CN111087228A - 一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺 - Google Patents

一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺 Download PDF

Info

Publication number
CN111087228A
CN111087228A CN201911225412.4A CN201911225412A CN111087228A CN 111087228 A CN111087228 A CN 111087228A CN 201911225412 A CN201911225412 A CN 201911225412A CN 111087228 A CN111087228 A CN 111087228A
Authority
CN
China
Prior art keywords
silicon
powder
minutes
nano
sliding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911225412.4A
Other languages
English (en)
Other versions
CN111087228B (zh
Inventor
闫昕
陈松林
魏瀚
王俊涛
胡小成
刘士范
孙旭东
徐琳琳
徐如林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YIXING REFRACTORY MATERIAL CO Ltd
Original Assignee
YIXING REFRACTORY MATERIAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YIXING REFRACTORY MATERIAL CO Ltd filed Critical YIXING REFRACTORY MATERIAL CO Ltd
Priority to CN201911225412.4A priority Critical patent/CN111087228B/zh
Publication of CN111087228A publication Critical patent/CN111087228A/zh
Application granted granted Critical
Publication of CN111087228B publication Critical patent/CN111087228B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺,通过加入纳米硅粉,降低烧成温度,可生成填充孔隙、提高材料致密度的氧化物和非氧化物陶瓷增强相,改善材料的抗氧化性能,提高材料的力学性能;同时采用四氯化硅浸润鳞片石墨,使其对鳞片石墨表面改性,在氮化气氛下高温烧成,形成SiC/Si3N4复合陶瓷相,进一步提高材料的断裂能和抗热震稳定性。

Description

一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺
技术领域
本发明涉及一种纳米硅原位生成陶瓷增强型铝碳滑板及其制备工艺,属于无机非金属材料领域。
背景技术
滑动水口主要用于钢包和中间包的钢流控制系统,为无氧化连铸保护系统的重要组成部分之一。滑板在使用时要承受高温钢液的化学侵蚀、物理冲刷以及剧烈的热冲击,使用条件十分苛刻。目前国内外滑板材料以高温烧成的铝碳和铝锆碳质为主,其中高温烧成铝碳滑板质量稳定,性价比高,使用量更大。
滑板常用的抗氧化剂主要有金属Al、Si 等,在滑板烧成或高温使用过程中与基体中的C 以及气氛中的CO 和N2 反应原位生成纤维状或针状碳化物、氮化物增强增韧相,从而显著提高材料高温使用性能,取得了较好的使用效果,同时,金属Al的加入,生产AlN等不稳定相,烧成滑板在潮湿的条件下出现水化现象。
随着洁净钢冶炼比例的增加,对滑板的抗热震性和抗侵蚀性提出更高要求。 纳米粉体逐步被引入到耐火材料的生产制备中,纳米粉具有较好的填充作用,易使材料结构致密化、气孔微细化,可提高抗侵蚀性;在材料中易形成以纳米颗粒为核的类似于“晶内型”的复合结构,可提高材料的抗热震性,此外,纳米粉还具有降低烧结温度、提高反应活性和增强结合的作用等。
本发明研究开发纳米硅原位生成陶瓷相增强型铝碳滑板,在滑板中添加纳米硅,改善滑板的抗氧化性能,提高材料的力学性能,满足特种钢苛刻的使用条件及安全使用要求。
发明内容
本发明涉及一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺,通过加入纳米硅粉,有效降低烧成温度,可生成填充孔隙、提高材料致密度的氧化物和非氧化物陶瓷增强相,改善材料的抗氧化性能,提高材料的力学性能;同时采用四氯化硅浸润鳞片石墨,使其对鳞片石墨表面改性,在氮化气氛下(1400~1500℃)高温烧成,形成SiC/Si3N4复合陶瓷相,进一步提高材料的断裂能和抗热震性。滑板在生产和服役过程中,材料的结合方式主要有树脂结合、碳结合,陶瓷增强结合等多种形式,保持了材料强度一致性,并提高材料的热震稳定性。
本发明的配方(重量和粒度含量)如下:
(1)粒度4~2mm的莫来石20~30%
(2)粒度2~1mm的烧结刚玉12~20%
(3)粒度1~0mm的烧结刚玉20~32%
(4)粒度0.045mm的烧结刚玉8~14%
(5)粒度0.088mm的维罗泥3~6%
(6)粒度2μm的α-Al2O3微粉8~12%
(7)纳米硅粉2~4%
(8)-194鳞片石墨 3~6%
(9)酚醛树脂+ 4~6%(另外加入,不计入原料总质量百分比。)
(10)高纯四氯化硅液体
所述的莫来石为市售耐火原料,其中Al2O370%~72%、Fe2O3≤0.8%;
所述的烧结刚玉为市售耐火原料,其中Al2O3≥99%、Fe2O3≤0.3%;
所述的维罗泥为市售耐火球状粘土(广西白泥),其中Al2O3≥34%,Fe2O3<2.0%;
所述的α-Al2O3微粉为市售耐火原料,其中Al2O3≥99.0%,Na2O+K2O≤0.5%;
所述的-194鳞片石墨为市售耐火原料,其中C≥94%;
所述的酚醛树脂均为市售耐火材料用热固性酚醛树脂。
具体工艺过程包括以下几部分:
(1)将鳞片石墨倒入四氯化硅中浸泡120分钟,50℃烘干24小时;
(2)将粒度2μm的α-Al2O3微粉和纳米硅粉经球磨形成复合粉,球磨时间在90~120分钟;
(3)将粒度≤0.088mm、粒度≤0.045mm的细粉与工艺(1)烘干的鳞片石墨,工艺(2)制得的混合粉进行强力预混,预混时间在20~30分钟;
(4)按比例将4~2mm的莫来石颗粒、2~1mm和1~0mm的烧结刚玉颗粒进行干混3分钟,加入少量树脂结合剂,再加入全部预混后的细粉、微粉一起混碾6~8分钟、然后再加入剩下的树脂结合剂,经强力混碾均化成混合料,混碾有效时间为25~40分钟;
(5)混合料出料后,用5mm的筛子筛分,去除团聚大块;
(6)在恒温恒湿条件下困料24~36小时;
(7)压制成型;
(8)自然干燥24~36小时后,再在240~280℃干燥24~36小时;
(9)在氮化气氛下1380~1480℃烧成,10~15小时。
(10)打箍、磨削、粘壳和包装。
本发明生产的铝碳滑板具有优异抗氧化性、抗侵蚀性及力学性能,在连铸的大型钢包中,使用寿命稳定在4次以上。与现有技术相比,本发明的显著区别特征在于:
(1)节能减排、降低成本。普通铝碳高温烧成滑板需经1500℃以上的高温烧成,而本发明的滑板添加纳米硅,其粒径小且分布均匀、比表面积大、表面活性高;有效降低烧成温度至1380~1480℃。同时随着烧成温度的降低,滑板的烧成成本下降,有效提高产品性价比和市场竞争力,本发明符合节能减排趋势,具有巨大的经济和社会效益;
(2)优化细粉加入方式。本发明引入纳米硅粉,考虑到纳米粉末易团聚,分散不均等问题,采用细粉两步预混工艺,第一步预混采用纳米硅粉和α-Al2O3微粉球磨混合,形成复合粉;第二步将复合粉预其他细粉进行强力预混;最终使其均匀填充于耐火材料颗粒间隙内,改善耐火材料的成型性能。
(3)性能稳定、可靠。本发明添加纳米硅,其均匀分布在耐火材料基质中;同时在利用四氯化硅对鳞片石墨进行表面改性,在高温下与气氛中N2或环境中的C原位反应生成SiC、Si3N4等陶瓷相,不仅填充气孔并提高材料的致密度,而且对材料起到增强增韧的作用,从而提高材料的抗氧化性、抗侵蚀性及力学性能。本发明不添加金属Al,杜绝因生成AIN、Al3C4等不稳相,导致滑板水化现象发生。
具体实施方式
实施例1
按照以下配方(重量和粒度含量)如下:
(1)粒度4~2mm的莫来石20%
(2)粒度2~1mm的烧结刚玉15%
(3)粒度1~0mm的烧结刚玉32%
(4)粒度0.045mm的烧结刚玉12%
(5)粒度0.088mm的维罗泥4%
(6)粒度2μm的α-Al2O3微粉12%
(7)纳米硅粉2%
(8)-194鳞片石墨 3%
(9)酚醛树脂 4.8%(外加,不计入重量百分比)
(10)高纯四氯化硅液体
制备工艺过程包括以下几部分:
(1)按比例称量-194鳞片石墨倒入四氯化硅中浸泡120分钟,50℃烘干24小时后待用;
(2)按比例称量粒度2μm的α-Al2O3微粉和纳米硅粉,球磨90分钟后待用;
(3)按比例称量粒度0.088mm维罗泥、粒度0.045mm烧结刚玉细粉与工艺(1)烘干后鳞片石墨,工艺(2)制得的复合粉进行强力预混,预混时间在30分钟;
(4)按比例称量粒度4~2mm的莫来石颗粒、2~1mm的烧结刚玉颗粒和1~0mm的烧结刚玉颗粒,干混3分钟,加入少量树脂结合剂,再加入工艺(3)制的全部强力预混后的细粉一起混碾6分钟、然后再加入剩下的树脂结合剂,经强力混碾均化成混合料,树脂结合剂共加入4.8%,混碾有效时间为25分钟;
(5)混合料出料后,用5mm的筛子筛分,去除团聚大块;
(6)在恒温恒湿条件下困料24小时;
(7)压制成型;
(8)自然干燥24小时后,再在240℃干燥36小时;
(9)在氮化气氛下1380℃烧成,15小时。
(10)打箍、磨削、粘壳和包装。
表1列出了实施例1的原料规格和配方及其性能,经检测,该产品体积密度为3.19g/cm3,显气孔率为7.6%,常温耐压强度达到136MPa,常温抗折强度26MPa,在湖某钢厂(120吨钢包)试用,平均寿命4次,用后滑板有微裂纹,无剥落现象,满足现有产品的使用要求。
实施例2
按照以下配方(重量和粒度含量)如下:
(1)粒度4~2mm的莫来石27%
(2)粒度2~1mm的烧结刚玉12%
(3)粒度1~0mm的烧结刚玉24%
(4)粒度0.045mm的烧结刚玉14%
(5)粒度0.088mm的维罗泥6%
(6)粒度2μm的α-Al2O3微粉8%
(7)纳米硅粉3%
(8)-194鳞片石墨 6%
(9)酚醛树脂 +5.4%(外加,不计入重量百分比)
(10)高纯四氯化硅液体
工艺过程包括以下几部分:
(1)按比例称量-194鳞片石墨倒入四氯化硅中浸泡120分钟,50℃烘干24小时后待用;
(2)按比例称量粒度2μmα-Al2O3微粉和纳米硅粉,球磨110分钟后待用;
(3)按比例称量粒度0.088mm维罗泥、粒度0.045mm烧结刚玉细粉与工艺(1)烘干后鳞片石墨,工艺(2)制得的复合粉进行强力预混,预混时间在20分钟;
(4)按比例称量粒度4~2mm的莫来石颗粒、2~1mm的烧结刚玉颗粒和1~0mm的烧结刚玉颗粒,干混3分钟,加入少量树脂结合剂,再加入工艺(3)制的全部强力预混后的细粉一起混碾8分钟、然后再加入剩下的树脂结合剂,经强力混碾均化成混合料,树脂结合剂共加入5.4%,混碾有效时间为40分钟;
(5)混合料出料后,用5mm的筛子筛分,去除团聚大块;
(6)在恒温恒湿条件下困料36小时;
(7)压制成型;
(8)自然干燥36小时后,再在280℃干燥24小时;
(9)在氮化气氛下1450℃烧成,12小时。
(10)打箍、磨削、粘壳和包装。
表1列出了实施例2的原料规格和配方及其性能,经检测,该产品体积密度为3.21g/cm3,显气孔率为6.8%,常温耐压强度达到132MPa,常温抗折强度28MPa,在马某钢厂(120吨钢包)试用,平均寿命4.1次,扩孔均匀,无夹钢,拉毛等现象。
实施例3
按照以下配方(重量和粒度含量)如下:
(1)粒度4~2mm的莫来石30%
(2)粒度2~1mm的烧结刚玉20%
(3)粒度1~0mm的烧结刚玉20%
(4)粒度0.045mm的烧结刚玉8%
(5)粒度0.088mm的维罗泥3%
(6)粒度2μm的α-Al2O3微粉10%
(7)纳米硅粉4%
(8)-194鳞片石墨 5%
(9)酚醛树脂 +5.7%(外加,不计入重量百分比)
(10)高纯四氯化硅液体
工艺过程包括以下几部分:
(1)按比例称量-194鳞片石墨倒入四氯化硅中浸泡120分钟,50℃烘干24小时后待用;
(2)按比例称量粒度2μmα-Al2O3微粉和纳米硅粉,球磨120分钟后待用;
(3)按比例称量粒度0.088mm维罗泥、粒度0.045mm烧结刚玉细粉与工艺(1)烘干后鳞片石墨,工艺(2)制得的复合粉进行强力预混,预混时间在25分钟;
(4)按比例称量粒度4~2mm的莫来石颗粒、2~1mm的烧结刚玉颗粒和1~0mm的烧结刚玉颗粒,干混3分钟,加入少量树脂结合剂,再加入工艺(3)制的全部强力预混后的细粉一起混碾7分钟、然后再加入剩下的树脂结合剂,经强力混碾均化成混合料,树脂结合剂共加入5.7%,混碾有效时间为35分钟;
(5)混合料出料后,用5mm的筛子筛分,去除团聚大块;
(6)在恒温恒湿条件下困料30小时;
(7)压制成型;
(8)自然干燥30小时后,再在260℃干燥30小时;
(9)在氮化气氛下1480℃烧成,10小时。
(10)打箍、磨削、粘壳和包装。
表1列出了实施例3的原料规格和配方及其性能,经检测,该产品体积密度为3.18g/cm3,显气孔率为6.6%,常温耐压强度达到128MPa,常温抗折强度24MPa,在沙某钢厂(80吨钢包)试用,平均寿命4.1次,用后版面平整,扩孔均匀,无掉块、剥落、拉毛等现象。
以上实施例所制备的滑板的原料规格、配方及测试性能如下表1:
表1 滑板的原料规格、配方及测试性能
Figure 771873DEST_PATH_IMAGE001

Claims (3)

1.一种纳米硅原位生成陶瓷相增强型铝碳滑板,配方按重量百分含量计如下:
粒度4~2mm的莫来石20~30%;
粒度2~1mm的烧结刚玉12~20%;
粒度1~0mm的烧结刚玉20~32%;
粒度0.045mm的烧结刚玉8~14%;
粒度0.088mm的维罗泥3~6%;
粒度2μm的α-Al2O3微粉8~12%;
纳米硅粉2~4%;
-194鳞片石墨 3~6%;
酚醛树脂 +4~6%,另外加入,不计入原料总质量百分比;
高纯四氯化硅液体。
2.根据权利要求1所述的纳米硅原位生成陶瓷相增强型铝碳滑板,其特征在于:所述的莫来石为市售耐火原料,其中Al2O370%~72%、Fe2O3≤0.8%;所述的烧结刚玉为市售耐火原料,其中Al2O3≥99%、Fe2O3≤0.3%;所述的维罗泥为市售耐火球状粘土(广西白泥),其中Al2O3≥34%,Fe2O3<2.0%;所述的α-Al2O3微粉为市售耐火原料,其中Al2O3≥99.0%,Na2O+K2O≤0.5%;所述的-194鳞片石墨为市售耐火原料,其中C≥94%;所述的酚醛树脂均为市售耐火材料用热固性酚醛树脂。
3.一种权利要求1-2任一项所述的纳米硅原位生成陶瓷相增强型铝碳滑板的制备工艺,包括如下步骤:
(1)将鳞片石墨倒入四氯化硅中浸泡120分钟,50℃烘干24小时;
(2)将粒度2μm的α-Al2O3微粉和纳米硅粉经球磨形成复合粉,球磨时间在90~120分钟;
(3)将粒度≤0.088mm、粒度≤0.045mm的细粉与工艺(1)烘干的鳞片石墨,工艺(2)制得的混合粉进行强力预混,预混时间在20~30分钟;
(4)按比例将4~2mm的莫来石颗粒、2~1mm和1~0mm的烧结刚玉颗粒进行干混3分钟,加入少量树脂结合剂,再加入全部预混后的细粉、微粉一起混碾6~8分钟、然后再加入剩下的树脂结合剂,经强力混碾均化成混合料,混碾有效时间为25~40分钟;
(5)混合料出料后,用5mm的筛子筛分,去除团聚大块;
(6)在恒温恒湿条件下困料24~36小时;
(7)压制成型;
(8)自然干燥24~36小时后,再在240~280℃干燥24~36小时;
(9)在氮化气氛下1380~1480℃烧成,10~15小时;
(10)打箍、磨削、粘壳和包装。
CN201911225412.4A 2019-12-04 2019-12-04 一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺 Active CN111087228B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911225412.4A CN111087228B (zh) 2019-12-04 2019-12-04 一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911225412.4A CN111087228B (zh) 2019-12-04 2019-12-04 一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺

Publications (2)

Publication Number Publication Date
CN111087228A true CN111087228A (zh) 2020-05-01
CN111087228B CN111087228B (zh) 2022-03-08

Family

ID=70393325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911225412.4A Active CN111087228B (zh) 2019-12-04 2019-12-04 一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺

Country Status (1)

Country Link
CN (1) CN111087228B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105136A (zh) * 2020-10-23 2021-07-13 济南方圣混凝土构件有限公司 一种早强型再生微粉的制备方法
CN115286369A (zh) * 2022-08-30 2022-11-04 宜兴市耐火材料有限公司 一种氧化铝纤维增强型铝碳质滑板及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187954A (ja) * 1989-12-14 1991-08-15 Toshiba Ceramics Co Ltd 耐火材料及びその製造方法
CN101134347A (zh) * 2007-09-30 2008-03-05 河南省伯马股份有限公司 一种含纳米氧化铝不烧铝碳滑板砖的生产工艺
CN103588494A (zh) * 2013-11-29 2014-02-19 湖南湘钢瑞泰科技有限公司 滑板砖及其制备方法
CN104311100A (zh) * 2014-10-22 2015-01-28 山东理工大学 一种氮化硅、碳化硅结合碳化钽泡沫陶瓷的制备方法
CN105622174A (zh) * 2015-12-25 2016-06-01 苏州宏久航空防热材料科技有限公司 石墨热场表面制备SiC/Si/Si3N4涂层的方法
CN108585917A (zh) * 2018-05-08 2018-09-28 中国人民解放军国防科技大学 氮化硅-碳化硅复相多孔陶瓷的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187954A (ja) * 1989-12-14 1991-08-15 Toshiba Ceramics Co Ltd 耐火材料及びその製造方法
CN101134347A (zh) * 2007-09-30 2008-03-05 河南省伯马股份有限公司 一种含纳米氧化铝不烧铝碳滑板砖的生产工艺
CN103588494A (zh) * 2013-11-29 2014-02-19 湖南湘钢瑞泰科技有限公司 滑板砖及其制备方法
CN104311100A (zh) * 2014-10-22 2015-01-28 山东理工大学 一种氮化硅、碳化硅结合碳化钽泡沫陶瓷的制备方法
CN105622174A (zh) * 2015-12-25 2016-06-01 苏州宏久航空防热材料科技有限公司 石墨热场表面制备SiC/Si/Si3N4涂层的方法
CN108585917A (zh) * 2018-05-08 2018-09-28 中国人民解放军国防科技大学 氮化硅-碳化硅复相多孔陶瓷的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105136A (zh) * 2020-10-23 2021-07-13 济南方圣混凝土构件有限公司 一种早强型再生微粉的制备方法
CN115286369A (zh) * 2022-08-30 2022-11-04 宜兴市耐火材料有限公司 一种氧化铝纤维增强型铝碳质滑板及其制备工艺

Also Published As

Publication number Publication date
CN111087228B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN107473759B (zh) 一种均化料增韧的铝碳下水口砖及其生产方法
CN102584293B (zh) 一种镁锆碳质滑动水口的制备方法
CN106145976B (zh) 水泥窑用红柱石-莫来石-碳化硅砖及其制备方法
CN112456973B (zh) 一种中间包用镁质稳流器及其制备方法
CN111087228B (zh) 一种纳米硅原位生成陶瓷相增强型铝碳滑板及其制备工艺
CN109467437B (zh) 一种金属陶瓷复合耐磨材料及其制备方法
CN109437867B (zh) 高炉出铁主沟铝碳化硅质浇注料及其制备方法与应用
CN110483023B (zh) 一种微孔化刚玉砖及其制备方法
CN111087229B (zh) 一种纳米材料改性的高抗氧化长水口及其制备工艺
CN110963807A (zh) 一种用于水泥窑过渡带的节能型莫来石质耐火砖及其制备方法
CN109987950A (zh) 一种免烧复合铝碳化硅碳砖
CN106699142B (zh) 一种浇注高锰钢用金属铝结合无硅低碳铝锆碳滑板及其生产方法
CN106699205B (zh) 一种溶胶结合高炉内衬湿法喷涂料及制备方法
CN112679212A (zh) 一种渣浆泵用氮化物结合碳化硅耐磨陶瓷件的制备方法
CN117164348A (zh) 一种碳硅化铝晶须增强的氧化铝-碳化硅-碳免烧耐火材料及其制备方法和应用
CN114644512B (zh) 特种钢连铸用抗侵蚀浸入式水口及其制备方法
CN113979761B (zh) 一种三元复合自修复免烧滑板砖及其制备方法
CN116396084A (zh) 一种低氧铜杆生产用氧氮化硅-碳化硅复合砖的制备方法
CN110615670A (zh) 高性能镁质滑板砖及其制备方法
CN110845244B (zh) 一种高钙钢用滑板砖及其生产工艺
CN113683426A (zh) 一种免烧的高强度金属陶瓷复合材料及其制备方法和应用
CN116283315B (zh) 一种无碳机压尖晶石滑板砖及其制备方法
CN110937907A (zh) 一种用于水泥窑过渡带的节能型莫来石-刚玉-碳化硅耐火砖及其制备方法
CN112778006B (zh) 一种轻质莫来石匣钵及其制备方法和应用
CN115286369A (zh) 一种氧化铝纤维增强型铝碳质滑板及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant