CN111032106A - 双室气体交换器和用于呼吸支持的方法 - Google Patents

双室气体交换器和用于呼吸支持的方法 Download PDF

Info

Publication number
CN111032106A
CN111032106A CN201880052696.9A CN201880052696A CN111032106A CN 111032106 A CN111032106 A CN 111032106A CN 201880052696 A CN201880052696 A CN 201880052696A CN 111032106 A CN111032106 A CN 111032106A
Authority
CN
China
Prior art keywords
blood
fiber bundle
gas
oxygenator
oxygenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880052696.9A
Other languages
English (en)
Other versions
CN111032106B (zh
Inventor
吴忠俊
巴特利·P·格里菲思
张嘉锋
S·J·奥维格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Maryland at Baltimore
Breethe Inc
Original Assignee
University of Maryland at Baltimore
Breethe Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Maryland at Baltimore, Breethe Inc filed Critical University of Maryland at Baltimore
Priority to CN202310082153.4A priority Critical patent/CN115998976A/zh
Publication of CN111032106A publication Critical patent/CN111032106A/zh
Application granted granted Critical
Publication of CN111032106B publication Critical patent/CN111032106B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1698Blood oxygenators with or without heat-exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1621Constructional aspects thereof
    • A61M1/1629Constructional aspects thereof with integral heat exchanger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0225Carbon oxides, e.g. Carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2206/00Characteristics of a physical parameter; associated device therefor
    • A61M2206/10Flow characteristics
    • A61M2206/20Flow characteristics having means for promoting or enhancing the flow, actively or passively

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Cardiology (AREA)
  • Mechanical Engineering (AREA)
  • Pulmonology (AREA)
  • External Artificial Organs (AREA)

Abstract

本发明的装置包括双室气体交换器,其被构造为针对于许多临床应用具有提高的灵活性和可扩展性。双室氧合器可被构造并且用于各种应用,比如在心胸外科手术期间用于心肺支持的心肺机中、体外膜氧合(ECMO)回路中、作为肺衰竭患者的呼吸辅助设备中等。双室气体交换器的特点在于两个氧供气流动路径和两束气体交换膜,该气体交换膜被围绕在带有各种血液流动分布和气体分布机构的壳体结构中。气体交换器包括外侧壳体、中间壳体、两个气体交换纤维束、血液入口、血液出口、两个进气口、两个出气口、两个气体分配室和选用的换热器。

Description

双室气体交换器和用于呼吸支持的方法
政府利益声明
本发明是在美国国立卫生研究院授予的编号为HL118372补助金的政府支持下完成的。政府拥有本发明的某些权利。
相关申请和交叉引用
本申请要求于2017年8月15日提交的临时专利申请第62/545,512号的权益。其全部内容在此通过援引纳入本文。
技术领域
本发明总体涉及医疗装置和方法。本发明尤其涉及用于体外膜式氧合、呼吸支持和心肺支持的方法。
背景技术
采用人造装置对血液进行氧合始于1930年。早期的血液氧合器(比如薄膜式血液氧合器和鼓泡式氧合器)是基于使血液直接暴露于氧气或空气。血液与氧气直接接触是气体交换的一种有效方式,但是其也会破坏血液的蛋白质和形成元素。由此,这些早期的血液氧合器仅能在有限时间内使用,比如几个小时。
其它方式比如透气固态膜将血液与氧供气分离以减小由血液和气体直接接触所造成的损害。固态膜为许多设计平台的基础,但是受到了加工挑战和致血栓性的阻碍。由此,出现了中空纤维膜。中空纤维膜实现了具有低充量、提高的换气表面积与血液体积的比值和降低的致血栓性的有效且小型血液氧合器的设计和构造。许多当前的血液氧合器包括由微孔材料制成的中空纤维。
已经设计和发展出了基于中空纤维膜材料的多种类型的血液氧合器。具有中空纤维膜的氧合器通常包括具有一根纤维束的单个室并且其特征在于该纤维束内的血液流动路径。例如四种血液流动路径为(1)通过环形束的纵向(轴向)流动;(2)围绕环形束的周向流动;(3)穿过横截面基本呈矩形的束的横向流动;和(4)经过环形束的径向流动。
虽然基于上述原理的膜式血液氧合器通常在心脏直视手术期间进行体外循环是可接受的,但当它们用于在较长时间(几天至几周)内的呼吸支持时还存在许多问题。例如,常用中空纤维膜式血液氧合器具有相对大的血液接触表面积、大的启动准备体积、大物体尺寸以及非常有限的长期生物相容性和稳定性、对于各种临床应用而言有限的灵活性。由于固有的血液流体动力学而导致的常用血液氧合器的复杂性和庞大体积,使用当前这些血液氧合器进行呼吸支持的患者通常卧床不起,活动能力受限。通过纤维膜的不均匀血液流动以及血细胞和纤维膜之间的层状边界流动区会引起其它并发症。
非均匀的血流分布会在中空纤维膜式血液氧合器中引起许多问题,比如流动路径中血液的灌注过度和灌注不足。灌注过度相对于氧气饱和的血液不具有任何其他优势。但是,灌注不足对患者有害。中空纤维膜式血液氧合器采用更长流动路径以增加血液与更大纤维膜表面积的接触,从而确保灌注不足区域内的所有血细胞均被良好氧合。但是大的气体交换膜表面积和大的基本体积提供了差的生物相容性和耐磨性。不一致的血液流动也会在氧合器内的血液流动路径中引起过大的机械剪切应力或停滞。这些是导致血液活化和血栓形成的主要影响因素,形成了受限的长期生物相容性和耐久性。
除了这些技术问题之外,常用的中空纤维膜式血液氧合器对于各种临床应用而言缺乏灵活性。通常情况下,一个装置仅用于一种应用,这对于某些患者而言并不足够。这些氧合器对于移除二氧化碳同时向患者传送氧气而言能力有限。另外,需要高氧供气流量以移除二氧化碳,或者由于受限的氧供气流量(例如在移动式使用时)必需保持血液流量。低的血液流量会在氧合器形成血栓。
在各种临床应用中,比如在医院、门诊或者家庭中,氧供气的要求和可用性有所不同。具体地,在移动式应用中氧气源可构成一项挑战,比如当需要笨重的氧气罐或者大型沉重的制氧机时。由此,常用的血液氧合器会限制患者的移动性和灵活性。
从氧合器中移除二氧化碳通常需要更高的流量和几乎没有二氧化碳的气体。氧气为常用主要的氧供气以传送氧气并且移除二氧化碳。例如,当氧供气流量与血液流量为1:1时,仅有5%(50cc/升)的氧气被传送至循环血液。但是,提高二氧化碳移除需要氧供气流量与血液流量的比值大于1:1。由此,氧气利用的百分比远小于5%,氧气传送的效率极其低并且成本高。即使在24小时内以5升/分钟的速度急升,患者也将消耗7200升氧气,而输送给患者的氧气少于5%。高流量的室内空气也可能是足以清除二氧化碳的氧供气。当前的氧合器具有有限的可调节性,因此缺乏对氧气传送和二氧化碳移除的精确控制。
由此可见需要能够有效地利用氧供气以进行气体交换的改进的氧合器。此种氧合器可用于各种应用和患者。
相关背景专利包括:美国专利号2013/0296633;US9320844;US8709343;US8529834;US7871566;US5270005;US8795220;US8545754;US8518259和US6998093。
发明内容
本发明的装置包括气体交换器,其被构造为针对于许多临床应用具有提高的灵活性和可测量性。该气体交换器可被构造并且应用于各种应用,例如在心胸外科手术期间用于心肺支持的心肺机中、体外膜氧合(ECMO)电路中、作为肺衰竭患者的呼吸辅助设备中等。在一些实施例中,双室气体交换器的特点在于两条氧供气流动路径。在其它实施例中,两个气体交换膜束被包围在壳体结构中,该壳体结构提供了将气流隔开的两个室并且利用各种血流分布和气体分布机构提供了连续的血液流动。在一些实施例中,气体交换器包括外侧壳体、中间壳体、两个气体交换纤维束、血液入口、血液出口、两个进气口、两个排气口或出气口、两个气体分布室和选用的换热器。在具体实施例中,气体交换器可被构造为比如通过采用包括氧气、混合的氧气和大气空气、其它医用气体等控制暴露于患者血液的氧供气的浓度以传送氧气并且移除二氧化碳。
本发明包括一种紧凑型双室气体交换器,其具有小基本体积、小的换气表面积和破坏边界层效应的能力。该双室气体交换器还在提供氧气传送的同时移除二氧化碳。双室气体交换器包括包围内部零部件并且容纳连接件的外侧壳体、血液入口、中空纤维膜制成的环形外侧纤维束。
外侧纤维束居中布置在壳体内并且还包括纤维、上注封段和下注封段。上注封段和下注封段使纤维保持位于壳体内。在一个实施例中,外侧纤维束包括血液分配器,其被构造为环绕壳体的内表面螺旋形涡环。血液分配器在上注封段或下注封段的附近联接至血液入口。血液分配器被构造为围绕外侧纤维束排出血液,从而其围绕外侧纤维束形成了受压的环形血液体积并且使得血液轴向流动通过外侧纤维束的气体交换膜。
在替代实施例中,双室气体交换器的血液分配器包括矩形入口或第一闸门,其在外侧壳体的一侧上从注封区域的一端至另一端打开。矩形门打开通常为竖向取向的狭槽,其被构造为联接血液入口以将进来的血液排放至外侧纤维束。由此,血液通常沿周向流经外侧纤维束的气体交换膜,通常如下文所述在第二门或出口门处离开。
双室气体交换器的一个实施例还包括由中空纤维膜制成的环形内侧纤维束。该环形内侧纤维束居中布置在外侧纤维束内并且还包括纤维、上注封段和下注封段。环形内侧纤维束的上注封段和下注封段将纤维在壳体内保持就位。
双室气体交换器的另一个实施例还包括通常形成为圆柱形壁的中间壳体,其被构造为将外侧纤维束和内侧纤维束大体分离。由此,中间壳体基本布置在外侧纤维束的径向朝内表面和内侧纤维束的径向朝外表面之间。中间环形空间形成在中间壳体的径向朝内表面和内侧纤维束的径向朝外表面之间,其围绕内侧纤维束提供了环形流动路径以允许通过内侧纤维束的径向朝内血液流动路径。在其它实施例中,中间壳体可被构造为提供通过内侧纤维束的周向或轴向流动。
双室气体交换器还包括位于上注封区域处的细狭槽,其允许血液离开外侧纤维束并且进入存在于中间壳体壁和内侧纤维束的外侧环形表面之间的中间环形空间。在具有通过外侧纤维束的周向流动路径的另一个实施例中,双室气体交换器包括矩形闸门,其被构造为允许血流从外侧纤维束流入中间环形空间。
双室气体交换器包括用于传送流体的零部件,包括血液入口、血液出口和至少一个进气口。血液出口被构造为收集来自纤维的氧合血液并且进一步连接至导管,氧合血液通过该导管返回至患者。血液出口通常位于壳体顶部的中间位置并且流体连接至内侧纤维束,比如连接至内侧纤维束的上注封段。
至少一个进气口比如一个实施例的两个进气口被构造成为气体(比如氧气和/或空气)进入中空纤维提供单独的气体通道。该至少一个进气口被定位在壳体的底部上。在一个实施例中,至少一个进气口通过由两束中空纤维膜制成的下注封段形成两个单独的气室。
两个出气口被构造成为气体(比如氧气和/或空气)离开中空纤维提供气体通道。出气口通常布置在壳体的顶部并且通过由两束中空纤维膜制成的上注封段形成了两个单独的气室。
在另一个实施例中,血液气体交换器包括被构造为允许在血液气体交换器内对血液进行外部采样的血液采样端口或血液气体传感器。例如,血液采样端口可流体联接至血液入口或血液出口。血液采样端口还可包括附至血液出口的氧气饱和度检测器和附至血液出口的温度端口。
尽管每种临床状况均有不同的考虑和需求,但是普遍期望高效、长期生物相容、长期耐用以及用途广泛的血液交换机。换句话说,期望采用最少的必要纤维膜来达到最有效的气体传送,同时最小化血液损坏并且保持长期耐用性和可靠性。它还能够灵活地容置各种氧供气源以为各种临床应用提供氧气传送、二氧化碳移除或两个。
在第一方面中,本发明提供了一种包括壳体的血液氧合器,该壳体包括血液入口、血液出口、清除气体入口、氧合气体入口和至少一个出气口。氧合器纤维束被布置在壳体内并且构造为使得血液从血液入口沿着预设路径经氧合器纤维束内的血液流动区域流至血液出口。清除气体入口被构造为引导清除气体经氧合器纤维束的清除区流至至少一个出气口。氧合气体入口被构造为引导氧合气体经氧合器纤维束的氧合区流至至少一个出气口。氧合器纤维束的清除气体区位于氧合器纤维束的氧合区的上游。该术语“上游”表示血液流动方向,从而待氧合的血液首先暴露于清除区内的清除气体并且接下来暴露于纤维束的氧合区内的氧合气体。
在第一组示例实施例中,本发明的血液氧合器可具有圆柱形纤维束,在该圆柱形纤维束处至少一部分血液流动路径为径向向内或径向向外的取向。在此实施例中,沿着中心轴线的一部分纤维束将通常是打开的以提供出口或入口气室,从而分别接受来自圆柱形纤维束的血液或者将血液分配给圆柱形纤维束。在另一组实施例中,纤维束呈圆柱形,至少一部分血液流动路径符合环形路径,在该环形路径处该束将通常具有沿着纤维束的中心轴线的血液入口或出口气室。在再一组实施例中,至少一部分血液流动路径单向横穿氧合器纤维束。
在某些具体实施例中,氧合器的纤维束呈圆柱形,其具有符合环形路径的血液流动路径的外侧部分和符合径向朝内路径的血液流动路径的内侧部分。在这些示例中,血液入口通常供给纤维束的外侧部分,纤维束的内部供给血液出口。更具体地,清除区可至少部分被布置在血液流动路径的外侧部分,氧合区可至少部分被布置在血液流动路径的内侧部分,在血液流动路径的内侧部分,血液入口供给内侧部分,外侧部分供给血液出口。替代地,清除区可至少部分布置在血液流动路径的内侧部分,氧合区可至少部分布置在血液流动路径的内侧部分。
血液氧合器还可包括将圆柱形纤维束的外侧部分和内侧部分分隔的圆柱形壁,在该圆柱形壁处血液从血液入口起经过壳体内的轴向开口流入纤维束的外侧内并且环形流经纤维束的外侧部分接下来通过圆柱形壁内的轴向开口并且流入包围内侧束的分配环,在该分配环处血液径向向内流经纤维束的内部沿着纤维束内部的中心线流至轴向收集区。
在其它实施例中,本发明的血液氧合器的氧合器纤维束具有横截面,其中接收来自清除气体入口的清除气体的清除区具有为横截面的20%至80%的入口面积且接收来自氧合气体入口的氧合气体的氧合区具有为横截面积的80%至20%的入口面积。
在再一组实施例中,血液氧合器还可包括歧管分隔器,歧管分隔器分配和导向以下内容(1)将清除气体从清除气体入口引导至氧合器纤维束的清除区(2)将氧合气体从氧合气体入口引导至氧合器纤维束的氧合区。
歧管分隔器布置在歧管内,该歧管接收来自清除气体入口的清除气体和来自氧合气体入口的氧合气体,其中歧管对氧合器纤维束的整个气体进入侧敞开,歧管分隔器的布置控制了从清除气体入口接收清除气体的清除区域的入口面积和从氧合气体入口接收氧合气体的氧合区的入口面积。该歧管分隔器可为固定的或者为可动的,后种情况允许纤维束内的清除区和氧合区的相对面积在使用过程中或者在使用者之间可进行调节。
在再一组实施例中,血液氧合器的氧合器纤维束可包括上注封段和下注封段。歧管可临近于其中一个注封段地布置在壳体内,血液泵可连接至血液入口。氧合气源可连通至氧合气体入口,清除气体源可连通至清除气体入口。
在第二方面中,本发明提供了为血液氧合的方法。提供了一种血液氧合器,其具有(1)壳体,该壳体具有血液入口、血液出口、清除气体入口、氧合气体入口和至少一个出气口和(2)布置在壳体内的氧合器纤维束。血液流动血液入口、流经氧合器纤维束并且流出血液出口。清除气体流经清除气体入口,氧合气体流经氧合气体入口。清除气体流经氧合器纤维束的清除区流至至少一个出气口,氧合气体流经氧合器纤维束的氧合器流至至少一个出气口。氧合器纤维束的清除气体区布置在氧合器纤维束的氧合器的上游。该布置获得了尤其有效的CO2移除和氧气引入并且可尤其减少对纯氧的需求以执行CO2清除和血液氧合。
在本发明的方法的具体实施例中,血液可沿环形路径行经氧合器纤维束的清除区,在其它实施例中,血液沿径向向内流动路径行经氧合器纤维束的氧合区。在其它实施例中,血液可笔直地行经氧合器纤维束的清除区和氧合区。在一些情况下,血液可以基本均匀的血液流动分布行经氧合器纤维束,在其它情况下,纤维束具有横截面积,接收来自清除气体入口的清除气体的清除区具有为横截面积的20%至80%的入口面积,接收来自氧合气体入口的氧合气体的氧合区具有为横截面积的80%至20%的入口面积。本发明的方法还可包括移动歧管分隔器,歧管分隔器将来自清除气体入口的清除气体导向至氧合器纤维束的清除区并且将来自氧合气体入口的氧合气体导向至冲向纤维束的氧合区,以调节氧合器纤维束的清除区和氧合区的相对面积。
附图说明
图1:根据本发明的原理的具有周向-径向流动路径的双室气体交换器的第一实施例的立体图。
图2:图1的双室气体交换器的竖向横截面图,其具有位于外侧纤维束内的周向流动路径设计和位于内侧纤维束内的径向流动路径、两个进气口和两个出气口。
图3:图1和2的双室气体交换器的竖向横截面图,其示出了血液分配器中的血液流动路径、内侧纤维束和外侧纤维束。
图4:图1-3的双室气体交换器的水平横截面图,其示出了外侧纤维束内的从分配器起通过门1到达外侧纤维束并且通过门2到达内侧纤维束的周向血液流动路径。
图5:根据本发明的另一个实施例的具有轴向-径向流动路径的双室气体交换器的立体图。
图6:图5的双室气体交换器的竖向横截面图,其具有位于外侧纤维束内的轴向流动路径设计和位于内侧纤维束内的径向流动路径、两个进气口和两个出气口。
图7:图5的双室气体交换器的竖向横截面图,其示出了血液流动路径。
图8A和8B:图5的双室气体交换器的水平和局部横截面图,其示出了在外侧纤维束内从螺旋形分配器起通过门1达到外侧纤维束并且接下来通过门2达到内侧纤维束的轴向血液流动路径(左侧:具有通过门1的血液流动的螺旋形涡环的俯视横截面图,右侧:通过门1和门2进入内侧纤维束并且离开双室气体交换器的轴向血液流动路径的立体剖视图)。
图9A和9B:双腔室气体交换器的两个实施例中的血流场的计算流体动力学建模的图示的水平和垂直截面图的图示(左:在每分钟6升的条件下图1的实施例的横切剖视图,右:在每分钟6升的条件下图5的实施例的中央剖视图)。
图10A和10B:氧气传送过程的计算流体动力学模型的水平和竖向横截面图的说明和双室气体交换器的两个实施例的速度矢量(左:在每分钟6升的条件下图1的实施例的横向切取的横截面示图,右:在每分钟6升的条件下图5的上似乎离的中间切取的横截面示图)。
图11:双室血液氧合器的示意图,食醋了用于心肺旁路手术应用的各个零部件。
图12:根据本发明的另一个实施例的用作可拆卸集成泵式氧合器(例如集成泵式氧合器)的双室气体交换器的说明。
图13A和13B:根据本发明的另一个实施例的用作移动式的呼吸支持和/或心肺支持的双室气体交换器的说明((a)背带式构型;(b)轮式构型)。
图14:根据本发明的另一个实施例的双室气体交换器的竖向横截面图,其具有位于外侧纤维束内的径向流动路径设计和位于内侧纤维束内的周向流动路径。
图15:图14的实施例的双室气体交换器的竖向横截面图,箭头示出了血液流动方向。
图16:螺旋形涡环内血液流动路径的水平横截面图,双室气体交换器的外侧纤维束和内侧纤维束类似于图14。
图17:具有通过内侧和外侧环形室的径向血液流动的双室气体交换器的示意、竖向横截面图。
图18:图17的实施例的双室气体交换器的竖向横截面图,箭头示出了内侧纤维束和外侧纤维束中的径向血液流动路径。
图19:示出了类似于图17的实施例的血液流动路径的双室气体交换器的螺旋形涡环、外侧纤维束和内侧纤维束的水平横截面图。
图20:根据本发明的另一个实施例的在外侧纤维束内具有径向流动路径且在内侧纤维束内具有轴向流动路径的双室气体交换器的竖向横截面图。
图21:图20的双室气体交换器的竖向横截面图,箭头示出了外侧纤维束内的径向血液流动路径、内侧纤维束内的轴向血液流动路径、两个进气口和两个出气口。
图22:类似于图20的双室气体交换器内螺旋形涡环血液入口的水平横截面图,箭头示出了螺旋形涡环和外侧纤维束内的血液流动路径。
图23A和23B,根据本发明的替代实施例的双室气体交换器中替代气体流动路径的示意图,其中来自内侧纤维束或外侧纤维束中一个的用过的富氧氧供气与大气空气混合以用作内侧纤维束或外侧纤维束中另一个的氧供气(图23A);并且其中每种氧供气分别用作内侧纤维束和外侧纤维束(图23B)。
图24:根据本发明的另一个实施例的具有方形纤维束和两个进气口的双室气体交换器内的流动路径和气体流动路径。
图25:双室气体交换器的另一个实施例内的血液流动路径和气体流动路径,其在纤维束内具有被圆柱形气体进入歧管内的可移动壁所分隔的区域。
图26A:带有替代分隔机构的双室气体交换器的竖向横截面示图。
图26B:可调分隔机构的水平横截面示图,其类似于图26A中带有螺旋形涡环的分隔机构。
具体实施方式
参见图1-22,双室气体交换器100被构造为采用两种单独的氧供气(例如通气气),以允许双室气体交换器100应用于各种临床应用。例如,该双室气体交换器100在双气体流动室124(比如第一室110和第二室113)的单个室中采用独立的流动路径,以将氧气传送至血液并且将二氧化碳从血液中移除。当前实施例的双室气体交换器100包括外侧壳体112、血液分配器114、由中空膜制成的外侧纤维束116、中间壳体118、由中空膜制成的内侧纤维束120、内部偏流器122和双气体流动室124。双室气体交换器100可用于各种临床状况;比如在心胸外科手术期间执行心肺搭桥手术、在医院中进行体外膜氧合作用(ECMO)以进行心肺支持或呼吸支持、在重症监护室外(在患者家中等)进行门诊呼吸支持(见图13)等。
外侧壳体112和中间壳体118被构造为包围外侧纤维束116以在外侧纤维束116和内侧纤维束120内形成各种血液流动路径(见图2、3、4、6、7、8A、8B、14、15、16、17、18、19、20、21和22)。例如每个血液流动路径可为轴向、周向或径向流动路径中的至少一种。内部偏流器122被构造用于将来自内侧纤维束120的血流偏转或导向朝向血液出口144。当前实施例的内部偏流器122(见图2、3、4、6、7、8B、14、15、17、18、20和21)基本呈带有锥形顶部的圆柱形并且基本同心地布置在内侧纤维束120的中间位置。
双气体流动室124接收氧供气并且将氧供气分配入内侧纤维束120和外侧纤维束116内的纤维膜(图2、6、14、15、17、18、20和23)。当前实施例的氧供气包括空气、氧气、氧气和空气的混合物或另一种通气气。中间壳体118被构造为允许血液流经(例如基本沿径向、轴向和/或周向)内侧纤维束120并且包围内侧纤维束120。内侧纤维束120和外侧纤维束116包括气体交换膜纤维,比如中空膜纤维,其被构造为将氧气传送至血液并且从流经膜纤维的血液中移除二氧化碳。内侧纤维束120和外侧纤维束116可为由多个(例如上千个)透气中空膜纤维或膜纤维构成的环形纤维束9(见图2、6、14、17、20和23A和23B)或方形形式(见图24)。内侧纤维束120和外侧纤维束116通常居中且同心地布置在外侧壳体112内,中间壳体118如上文所述将内侧纤维束120和外侧纤维束116分开。
外侧纤维束116和内侧纤维束120的中空纤维膜联接至上注封段117和下注封段119,该上注封段和下注封段被构造为使氧供气流入和流出中空纤维膜(例如从进气口121进入中空纤维膜和/或从中空纤维膜到达出气口123,比如出气口1和出气口2)。由此,上注封段117被定位在外侧壳体112内的上部分,下注封段119被定位在外侧壳体112内的底部。另外,内侧纤维束120和外侧纤维束116中的每一个各自被构造为彼此密封(包括在上注封段117和下注封段119处),以防止血液和/或氧供气的不期望的流动路径。
在一个例子中,可基于临床应用选择氧供气,比如通过采用氧气或富氧气体以在外侧纤维束116中将氧气大量传送至血液并且在内侧纤维束120中大量移除二氧化碳。或者,可采用空气(例如环境空气)或空气和氧气的组合。氧供气流被分配入流动路径(例如用于为了传送氧气和用于移除二氧化碳)以独立于其他氧供气地控制每种氧供气和/或内容物的流量。
参见图1、2、5、6、14、15、17、18、20、21和23,该双室气体交换器100还被构造用于控制中空膜纤维与氧供气的数量。例如,一条流动路径可被控制为独立于另一条流动路径地传送氧气和/或空气。由此,双室气体交换器100采用各种气源以传送氧气和移除二氧化碳从而增加灵活性。例如,根据临床应用,内侧纤维束120和外侧纤维束116均可用于传送氧气和/或移除二氧化碳,或者仅外侧纤维束用于传送氧气同时内侧纤维束120用于移除二氧化碳,反之亦然。
另外,双室气体交换器100可被构造用于提高一种气体(例如氧气或空气)的流量。例如,对于其中增加氧气比移除二氧化碳更具有临床需求的临床应用而言,来自一个流动路径的氧供气可被再循环以与另一个流动路径中的气体结合。再举一个例子,如果需要增大移除二氧化碳,临床医生可提高氧供气流量和/或氧合器膜(下文进一步讨论)暴露于空气的表面积。
参见图2、3、6、7、14、15、17、18、20、21和23,双室气体交换器100的第一室110可被构造用于将氧供气(例如氧气)传送至血液或者从血液中移除二氧化碳。例如,用于传送氧气的氧供气的流量约在每分钟1升至每分钟6升之间。氧气源接下来向第一室110提供氧供气。在一个实施例中,氧气源为容量小、重量轻、电池供电的便携式制氧机(例如可商业购买的制氧机)。
该制氧机将空气转换为高氧气浓度(例如约>90%的氧气浓度)的气体。制氧机可被集成入便携式驱动控制台,该便携式驱动控制台被构造为包围制氧机和其它零部件,比如电源(例如电池)、血液泵控制器、血流传感器和血液气体传感器(图11和13)。例如,一个实施例可包括可拆卸泵126以形成集成泵式氧合器(例如集成泵式氧合器,见图12),其包括常用血液泵126和由血液泵控制器控制的泵驱动器。该血液泵126可通过采用快速连接件、常用紧固件等与双室气体交换器100简易联接和拆卸。但是,在其它实施例中,氧气源可为固定式或便携式的氧气罐、环境空气等。
再次参见图2、3、6、7、14、15、17、18、20、21和23,双室气体交换器100的第二室113可被构造为从血液中移除二氧化碳或者将氧气传送至血液。例如用于移除二氧化碳的氧供气的流量可约为6升/分钟至18升/分钟。在一个实施例中,小型风扇对空气进行压缩并且将其与来自第一室110的氧供气(例如氧气或富氧气体)进行混合以形成用于移除二氧化碳的高氧供气流。当前实施例的被包围的双气体流动室124定位在内侧纤维束120和外侧纤维束116的下注封段119的下方或上注封段117的上方。
仍然参见图2、3、6、7、14、15、17、18、20、21和23,该双气体流动室124包括分别被构造为接收来自两个进气口121(例如进气口1和进气口2)的氧供气中的一个的第一室110和第二室113。例如,分别位于第一室110和外侧室113中的氧供气可具有不同的成分和/或流量。进气口121将氧供气分别分配至嵌入内侧纤维束120和外侧纤维束116的上注封段117和下注封段119中的开放的管纤维。在当前的实施例中,氧气或富氧气体流经上注封段119中的开放的管纤维并且穿过第一室110内各个中空纤维膜的外壁扩散入在此处进行血液氧合的血液内。另外,来自血液的二氧化碳扩散入中空纤维膜的管腔并且从血液中被移除。氧供气流经中空纤维膜并且通过下注封段119离开双气体流动室124。在当前实施例中,氧供气通过排放入大气中而离开双室气体交换器100。由此,双室气体交换器100接收氧供气并且使其扩散入独立的纤维膜束中以进行血液氧合和二氧化碳移除。
外侧壳体112和中间壳体118被构造为在内侧纤维束120和外侧纤维束116内形成单独的或混合的血液流动路径(图2、3、6、7、14、15、17、18、20和21)。在当前的实施例中,各个血液流动路径通过打开和关闭血流闸门128和130中的一个或两者而可行(见图2-4、6-8B、14-16和20-22)。血流闸门附接至外侧壳体112、中间壳体118和联接至血液入口142的血液分配器114。图2-4示出了具有周向血液流动路径(见图3和4中的箭头)的外侧纤维束。血液分配器114接收来自血液入口142的血液并且流体联接至在外侧壳体112的一侧上形成竖向狭槽或间隙的第一矩形血流闸门128(门1)和在中间壳体118上位于对置侧的第二矩形血流闸门130(门2)。在一个实施例中,血液分配器114基本均匀地排放经过闸门128以大致沿周向经过外侧纤维束116地排入外侧纤维束116并且通过门2(130)离开进入位于中间壳体118的内壁和内侧纤维束120的外表面之间的中间环形区域132(例如具有圆柱形或锥形)。另一种替代方式为,双室气体交换器100被构造用于过滤血液中的颗粒。例如,双室气体交换器100可包括过滤器,比如深度过滤器、网状泡沫、微孔过滤和过滤介质等。
在图6-8所示的双室气体交换器100的另一个实施例中,外侧纤维束116具有轴向血液流动路径。血液分配器114被构造为具有逐渐减小的横截面积的螺旋形涡环(见图14-16、17-19和20-22)。图5-8示出血液分配器114基本围绕外侧壳体112的顶端并且附接至大致呈细狭槽状的第一血流闸门128(门1)。第二细狭槽血流闸门130(门2)被布置在与门1(128)对置的中间壳体118的端部。螺旋形涡环血液分配器114沿周向(如360°)通过门1(128)将血液逐渐排出至外侧纤维束116的顶端。血液沿轴向流动以离开外侧纤维束116并且通过门2(130)进入位于中间壳体118的内壁和内侧纤维束120的外表面之间中间环形区域132。通过内侧纤维束120的流动路径呈放射状,其提高了生物相容性和气体交换效率并具有小的压力损失。
仍然参见图6-8,中间环形空间132基本形成在中间壳体118的内壁和内侧纤维束120的外表面之间并且具有基本均匀的压力分布(例如在血液进入内侧纤维束120之前)。血液具有基本均匀的压力分布,其使得血液在基本一致的径向向内方向上流经内侧纤维束120的纤维膜(见图3、4、7、8、18和19)。计算流体动力学分析说明了内侧纤维束120和外侧纤维束116内的基本一致的流动和基本一致的氧气传送(图9和10)。
由此,内侧纤维束120和外侧纤维束116可根据临床应用被构造用于各种血液流动路径(例如周向、轴向和/或径向)。例如,双室气体交换器100的一个实施例包括具有径向流动路径的内侧纤维束120和具有周向流动路径的外侧纤维束116(见图2-4)。再举个例子,双室气体交换器100的另一个实施例包括具有径向流动路径的内侧纤维束120和具有轴向流动路径的外侧纤维束116(见图6-8)。再举另一个例子,双室气体交换器100的另一个实施例包括具有周向流动路径的内侧纤维束120和具有径向流动路径的外侧纤维束116(见图14-16)。再一个例子,双室气体交换器100的另一个实施例包括具有径向流动路径的内侧纤维束120和外侧纤维束116(见图17-19)。再举个例子,双室气体交换器100的另一个实施例包括具有轴向流动路径的内侧纤维束120和具有径向流动路径的外侧纤维束116(见图20-22)。流动路径的其它组合和构造在双室气体交换器100内也是可行的。
参见图2、3、6、7、14、15、17、18、20和21,当前实施例的内侧纤维束120和外侧纤维束116呈柱状环形,其包括许多中空膜纤维或者例如具有直径通常小于0.1微米的孔径的微孔中空纤维。当前实施例的中空膜纤维可商业购得,其外直径约在250微米至400微米之间,壁厚约在30微米至50微米之间,虽然具有其他外直径和壁厚的中空纤维膜也可用于双室气体交换器100。在另一个实施例中,中空膜纤维被构造为抗血栓形成,其例如具有抗血栓形成涂层(例如肝素或功能等同物)。替代地,中空膜纤维可为微孔膜以过滤血液成分,比如用于血液分析。
内侧纤维束120和外侧纤维束116的孔隙率(或孔隙比)分别通常由整个内侧纤维束120和外侧纤维束116的期望压力损失所决定。在当前实施例中,孔隙率范围约在0.4至0.7之间。替代地,涂覆的或去皮的中空纤维可用于允许氧气和二氧化碳扩散通过膜纤维的外壁的无孔皮层。带状构型的中空膜纤维通常可商业购得,由此各个中空膜纤维被布置成预设形状(即平行直线或偏转的、多向的、编织状的、间隔的等),其允许带包裹以形成圆柱形或锥形束构型。替代地,中空纤维膜可被包裹或缠绕(例如像风筝的线轴一样)。中空膜纤维被附接至上注封段119和下注封段117中的每一个(见图2、3、6、7、14、15、17、18、20和21)。例如,在当前的实施例中,对内侧纤维束120和外侧纤维束116的端部进行修理以打开膜纤维的内腔并且采用聚合物(例如尿烷,环氧树脂等)注封注封段。氧供气被分配通过上注封段117和下注封段119之间的内腔。
在一个实施例中,双室气体交换器100包括被构造用于控制血液温度的换热器。换热器可包括围绕内侧纤维束120和外侧纤维束116中的至少一个的柱状环形换热元件。柱状环形由注封至内侧纤维束120或外侧纤维束116中的一个的多根毛细管形成。换热器毛细管可由生物相容的金属、聚合物等形成。毛细管具有管腔,该管腔是打开的以形成独立的流动路径。换热器还分别包括构造用于控制氧供气和传热介质的热量的氧供气室和传热介质室。在一个实施例中,氧供气室和传热介质室被布置在上封段117上方的外侧壳体112的顶端,但是在另一个实施例中,氧供气室和传热介质室被布置在下注封段119上方的外侧壳体112的下方。血液温度如此控制,即在传热介质流经换热器毛细管和中空膜纤维时改变其流量和温度。
在替代实施例中,多个中空管被构造用于传热,而非将中空纤维膜构造为换热器。此种构型采用控温流体(比如水)以影响血液温度变化。
进气口121(图1-3和5-7)被构造用于在低压下运行,同时在外侧纤维束116和/或内侧纤维束120内提供一致的氧供气。进气口121包括尺寸设计为达到期望的血液流动速度和压力的流入流出连接件。例如,双室气体交换器100可包括常用1/4″或3/8″带倒钩的管接头,其用于容置标准的装置辅助型体外循环管。
双室气体交换器的一个实施例包括构造用于允许操作者从双室气体交换器100处收集血液样品(例如采用注射器、传统管塞、闭塞型采样端口)的动脉采样端口136和静脉采样端口138(图1和2)。动脉采样端口136和静脉采样端口138还被构造为在血液流入内侧纤维束120和/或外侧纤维束116之前和在血液流出内侧纤维束120和/或外侧纤维束116之后允许操作者采样血液以控制各项参数(例如血液流量、气体传送速率和用于控制氧气浓度的PH值)。
在一个实施例中,双室气体交换器100可被构造用于从血液中移除气泡。一个实施例可包括外侧排气孔140(图1、3、5-8、12-15和17),其被定位为靠近其中气泡通常在此处积聚的双室气体交换器100的部分处。例如,外侧排气孔140可布置在外侧壳体112的靠近上注封段117的外壁处(图2)。双室气体交换器100的其它实施例还包括内侧排气孔,其被布置为靠近中间壳体118的顶端比如内侧纤维束129的上注封段117以移除气泡。气泡通常是由在注封过程中由于中空膜纤维断裂而无法充分清除的滞留空气或者是由迫使气体从溶液中逸出的向血液施加的过大负压产生的。
如图23A和23B所示,根据本发明的原理的氧合器可被构造为具有穿过气体交换纤维束的一部分的富氧气体和穿过纤维束的另一部分的空气或其它贫氧清除气体。可选地,此氧合器可具有气体流动路径,在该气体流动路径中来自内侧纤维束或外侧纤维束中一个的用过的富氧氧供气与环境空气混合以用作内侧纤维束或外侧纤维束中另一个的氧供气。
如图23A所示,包括纤维束210的交换器200被构造用于在外侧纤维束216中重新使用来自内侧纤维束220的用过的富氧氧供气。例如,来自外部源(比如罐)或制氧机的氧气通过双气室的下部分或气室224扩散入内侧纤维束220。随着富氧气体穿过内侧纤维束220消耗了部分氧气并且接下来穿过上气室228(在此处富氧气体与通过入口230进入的大气空气相混合)。组合气体流接下来向下流过外侧纤维束216以将二氧化碳从在上文讨论的任意一条流动路径中水平进入纤维束210中的血液中移除或“清除”。该组合气体虽然并不富氧,但是除了清除二氧化碳之外还将提供氧合的初始阶段。氧合在内侧纤维束220中完成,在内侧纤维束中血液暴露于具有更高氧气浓度的气体中。该氧供气通气入来自双气室232的底部的环境空气。由此,混合的大气和含氧氧供气的气体流量和氧气利用效率可得到提高,因为环境空气通常充裕并且在双室气体交换器200中易于使用。
参见图23B,双室气体交换器实施例250的替代实施例可被构造为使富氧氧供气252仅通过内侧纤维束260并且仅使大气空气254仅通过外侧纤维束262。将相应地对气室和隔离屏障进行布置。
在图24中,氧合器300呈矩形,其具有位于顶端的单独的进气口323和324以及布置在上注封段317和下注封段319之间的矩形纤维束302。与之前的实施例相反,纤维束302没有在其内形成了隔离的气体流动区域的屏障。流经纤维束302的气体通过定位在位于上注封段317上方的进气区域306内的可移动隔板304控制。进气口323和324在隔板304的相对两侧释放气体并且可分别连通至不同气源,比如空气和氧气。移动隔板304将由此调节每种气体暴露于纤维的面积。例如,沿图24中水平箭头方向流动的血液将首先暴露于通过入口323进入的气体,其可为空气或者其它低氧清除气体。在至少部分清除二氧化碳之后,血液可暴露于通过入口324传送的富氧气体以进行完全氧化。血液当然沿着竖向箭头的方向竖向流动。在一些实施例中,隔板304可为固定的。虽然失去了对纤维面积的调节性,但是将保持采用空气或其它低氧气体从血液中清除二氧化碳和得到具有纯的或其它高氧气体的最终氧合量的效率。
在另一个实施例中,如图25所示,氧合器400呈圆柱形,其具有位于顶端的单独的进气口243和424和布置在上注封段和下注封段(未示出)之间的环形纤维束402。具有可调节直径的圆形隔板404被定位在位于上注封段上方的进气区域406内。进气口423和424将被定位为位于隔板406的外侧和内侧并且可分别连通至不同气源,比如空气和氧气。调节隔板404的直径将调节每种气体暴露于纤维面积。例如,沿图24中水平箭头方向流动的血液将首先暴露于通过入口423进入的气体,该气体可为空气或其它低氧清除气体。在二氧化碳被至少部分清除之后,血液可暴露于通过入口424传送的富氧气体以进行完全氧合。血液当然沿着竖向箭头的方向沿竖向流动。在一些实施例中,该隔板404可为固定的。虽然失去了对纤维面积的调节,但是将保持采用空气或其它低氧气体从血液中清除二氧化碳以及采用纯的或其它高氧气体得到最终氧合量的效率。
在图26A和26B中所示的本发明的再一个实施例中,双室气体交换器500(类似于上文所述的双室气体交换器100)被进一步构造为与氧供气浓度无关地(例如无需改变氧供气的流量和/或浓度)改变氧供气交换速率。该双室气体交换器500包括分隔机构510,其在一个实施例中为可调节孔,比如光阑机构,其被构造为用于改变与血液接触的双室气体交换膜512的表面积的一部分以传送氧气并且也改变与血液接触的双室气体交换膜512的表面积的一部分以移除二氧化碳,如上文所述。
分隔机构510如此改变氧供气部分以进行气体交换,即在无需物理室壁(例如中间壳体)的条件下改变氧供气通过纤维束内的不同区域进入单独路径的通道或流体连通。通过控制和调节其中氧供气暴露于患者血流的气体流动路径的面积(例如暴露于进气流的中空纤维膜的部分)来改变通路以允许临床医生更加准确和有效地匹配患者的需求(例如代谢需求。)
在示出的实施例中,分隔机构510是被构造用于改变打开面积控制流动气体的机械机构(图26B),比如光阑型或百叶窗型机构。在其它实施例中,打开面积可呈圆形或百叶窗形,从而打开面积通过改变直径或宽度而改变。分隔机构510与上注封段514、下注封段516中的至少一个流体联接。螺旋形涡环可将气体分配至纤维束(图26B)或者替代地可采用(图26A)垂直测量入口(如先前实施例中所提供的)。分隔机构510可为一个阀或多个阀,比如控制流体进入如上文描述的各个流动路径的一阵列阀或一系列阀。分隔机构510的打开面积由控制器、比如由上文所述的血液泵控制器所控制。分隔机构510由此允许双室气体交换器500控制氧供气进入双室气体交换器膜512的暴露于患者血液并且与患者血液流体接触的部分的混合和速率以传送氧气并且移除二氧化碳。
本发明为一种双室气体交换器装置。双室气体交换器被构造用于提高气体交换效率(比如与氧气和二氧化碳),具有相对于低的压力损失、良好的生物相容性和独有的灵活性并且需要小体积和血液接触面积。该双室气体交换器增加了最佳血液流动路径的选项并且提高了内侧纤维束和外侧纤维束中气体传送的效率。该双室气体交换器还同时减少了氧气传送至血液所需的氧气量和从血液中移除的二氧化碳。降低的氧气需求以及减小的双室气体交换器装置的尺寸和重量还增加了用户使用的多样性。例如,双室气体交换器可与具有低功耗的小型便携制氧机一起运行以提供用于可移动使用等所需的氧气传送和二氧化碳移除的氧供气。
另外地,双室气体交换器还被构造为采用主动混合机构增强气体交换。该主动混合机构采用内侧纤维束和外侧纤维束以减小血液流动的边界层效应并且提高气体交换效率。中间壳体和内侧纤维束形成了一个圆柱形或锥形空间,其被构造为通过如下方式增加血液与膜的相互作用,即在膜外表面和壳体内部之间的空间中实现高动量的血液流动,从而血液在穿过外部纤维之后和在进入内侧纤维束之前遇到较低的流动阻力、增加的湍流并且提高混合。由此双室气体交换器对血液进行混合,无需像常用的血液氧合装置那样引入不必要的高剪切速率或者停滞区域。另外,该双室气体交换器比常用的血液氧合装置包括更少的零部件。该双室气体交换器被构造为与常用血液氧合装置相比通过增加对接头和结合区域的接近性而提高了维修性和操作性。
尽管以上是对本发明的优选实施例的完整描述,但是可以使用各种替代,修改和等同形式。由此,以上描述不应被视为限制由所附权利要求限定的本发明的范围。

Claims (24)

1.一种血液氧合器,包括:
壳体,其包括血液入口、血液出口、清除气体入口、氧合气体入口和至少一个出气口;和
氧合器纤维束,其布置在所述壳体内并且构造为使血液从所述血液入口沿预设路径经所述氧合器纤维束内的血液流动区域流至所述血液出口;
其中所述清除气体入口内构造成引导清除气体经氧合器纤维束的清除区流至所述至少一个出气口,并且所述氧合气体入口被构造成引导氧合气体经氧合器纤维束的氧合区流至所述至少一个出气口;和
其中所述氧合器纤维束的清除气体区位于氧合器纤维束的氧合区的上游。
2.根据权利要求1所述的血液氧合器,其中所述纤维束呈圆柱形并且所述血液流动路径的至少一部分径向朝内或径向朝外。
3.根据权利要求1所述的血液氧合器,其中所述纤维束呈圆柱形并且所述血液流动路径的至少一部分沿着环形路径。
4.根据权利要求1所述的血液氧合器,其中所述血液流动路径的至少一部分单向横穿该氧合器纤维束。
5.根据权利要求1所述的血液氧合器,其中所述纤维束呈圆柱形,所述血液流动路径的外侧部分沿着环形路径,内侧部分沿着径向朝内路径。
6.根据权利要求5所述的血液氧合器,其中所述血液入口供应所述外侧部分并且所述内侧部分供应所述血液出口。
7.根据权利要求6所述的血液氧合器,其中所述清除区至少部分布置在所述血液流动路径的外侧部分中,并且所述氧合区至少部分布置在所述血液流动路径的内侧部分中。
8.根据权利要求5所述的血液氧合器,其中所述血液入口供应所述内侧部分且所述外侧部分供应所述血液出口。
9.根据权利要求8所述的血液氧合器,其中所述清除区至少部分布置在所述血液流动路径的内侧部分中,并且所述氧合区至少部分布置在所述血液流动路径的外侧部分中。
10.根据权利要求5所述的血液氧合器,还包括将所述圆柱形纤维束的所述外侧部分和所述内侧部分分开的圆柱形壁,其中来自血液入口的血液经所述壳体内的轴向开口流入所述纤维束的外侧部分并且环向流经所述纤维束的外侧部分并经圆柱形壁内的轴向开口流入包围所述内侧束的分配环,血液在那里径向向内经所述纤维束的内侧部分流至沿所述纤维束的内侧部分的中心轴线的轴向收集区。
11.根据权利要求1所述的血液氧合器,其中所述氧合器纤维束具有横截面积,且接收来自所述清除气体入口的所述清除气体的所述清除区具有为所述横截面积的20%至80%的入口面积,而接收来自所述氧合气体入口的所述氧合气体的所述氧合区具有为所述横截面积的80%至20%的入口面积。
12.根据权利要求11所述的血液氧合器,还包括歧管分隔器,所述歧管分隔器将来自所述清除气体入口的清除气体引导至所述氧合器纤维束的所述清除区并将来自所述氧合气体入口的所述氧合气体引导至所述氧合器纤维束的所述氧合区。
13.根据权利要求12所述的血液氧合器,其中所述歧管分隔器布置在歧管内,所述歧管接收来自所述清除气体入口的所述清除气体和来自所述氧合气体入口的氧合气体,其中所述歧管对所述氧合器纤维束的整个气体进入侧开放,且所述歧管分隔器的放置控制接收来自所述清除气体入口的所述清除气体的所述清除区域的入口面积和接收来自所述氧合气体入口的所述氧合气体的所述氧合区的入口面积。
14.根据权利要求13所述的血液氧合器,其中所述歧管分隔器是可动的。
15.根据权利要求14所述的血液氧合器,其中所述歧管分隔器是固定的。
16.根据权利要求1所述的血液氧合器,其中所述氧合器纤维束还包括上注封段和下注封段,所述歧管在该壳体内靠近其中一个所述注封段就位。
17.根据权利要求1所述的血液氧合器,还包括连接至所述血液入口的血液泵、连接至所述氧合气体入口的氧合气源和连接至所述清除气体入口的清除气源。
18.一种血液氧合方法,其包括:
提供血液氧合器,所述血液氧合器具有(1)带有血液入口、血液出口、清除气体入口、氧合气体入口和至少一个出气口的壳体和(2)布置在所述壳体内的氧合器纤维束;
使血液流经所述血液入口、流经所述氧合器纤维束并且流出所述血液出口;
使清除气体流经所述清除气体入口且使氧合气体流经所述氧合气体入口,其中所述清除气体经所述氧合器纤维束的清除区流至至少一个出气口,所述氧合气体经所述氧合器纤维束的氧合区流至至少一个出气口;
其中所述氧合器纤维束的所述清除气体区位于所述氧合器纤维束的所述氧合区的上游。
19.根据权利要求18所述的方法,其中所述血液沿环形流动路径行经所述氧合器纤维束的所述清除区。
20.根据权利要求19所述的方法,其中所述血液沿径向向内流动路径行经所述氧合器纤维束的所述氧合区。
21.根据权利要求19所述的方法,其中所述血液笔直地行经所述氧合器纤维束的所述清除区和所述氧合区。
22.根据权利要求18所述的方法,其中所述血液以基本均匀的血流分布行经所述氧合器纤维束。
23.根据权利要求18所述的方法,其中所述纤维束具有横截面积,接收来自所述清除气体入口的所述清除气体的所述清除区具有为所述横截面积的20%至80%的入口面积,而接收来自所述氧合气体入口的所述氧合气体的所述氧合区具有为所述横截面积的80%至20%的入口面积。
24.根据权利要求23所述的方法,还包括移动歧管分隔器,所述歧管分隔器将来自所述清除气体入口的所述清除气体引导至所述氧合器纤维束的所述清除区并且将来自所述氧合气体入口的所述氧合气体引导至所述氧合器纤维束的所述氧合区,以调节所述氧合器纤维束的所述清除区和所述氧合区的相对面积。
CN201880052696.9A 2017-08-15 2018-08-15 用于呼吸支持的双室气体交换器 Active CN111032106B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310082153.4A CN115998976A (zh) 2017-08-15 2018-08-15 双室气体交换器和用于呼吸支持的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762545512P 2017-08-15 2017-08-15
US62/545512 2017-08-15
PCT/US2018/000133 WO2019035869A1 (en) 2017-08-15 2018-08-15 DOUBLE CHAMBER GAS EXCHANGER AND METHOD OF USE FOR RESPIRATORY ASSISTANCE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310082153.4A Division CN115998976A (zh) 2017-08-15 2018-08-15 双室气体交换器和用于呼吸支持的方法

Publications (2)

Publication Number Publication Date
CN111032106A true CN111032106A (zh) 2020-04-17
CN111032106B CN111032106B (zh) 2023-02-10

Family

ID=65362954

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880052696.9A Active CN111032106B (zh) 2017-08-15 2018-08-15 用于呼吸支持的双室气体交换器
CN202310082153.4A Pending CN115998976A (zh) 2017-08-15 2018-08-15 双室气体交换器和用于呼吸支持的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310082153.4A Pending CN115998976A (zh) 2017-08-15 2018-08-15 双室气体交换器和用于呼吸支持的方法

Country Status (5)

Country Link
US (2) US11433168B2 (zh)
EP (1) EP3668556A4 (zh)
JP (2) JP7393327B2 (zh)
CN (2) CN111032106B (zh)
WO (1) WO2019035869A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112891769A (zh) * 2021-02-10 2021-06-04 于从军 一种大气颗粒物隔离装置、隔离套件、方法
CN113082339A (zh) * 2021-04-15 2021-07-09 上海超高环保科技股份有限公司 超高分子人工肺制作方法
CN113209406A (zh) * 2021-01-15 2021-08-06 苏州心擎医疗技术有限公司 体外膜肺氧合器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3731892B1 (en) 2018-03-02 2022-08-24 Spectrum Medical Ltd. Oxygenation system
DE102018207611A1 (de) 2018-05-16 2019-11-21 Kardion Gmbh Rotorlagerungssystem
DE102018208541A1 (de) 2018-05-30 2019-12-05 Kardion Gmbh Axialpumpe für ein Herzunterstützungssystem und Verfahren zum Herstellen einer Axialpumpe für ein Herzunterstützungssystem
GB2583532B (en) * 2019-05-03 2023-04-05 Spectrum Medical Ltd Control system
CA3235847A1 (en) 2019-10-25 2021-04-29 MAQUET CARDIOPULMONARY GmbH A working fluid treatment device for mass transfer between a working fluid and two fluid exchange media
DE102020102474A1 (de) 2020-01-31 2021-08-05 Kardion Gmbh Pumpe zum Fördern eines Fluids und Verfahren zum Herstellen einer Pumpe
CN111494741B (zh) * 2020-05-25 2024-08-09 北京清瀚医疗科技有限公司 一种用于体外循环的人工肺
DE102020003680B4 (de) * 2020-06-19 2024-07-25 Xenios Ag Heizsystem für einen extrakorperalen Gastauscher
CN113398354B9 (zh) * 2021-07-14 2022-05-03 江苏赛腾医疗科技有限公司 集成式膜式氧合器
CN113509605B (zh) * 2021-07-14 2022-09-20 江苏赛腾医疗科技有限公司 膜式氧合器
CN113499496B (zh) * 2021-07-14 2022-03-25 江苏赛腾医疗科技有限公司 内置过滤器的膜式氧合器
WO2023078927A1 (en) * 2021-11-03 2023-05-11 Charite - Universitaetsmedizin Berlin Oxygenator
WO2024167401A1 (en) * 2023-02-06 2024-08-15 Universiteit Twente Ambulatory system with ecmo device

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160268A2 (en) * 1984-04-24 1985-11-06 Mitsubishi Rayon Co., Ltd. Blood oxygenator using a hollow-fiber membrane
US4791054A (en) * 1984-10-01 1988-12-13 Mitsubishi Rayon Co., Ltd. Heat exchanger and blood oxygenating device furnished therewith
US5316724A (en) * 1989-03-31 1994-05-31 Baxter International Inc. Multiple blood path membrane oxygenator
EP0895786A1 (en) * 1997-08-06 1999-02-10 Terumo Kabushiki Kaisha Oxygenator of hollow fiber membrane type
EP1108462A2 (en) * 1999-12-15 2001-06-20 Terumo Kabushiki Kaisha Oxygenator of hollow fiber membrane type
CN1308549A (zh) * 1998-05-08 2001-08-15 爱德华兹生命科学公司 带有整体热交换器/蓄存器的低灌注膜片充氧器
US6454999B1 (en) * 1998-12-30 2002-09-24 Cardiovention, Inc. Integrated blood pump and oxygenator system having extended blood flow path
CN1724084A (zh) * 2000-10-30 2006-01-25 尼弗茹斯公司 双级过滤筒
JP2006102550A (ja) * 2006-01-13 2006-04-20 Terumo Corp 中空糸膜型人工肺
WO2006066553A2 (de) * 2004-12-21 2006-06-29 Rwth Aachen Oxygenator zum gasaustausch
JP2010213852A (ja) * 2009-03-16 2010-09-30 Jms Co Ltd 血液処理装置
US20100272606A1 (en) * 2009-04-23 2010-10-28 Carpenter Walt L Radial flow oxygenator/heat exchanger
DE102010004600A1 (de) * 2010-01-13 2011-07-14 Marseille, Oliver, Dr.-Ing., 52066 Anordnung mit einer Blutpumpe und einem Gasaustauscher zur extrakorporalen Membranoxygenierung
CN103328019A (zh) * 2011-01-27 2013-09-25 美敦力公司 用于处理体外血液回路中的血液的除气充氧器
CN103547298A (zh) * 2011-05-17 2014-01-29 索林集团意大利有限责任公司 具有交叉血流的血液处理单元
CN104114205A (zh) * 2012-02-15 2014-10-22 美敦力公司 用于处理体外血液回路中的血液的双出口充氧器
JP2016019666A (ja) * 2014-07-15 2016-02-04 テルモ株式会社 人工肺
CN105813666A (zh) * 2013-12-19 2016-07-27 美敦力公司 偏径向换热器和充氧器
CN105828848A (zh) * 2013-12-23 2016-08-03 马里兰大学,巴尔的摩 血液氧合器
CN205626596U (zh) * 2016-04-05 2016-10-12 裴嘉阳 膜式氧气交换装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578267A (en) * 1992-05-11 1996-11-26 Minntech Corporation Cylindrical blood heater/oxygenator
US5270005A (en) 1990-09-07 1993-12-14 Baxter International Inc. Extracorporeal blood oxygenation system incorporating integrated reservoir-membrane oxygenerator-heat exchanger and pump assembly
US5346621A (en) * 1993-05-19 1994-09-13 Avecor Cardiovascular, Inc. Hollow fiber blood oxygenator
IT1271104B (it) * 1994-11-25 1997-05-26 Dideco Spa Ossigenatore di sangue con uno strato di capillari in membrana microporosa.
JP3803421B2 (ja) * 1996-04-26 2006-08-02 富士システムズ株式会社 気体交換装置
JP4258908B2 (ja) 1999-09-14 2009-04-30 株式会社ジェイ・エム・エス 人工肺装置
US6998093B1 (en) 2000-04-27 2006-02-14 Medtronic, Inc. Fluid oxygenator with access port
US7455812B2 (en) 2003-10-16 2008-11-25 Rheoxtech, Llc Method and apparatus for controlled reoxygenation
EP1888211B1 (en) * 2005-04-21 2014-01-08 University of Pittsburgh of the Commonwealth System of Higher Education Paracorporeal respiratory assist lung
DE102005039446B4 (de) 2005-08-18 2009-06-25 Ilias-Medical Gmbh Vorrichtung zur An- und Abreicherung von Stoffen in einer Flüssigkeit
GB2437254B (en) 2006-04-13 2010-11-17 Haemair Ltd Blood/air mass exchange apparatus
EP1930034B1 (en) * 2006-12-07 2012-11-14 Thoratec LLC An integrated centrifugal blood pump-oxygenator, an extracorporeal life support system and a method of de-bubbling and priming an extracorporeal life support system
GB0802169D0 (en) 2008-02-06 2008-03-12 Ecmo Associates Ltd Extracorporeal membrane oxygenation
US8545754B2 (en) 2009-04-23 2013-10-01 Medtronic, Inc. Radial design oxygenator with heat exchanger
EP2420262B1 (en) 2010-08-19 2013-04-17 Sorin Group Italia S.r.l. Blood processing unit with modified flow path
DE102011052187A1 (de) 2011-07-27 2013-01-31 Maquet Vertrieb Und Service Deutschland Gmbh Anordnung zum Entfernen von Kohlenstoffdioxid aus einem exkorporalen Blutstrom mittels Inertgasen
US8906300B2 (en) * 2011-08-11 2014-12-09 The University Of Kentucky Research Foundation Even perfusion pump-integrated blood oxygenator
CN104602723B (zh) 2012-04-06 2017-03-08 哈特威尔公司 具有植入的血泵和充氧器的流动性肺辅助装置
US9211369B2 (en) * 2012-06-13 2015-12-15 Ension, Inc Compact integrated blood pump oxygenator or gas transfer device with hydrogel impeller packing material and rollover impeller outlet
EP3100751B1 (en) * 2014-01-31 2023-11-01 Terumo Kabushiki Kaisha Method for manufacturing heat exchanger and heat exchanger
EP3520836B1 (en) 2015-05-12 2021-07-07 Sorin Group Italia S.r.l. Blood gas exchanger with restriction element or elements to reduce gas exchange
EP3538175B1 (en) * 2016-11-08 2022-05-11 Medtronic Vascular Inc. Systems and methods for oxygenator performance evaluation

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160268A2 (en) * 1984-04-24 1985-11-06 Mitsubishi Rayon Co., Ltd. Blood oxygenator using a hollow-fiber membrane
US4791054A (en) * 1984-10-01 1988-12-13 Mitsubishi Rayon Co., Ltd. Heat exchanger and blood oxygenating device furnished therewith
US5316724A (en) * 1989-03-31 1994-05-31 Baxter International Inc. Multiple blood path membrane oxygenator
EP0895786A1 (en) * 1997-08-06 1999-02-10 Terumo Kabushiki Kaisha Oxygenator of hollow fiber membrane type
CN1308549A (zh) * 1998-05-08 2001-08-15 爱德华兹生命科学公司 带有整体热交换器/蓄存器的低灌注膜片充氧器
US6454999B1 (en) * 1998-12-30 2002-09-24 Cardiovention, Inc. Integrated blood pump and oxygenator system having extended blood flow path
EP1108462A2 (en) * 1999-12-15 2001-06-20 Terumo Kabushiki Kaisha Oxygenator of hollow fiber membrane type
CN1724084A (zh) * 2000-10-30 2006-01-25 尼弗茹斯公司 双级过滤筒
WO2006066553A2 (de) * 2004-12-21 2006-06-29 Rwth Aachen Oxygenator zum gasaustausch
JP2006102550A (ja) * 2006-01-13 2006-04-20 Terumo Corp 中空糸膜型人工肺
JP2010213852A (ja) * 2009-03-16 2010-09-30 Jms Co Ltd 血液処理装置
US20100272606A1 (en) * 2009-04-23 2010-10-28 Carpenter Walt L Radial flow oxygenator/heat exchanger
DE102010004600A1 (de) * 2010-01-13 2011-07-14 Marseille, Oliver, Dr.-Ing., 52066 Anordnung mit einer Blutpumpe und einem Gasaustauscher zur extrakorporalen Membranoxygenierung
CN103328019A (zh) * 2011-01-27 2013-09-25 美敦力公司 用于处理体外血液回路中的血液的除气充氧器
CN103547298A (zh) * 2011-05-17 2014-01-29 索林集团意大利有限责任公司 具有交叉血流的血液处理单元
CN104114205A (zh) * 2012-02-15 2014-10-22 美敦力公司 用于处理体外血液回路中的血液的双出口充氧器
CN105813666A (zh) * 2013-12-19 2016-07-27 美敦力公司 偏径向换热器和充氧器
CN105828848A (zh) * 2013-12-23 2016-08-03 马里兰大学,巴尔的摩 血液氧合器
JP2016019666A (ja) * 2014-07-15 2016-02-04 テルモ株式会社 人工肺
CN205626596U (zh) * 2016-04-05 2016-10-12 裴嘉阳 膜式氧气交换装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113209406A (zh) * 2021-01-15 2021-08-06 苏州心擎医疗技术有限公司 体外膜肺氧合器
CN113209406B (zh) * 2021-01-15 2022-04-26 苏州心擎医疗技术有限公司 体外膜肺氧合器
CN112891769A (zh) * 2021-02-10 2021-06-04 于从军 一种大气颗粒物隔离装置、隔离套件、方法
CN113082339A (zh) * 2021-04-15 2021-07-09 上海超高环保科技股份有限公司 超高分子人工肺制作方法
WO2022217659A1 (zh) * 2021-04-15 2022-10-20 上海超高环保科技股份有限公司 超高分子人工肺制作方法

Also Published As

Publication number Publication date
EP3668556A1 (en) 2020-06-24
US11433168B2 (en) 2022-09-06
WO2019035869A1 (en) 2019-02-21
JP2023164982A (ja) 2023-11-14
JP2020531091A (ja) 2020-11-05
CN111032106B (zh) 2023-02-10
US20220347362A1 (en) 2022-11-03
JP7393327B2 (ja) 2023-12-06
CN115998976A (zh) 2023-04-25
US20200206404A1 (en) 2020-07-02
EP3668556A4 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
CN111032106B (zh) 用于呼吸支持的双室气体交换器
US10258729B2 (en) Integrated centrifugal blood pump-oxygenator, an extracorporeal life support system and a method of de-bubbling and priming an extracorporeal life support system
US12053565B2 (en) Blood gas exchanger with restriction element or elements to reduce gas exchange
US10610629B2 (en) Device with inlet portion for treating a biological liquid
US8545754B2 (en) Radial design oxygenator with heat exchanger
EP2421576B1 (en) Radial design oxygenator with heat exchanger
US20100272606A1 (en) Radial flow oxygenator/heat exchanger
US6217826B1 (en) Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
US20100269342A1 (en) Method of making radial design oxygenator with heat exchanger
US20100272607A1 (en) Radial design oxygenator with heat exchanger and inlet mandrel
WO2023284150A1 (zh) 膜式氧合器
US20040219061A1 (en) Membrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
US20100272604A1 (en) Radial Design Oxygenator with Heat Exchanger and Integrated Pump
US20100272605A1 (en) Radial design oxygenator with heat exchanger and pump
CN114796664A (zh) 一种血液净化装置及其净化方法
CN215308924U (zh) 一种血液净化装置
EP4023270A1 (en) Artificial lung
WO2024159000A2 (en) Blood gas exchanger for multifunctional respiratory support
CN101262931A (zh) 体外辅助呼吸器
CN114867504A (zh) 用于工作流体与两种流体交换介质之间的质量传递的工作流体处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant