊断网络,给出基于最大可能解释的故障概率推理算法,根据运行工况、故障征兆和证据信息推理获得故障诊断解释;
设备维护群组决策方法,在多源异构的制造过程知识集成与建模基础上,进行诊断推理与故障成因分析,结合诊断专家的经验知识给出优化的维护决策方案。
CN201811435956.9A 2018-11-28 2018-11-28 焦炉车辆故障智能化诊断装置及其使用方法 Pending CN111240299A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811435956.9A CN111240299A (zh) 2018-11-28 2018-11-28 焦炉车辆故障智能化诊断装置及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811435956.9A CN111240299A (zh) 2018-11-28 2018-11-28 焦炉车辆故障智能化诊断装置及其使用方法

Publications (1)

Publication Number Publication Date
CN111240299A true CN111240299A (zh) 2020-06-05

Family

ID=70867468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811435956.9A Pending CN111240299A (zh) 2018-11-28 2018-11-28 焦炉车辆故障智能化诊断装置及其使用方法

Country Status (1)

Country Link
CN (1) CN111240299A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779032A (zh) * 2020-12-24 2021-05-11 南京罕华流体技术有限公司 一种焦炉在线热工测试方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779032A (zh) * 2020-12-24 2021-05-11 南京罕华流体技术有限公司 一种焦炉在线热工测试方法
CN112779032B (zh) * 2020-12-24 2022-02-01 南京罕华流体技术有限公司 一种焦炉在线热工测试方法

Similar Documents

Publication Publication Date Title
CN103235562B (zh) 变电站基于巡检机器人的综合参数检测系统及巡检方法
CN105353702B (zh) 高压设备智能监控系统
CN104283318B (zh) 基于大数据的电力设备综合监测与预警系统及其分析方法
CN102139700B (zh) 一种轨道交通的车辆工况在线监测系统
CN102880115B (zh) 一种基于物联网的数控机床远程协作诊断系统
CN102510125B (zh) 电力一次设备运行工况监测方法及装置
CN110647133B (zh) 轨道交通设备状态检测维护方法及系统
US20140303796A1 (en) Apparatus and method for controlling building energy
CN102139701B (zh) 一种轨道交通的车辆工况在线监测方法
CN107862052A (zh) 一种故障案例库、故障树及故障谱构建方法
CN105676842A (zh) 一种高铁列控车载设备故障诊断方法
CN103512619A (zh) 一种变压器状态信息智能监控系统及方法
CN106161138A (zh) 一种智能自动计量方法及装置
CN105574604B (zh) 一种面向电网运行事件的监控预判分析系统
CN108828353A (zh) 一种充电桩故障检修系统及方法
CN108398934B (zh) 一种用于轨道交通的设备故障监控的系统
WO2021121182A1 (zh) 一种数控机床健康诊断方法
CN104615121A (zh) 一种列车故障诊断方法及系统
CN107103337A (zh) 基于物联网和信息融合的电力设备状态诊断装置及方法
CN104991549A (zh) 基于fta与多层次模糊神经子网络的轨道电路红光带故障诊断方法
CN111240299A (zh) 焦炉车辆故障智能化诊断装置及其使用方法
CN104777824A (zh) 一种变电站计算机监控远程诊断系统
CN110766277A (zh) 用于核工业现场的健康评估及诊断系统和移动终端
CN109490713A (zh) 一种用于电缆线路移动巡检及交互诊断的方法及系统
Li et al. Framework and case study of cognitive maintenance in Industry 4.0

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination