CN111020186A - 一种从铌钛铀矿中综合回收铀铌钛的方法 - Google Patents

一种从铌钛铀矿中综合回收铀铌钛的方法 Download PDF

Info

Publication number
CN111020186A
CN111020186A CN201911259902.6A CN201911259902A CN111020186A CN 111020186 A CN111020186 A CN 111020186A CN 201911259902 A CN201911259902 A CN 201911259902A CN 111020186 A CN111020186 A CN 111020186A
Authority
CN
China
Prior art keywords
niobium
extraction
uranium
titanium
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911259902.6A
Other languages
English (en)
Other versions
CN111020186B (zh
Inventor
贾秀敏
杨剑飞
黄永
马嘉
李春风
刘会武
唐宝彬
向秋林
刘忠臣
师留印
李培佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Institute of Chemical Engineering and Metallurgy of CNNC
Original Assignee
Beijing Research Institute of Chemical Engineering and Metallurgy of CNNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Institute of Chemical Engineering and Metallurgy of CNNC filed Critical Beijing Research Institute of Chemical Engineering and Metallurgy of CNNC
Priority to CN201911259902.6A priority Critical patent/CN111020186B/zh
Priority claimed from CN201911259902.6A external-priority patent/CN111020186B/zh
Publication of CN111020186A publication Critical patent/CN111020186A/zh
Application granted granted Critical
Publication of CN111020186B publication Critical patent/CN111020186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/408Mixtures using a mixture of phosphorus-based acid derivatives of different types
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • C22B34/124Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors
    • C22B34/1245Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors containing a halogen ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • C22B34/124Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors
    • C22B34/125Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors containing a sulfur ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • C22B34/1259Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching treatment or purification of titanium containing solutions or liquors or slurries
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/023Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors halogenated ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/0234Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors sulfurated ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/026Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries liquid-liquid extraction with or without dissolution in organic solvents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/0278Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries by chemical methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了一种从铌钛铀矿中综合回收铀铌钛的方法。其工艺流程包括如下步骤:1)采用硫酸‑氢氟酸浸出铌钛铀矿;2)采用萃取剂对步骤1)中浸出液进行萃取3)碳酸钠反萃取步骤2)中负载有机相;4)将步骤3)得到反萃取液进行沉淀制备“111”产品;5)从步骤3)反萃取沉淀物提取钛;6)从步骤5)提钛后沉淀物提取铌。该工艺实现了铌钛铀矿铀铌钛的综合回收,提高了矿石资源利用率。

Description

一种从铌钛铀矿中综合回收铀铌钛的方法
技术领域
本发明属于铀矿水冶技术领域,具体涉及一种从铌钛铀矿中综合回收铀铌钛的方法。
背景技术
铌钛铀矿(Ca,U)2(Ti,Nb,Ta)2O6(OH)属于烧绿石的一种,属于难处理的含铀矿石,在铀矿水冶领域,一般只在含有其他易于处理的铀矿物作为主要矿物时,才会同时提取。在铌钽行业,对于矿石中伴生的铀一般在浸出过程使其以四氟化铀形式沉淀于渣中,依据铀的品位决定是否进行回收。
针对铌钛铀矿的水冶处理国外相关研究较少,关于该种矿石的研究主要集中于蜕晶质化的研究,矿石的处理研究以浸出性能研究为主,对溶液中铀、铌的回收报道较少。国内对该种矿石的提取工艺主要有:硫酸化焙烧处理矿石,水浸或酸浸焙烧熟料,浸出液压煮沉淀铌,除铌后浸出液萃取回收铀,铌沉淀物采用硫酸及氢氟酸浸出铌,萃取回收混酸浸出液中的铌;氧压酸浸处理该矿石,萃取回收其中的铀,铌在高压浸出过程不浸出;硫酸及氟硅酸盐协同浸出矿石中的铀、铌,浸出液硫代硫酸盐沉淀铌,除铌后的溶液回收铀,未提出进一步回收铌的工艺。
上述铌钛铀矿的处理方法存在试剂消耗及能耗过高或未对铌提出有效合理的回收方法,对铌钛铀矿中伴生的价值相对较低的钛的回收并未涉及。
发明内容
针对以上不足,本发明的主要目的是提供一种从铌钛铀矿中综合回收铀铌钛的方法,降低铌钛铀矿处理过程能耗过高的问题,实现铀、铌、钛的综合回收。
本发明的技术方案如下:
一种从铌钛铀矿中综合回收铀铌钛的方法,包含六个步骤,步骤一、浸出;
铌钛铀矿,加入10~60wt%的硫酸、1wt%~8wt%的氢氟酸,60wt%~80wt%的水,在温度50℃~90℃下搅拌浸出,浸出时间1~8h,浸出后矿浆经过滤、洗涤得到浸出液与浸出渣;
步骤二、萃取;
上述步骤一得到的浸出液采用萃取剂进行萃取,在8~20级逆流混合澄清器中进行逆流萃取,萃取温度为20~35℃,其中浸出液与萃取剂的流量之比以控制萃余液中铀浓度小于20mg/L,经过萃取得到负载铀的有机相及萃余液,萃余液进行废水处理;
步骤三、反萃取;
上述步骤二中负载有机相采用碳酸钠溶液反萃取,碳酸钠溶液浓度为100~200g/L,反萃取在3~5级逆流混合澄清器中进行,反萃取温度20~40℃,反萃取流比以控制反萃取液中铀浓度大于20g/L,反萃取后的到含有沉淀物的反萃取液及贫有机相,贫有机相返回步骤二进行萃取,含沉淀物的反萃取液经过滤得到含铌钛的沉淀物及铀溶液;
步骤四、铀产品制备;
上述步骤三中反萃取后的铀溶液加入硫酸,调节pH为2~3,搅拌30min~1h后加入氢氧化钠调节pH为7~8,搅拌1~2h后沉化,沉化时间大于10h,过滤洗涤得到铀产品及铀沉淀母液,母液补加碳酸钠后返回步骤三反萃取工序。
步骤五、反萃取沉淀物提取钛;
上述步骤三中含铌钛沉淀物经稀硫酸洗涤除去其中的杂质,洗涤后沉淀物采用质量分数为30%~60%的硫酸溶液浸取其中的钛,液固比为控制浸出后浸出液中TiO2浓度200g/L左右、游离硫酸浓度0.5mol/L~2mol/L,浸出温度为30~60℃,浸取时间为2~6h,过滤得到含钛溶液及浸取渣;含钛溶液采用常压水解工艺制备偏钛酸,偏钛酸热解得到二氧化钛,水解母液经浓缩至质量分数为30%~60%后返回浸取钛。
步骤六、提取铌;
上述步骤五中浸取钛后渣加入硫酸及氢氟酸浸出铌,硫酸及氢氟酸加入量为控制浸出液中五氧化二铌浓度为30~100g/L,硫酸浓度为2~3moL/L、氢氟酸浓度为5~9moL/L,室温搅拌待该浸取钛后渣全部溶解即可,得到铌的浸出液,该浸出液采用体积分数为10%~50%的N503、体积分数为50%~90%的磺化煤油进行萃取,单级或2~20级逆流萃取,萃取温度为20~60℃,萃取过程有机相与水相流量之比为控制萃余液中铌浓度小于0.5g/L,得到负载铌的有机相及萃余液,该萃余液补加硫酸及氢氟酸后返回浸出铌;负载铌有机相采用硫酸浓度为3~3.5mol/L、氢氟酸浓度2~4mol/L的洗水进行洗涤;洗涤后的载铌有机相采用水反萃取,反萃取级数为5~10级逆流反萃取,反萃取流比以控制反萃取液中铌浓度为80~100g/L为宜;铌的反萃取液加入氨水沉淀,沉淀终点pH为8~9,经过滤得到沉淀物与沉淀母液,沉淀物采用稀氨水调浆洗涤、煅烧脱氟得到五氧化二铌产品。
所述步骤二中,将骤一得到的浸出液采用萃取剂进行萃取,所述萃取剂的组成为5%~30%P204、1%~30%TRPO或TBP、80%~94%的磺化煤油,上述百分比均为体积分数。
所述步骤一中,加入50wt%的硫酸、4%的氢氟酸,70wt%的水,90℃下搅拌浸出4h。
所述步骤二中,将步骤一得到的浸出液采用体积分数为10%的P204、体积分数为5%的TRPO和体积分数为85%的磺化煤油进行萃取,萃取试验在8级逆流混合澄清器中进行,有机相与水相流量之比为V(O):V(A)为1.2:1,萃取时间5min,萃取温度30℃,萃余水相中铀浓度为14mg/L。
所述步骤三中,将步骤二中负载有机相采用150g/L碳酸钠溶液反萃取,反萃取在3级逆流混合澄清器中进行,负载有机相与反萃取剂流量之比为V(O):V(A)为6:1,反萃取温度35℃。
所述步骤四,将步骤三中反萃取后的铀溶液加入硫酸,调节pH为2.3,搅拌30min后加入氢氧化钠调节pH为7.6,搅拌2h后沉化,沉化时间16h。
所述步骤五,将步骤三中含铌钛沉淀物经稀硫酸洗涤后,加入质量分数为30%的硫酸溶液,液固比为1.6:1,浸出温度为50℃,浸取时间为4h。
所述步骤六,将步骤五中浸取钛后渣加入50wt%的硫酸、100wt%的氢氟酸、150wt%的水室温搅拌待该浸取钛后渣全部溶解,得到铌的浸出液,浸出液中铌浓度为62.2g/L,硫酸浓度为3.3mol/L、氢氟酸浓度为6.3mol/L,该浸出液采用体积分数为50%的N503、体积分数为50%的磺化煤油进行萃取,10级逆流萃取,萃取温度为30℃,萃取过程有机相与水相流量之比为1.2:1,得到负载铌的有机相及萃余液,萃余液中铌浓度0.45g/L,该萃余液补加硫酸及氢氟酸后返回浸出铌;负载铌有机相采用硫酸浓度为3mol/L、氢氟酸浓度3.3mol/L的洗水进行洗涤;洗涤后的载铌有机相采用水反萃取,反萃取级数为8级逆流反萃取,反萃取流比为2:1;铌的反萃取液加入氨水沉淀,沉淀终点pH为8.3。
本发明的有益效果在于:
采用本发明提出的工艺可从采用硫酸氢氟酸解离矿石,同步浸出铀、铌、钛,萃取剂共萃取铀铌钛、反萃取铀的同时使铌钛沉淀,可从铌钛沉淀物中进一步回收铌钛,实现了铌钛铀矿的综合回收。
附图说明
图1是本发明所述的从铌钛铀矿中综合回收铀铌钛的方法流程图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
实施例1:
(1)浸出:某铌钛铀矿(93%以上的铀、铌存在于铌钛铀矿中、约6%的钛存在于铌钛铀矿中),其中铀铌钛含量分别为0.425%、0.359%、3.04%,加入50wt%的硫酸、4%的氢氟酸,70wt%的水,90℃下搅拌浸出4h,浸出矿浆经过滤洗涤,得到浸出渣及浸出液,铀、铌、钛浸出率98.4%、80.3%、47.4%。
(2)萃取:上述步骤(1)得到的浸出液采用10%P204+5%TRPO+85%磺化煤油(均为体积分数)进行萃取,萃取试验在8级逆流混合澄清器中进行,有机相与水相流量之比为V(O):V(A)为1.2:1,萃取时间5min,萃取温度30℃,萃余水相中铀浓度为14mg/L,铌浓度为0.586g/L,钛浓度9.2g/L,铀、铌、钛萃取率分别为99.7%、79.4%、36.1%。
(3)反萃取:上述步骤(2)中负载有机相采用150g/L碳酸钠溶液反萃取,反萃取在3级逆流混合澄清器中进行,负载有机相与反萃取剂流量之比为V(O):V(A)为6:1,反萃取温度35℃,反萃取后得到含有沉淀物的反萃取液及贫有机相,贫有机相返回步骤(2)进行萃取,含沉淀物的反萃取液经过滤得到含铌钛的沉淀物及铀溶液。经分析反萃取液铀浓度铀浓度为21.1g/L。
(4)铀产品制备:上述步骤(3)中反萃取后的铀溶液加入硫酸,调节pH为2.3,搅拌30min后加入氢氧化钠调节pH为7.6,搅拌2h后沉化,沉化时间16h,过滤洗涤得到铀产品及铀沉淀母液,铀沉淀率大于99.5%。母液补加碳酸钠后返回步骤(3)反萃取工序,重铀酸钠达到行业一级品标准。
(5)反萃取沉淀物提取钛:上述步骤(3)中含铌钛沉淀物经稀硫酸洗涤后,加入质量分数为30%的硫酸溶液,液固比为1.6:1,浸出温度为50℃,浸取时间为4h,,过滤得到含钛溶液及浸取渣,钛浸出率为80.1%,浸出液TiO2浓度为205g/L、游离硫酸浓度0.95mol/L。含钛溶液采用常压水解工艺制备偏钛酸,偏钛酸热解得到二氧化钛,其中二氧化钛含量大于90%,钛沉淀率为97.6%。
(6)提取铌:上述步骤(5)中浸取钛后渣加入50wt%的硫酸、100wt%的氢氟酸、150wt%的水室温搅拌待该浸取钛后渣全部溶解,得到铌的浸出液,浸出液中铌浓度为62.2g/L,硫酸浓度为3.3mol/L、氢氟酸浓度为6.3mol/L,该浸出液采用50%N503、50%磺化煤油(均为体积分数)进行萃取,10级逆流萃取,萃取温度为30℃,萃取过程有机相与水相流量之比为1.2:1,得到负载铌的有机相及萃余液,萃余液中铌浓度0.45g/L,该萃余液补加硫酸及氢氟酸后返回浸出铌;负载铌有机相采用硫酸浓度为3mol/L、氢氟酸浓度3.3mol/L的洗水进行洗涤;洗涤后的载铌有机相采用水反萃取,反萃取级数为8级逆流反萃取,反萃取流比为2:1;铌的反萃取液加入氨水沉淀,沉淀终点pH为8.3,经过滤得到沉淀物与沉淀母液,铌沉淀率大于99.9%,沉淀物采用稀氨水调浆洗涤、煅烧脱氟得到五氧化二铌产品,其中五氧化二铌含量大于95%。
实施例2:
(1)浸出:某铌钛铀矿(93%以上的铀、铌存在于铌钛铀矿中、约5.3%的钛存在于铌钛铀矿中),其中铀铌钛含量分别为0.509%、0.557%、4.18%,加入50wt%的硫酸、5%的氢氟酸,65wt%的水,90℃下搅拌浸出3h,浸出矿浆经过滤洗涤,得到浸出渣及浸出液,铀、铌、钛浸出率98.5%、81.0%、55.0%。
(2)萃取:上述步骤(1)得到的浸出液采用15%P204+7.5%TRPO+85%磺化煤油(均为体积分数)进行萃取,萃取试验在10级逆流混合澄清器中进行,有机相与水相流量之比为V(O):V(A)为1.3:1,萃取时间3min,萃取温度25℃,萃余水相中铀浓度为19mg/L,铌浓度为0.856g/L,钛浓度14.3g/L,铀、铌、钛萃取率分别为99.6%、81.0%、38.4%。
(3)反萃取:上述步骤(2)中负载有机相采用150g/L碳酸钠溶液反萃取,反萃取在3级逆流混合澄清器中进行,负载有机相与反萃取剂流量之比为V(O):V(A)为5:1,反萃取温度35℃,反萃取后得到含有沉淀物的反萃取液及贫有机相,贫有机相返回步骤(2)进行萃取,含沉淀物的反萃取液经过滤得到含铌钛的沉淀物及铀溶液。经分析反萃取液铀浓度为20.4g/L。
(4)铀产品制备:上述步骤(3)中反萃取后的铀溶液加入硫酸,调节pH为2.2,搅拌1h后加入氢氧化钠调节pH为7.5,搅拌3h后沉化,沉化时间16h,过滤洗涤得到铀产品及铀沉淀母液,铀沉淀率大于99.5%。母液补加碳酸钠后返回步骤(3)反萃取工序,重铀酸钠达到行业一级品标准。
(5)反萃取沉淀物提取钛:上述步骤(3)中含铌钛沉淀物经稀硫酸洗涤后,加入质量分数为35%的硫酸溶液,液固比为1.8:1,浸出温度为40℃,浸取时间为4h,,过滤得到含钛溶液及浸取渣,钛浸出率为79.5%,浸出液TiO2浓度为207g/L、游离硫酸浓度1.5mol/L。含钛溶液采用常压水解工艺制备偏钛酸,偏钛酸热解得到二氧化钛,其中二氧化钛含量大于90%,钛沉淀率为97.3%。
(6)提取铌:上述步骤(5)中浸取钛后渣加入50wt%的硫酸、100wt%的氢氟酸、150wt%的水室温搅拌待该浸取钛后渣全部溶解,得到铌的浸出液,浸出液中铌浓度为66.8g/L,硫酸浓度为3.5mol/L、氢氟酸浓度为5.8mol/L,该浸出液采用50%N503、50%磺化煤油(均为体积分数)进行10级逆流萃取,萃取温度为30℃,萃取过程有机相与水相流量之比为1.1:1,得到负载铌的有机相及萃余液,萃余液中铌浓度0.59g/L,该萃余液补加硫酸及氢氟酸后返回浸出铌;负载铌有机相采用硫酸浓度为3.2mol/L、氢氟酸浓度3mol/L的洗水进行洗涤;洗涤后的载铌有机相采用水反萃取,反萃取级数为8级逆流反萃取,反萃取流比为2:1;铌的反萃取液加入氨水沉淀,沉淀终点pH为8.2,经过滤得到沉淀物与沉淀母液,铌沉淀率大于99.9%,沉淀物采用稀氨水调浆洗涤、煅烧脱氟得到五氧化二铌产品,其中五氧化二铌含量大于95%。

Claims (8)

1.一种从铌钛铀矿中综合回收铀铌钛的方法,包含六个步骤,其特征在于:
步骤一、浸出;
铌钛铀矿,加入10~60wt%的硫酸、1wt%~8wt%的氢氟酸,60wt%~80wt%的水,在温度50℃~90℃下搅拌浸出,浸出时间1~8h,浸出后矿浆经过滤、洗涤得到浸出液与浸出渣;
步骤二、萃取;
上述步骤一得到的浸出液采用萃取剂进行萃取,在8~20级逆流混合澄清器中进行逆流萃取,萃取温度为20~35℃,其中浸出液与萃取剂的流量之比以控制萃余液中铀浓度小于20mg/L,经过萃取得到负载铀的有机相及萃余液,萃余液进行废水处理;
步骤三、反萃取;
上述步骤二中负载有机相采用碳酸钠溶液反萃取,碳酸钠溶液浓度为100~200g/L,反萃取在3~5级逆流混合澄清器中进行,反萃取温度20~40℃,反萃取流比以控制反萃取液中铀浓度大于20g/L,反萃取后的到含有沉淀物的反萃取液及贫有机相,贫有机相返回步骤二进行萃取,含沉淀物的反萃取液经过滤得到含铌钛的沉淀物及铀溶液;
步骤四、铀产品制备;
上述步骤三中反萃取后的铀溶液加入硫酸,调节pH为2~3,搅拌30min~1h后加入氢氧化钠调节pH为7~8,搅拌1~2h后沉化,沉化时间大于10h,过滤洗涤得到铀产品及铀沉淀母液,母液补加碳酸钠后返回步骤三反萃取工序。
步骤五、反萃取沉淀物提取钛;
上述步骤三中含铌钛沉淀物经稀硫酸洗涤除去其中的杂质,洗涤后沉淀物采用质量分数为30%~60%的硫酸溶液浸取其中的钛,液固比为控制浸出后浸出液中TiO2浓度200g/L左右、游离硫酸浓度0.5mol/L~2mol/L,浸出温度为30~60℃,浸取时间为2~6h,过滤得到含钛溶液及浸取渣;含钛溶液采用常压水解工艺制备偏钛酸,偏钛酸热解得到二氧化钛,水解母液经浓缩至质量分数为30%~60%后返回浸取钛。
步骤六、提取铌;
上述步骤五中浸取钛后渣加入硫酸及氢氟酸浸出铌,硫酸及氢氟酸加入量为控制浸出液中五氧化二铌浓度为30~100g/L,硫酸浓度为2~3moL/L、氢氟酸浓度为5~9moL/L,室温搅拌待该浸取钛后渣全部溶解即可,得到铌的浸出液,该浸出液采用体积分数为10%~50%的N503、体积分数为50%~90%的磺化煤油进行萃取,单级或2~20级逆流萃取,萃取温度为20~60℃,萃取过程有机相与水相流量之比为控制萃余液中铌浓度小于0.5g/L,得到负载铌的有机相及萃余液,该萃余液补加硫酸及氢氟酸后返回浸出铌;负载铌有机相采用硫酸浓度为3~3.5mol/L、氢氟酸浓度2~4mol/L的洗水进行洗涤;洗涤后的载铌有机相采用水反萃取,反萃取级数为5~10级逆流反萃取,反萃取流比以控制反萃取液中铌浓度为80~100g/L为宜;铌的反萃取液加入氨水沉淀,沉淀终点pH为8~9,经过滤得到沉淀物与沉淀母液,沉淀物采用稀氨水调浆洗涤、煅烧脱氟得到五氧化二铌产品。
2.如权利要求1所述的一种从铌钛铀矿中综合回收铀铌钛的方法,其特征在于:所述步骤二中,将骤一得到的浸出液采用萃取剂进行萃取,所述萃取剂的组成为5%~30%P204、1%~30%TRPO或TBP、80%~94%的磺化煤油,上述百分比均为体积分数。
3.如权利要求1所述的一种从铌钛铀矿中综合回收铀铌钛的方法,其特征在于:所述步骤一中,加入50wt%的硫酸、4%的氢氟酸,70wt%的水,90℃下搅拌浸出4h。
4.如权利要求1所述的一种从铌钛铀矿中综合回收铀铌钛的方法,其特征在于:所述步骤二中,将步骤一得到的浸出液采用体积分数为10%的P204、体积分数为5%的TRPO和体积分数为85%的磺化煤油进行萃取,萃取试验在8级逆流混合澄清器中进行,有机相与水相流量之比为V(O):V(A)为1.2:1,萃取时间5min,萃取温度30℃,萃余水相中铀浓度为14mg/L。
5.如权利要求1所述的一种从铌钛铀矿中综合回收铀铌钛的方法,其特征在于:所述步骤三中,将步骤二中负载有机相采用150g/L碳酸钠溶液反萃取,反萃取在3级逆流混合澄清器中进行,负载有机相与反萃取剂流量之比为V(O):V(A)为6:1,反萃取温度35℃。
6.如权利要求1所述的一种从铌钛铀矿中综合回收铀铌钛的方法,其特征在于:所述步骤四,将步骤三中反萃取后的铀溶液加入硫酸,调节pH为2.3,搅拌30min后加入氢氧化钠调节pH为7.6,搅拌2h后沉化,沉化时间16h。
7.如权利要求1所述的一种从铌钛铀矿中综合回收铀铌钛的方法,其特征在于:所述步骤五,将步骤三中含铌钛沉淀物经稀硫酸洗涤后,加入质量分数为30%的硫酸溶液,液固比为1.6:1,浸出温度为50℃,浸取时间为4h。
8.如权利要求1所述的一种从铌钛铀矿中综合回收铀铌钛的方法,其特征在于:所述步骤六,将步骤五中浸取钛后渣加入50wt%的硫酸、100wt%的氢氟酸、150wt%的水室温搅拌待该浸取钛后渣全部溶解,得到铌的浸出液,浸出液中铌浓度为62.2g/L,硫酸浓度为3.3mol/L、氢氟酸浓度为6.3mol/L,该浸出液采用体积分数为50%的N503、体积分数为50%的磺化煤油进行萃取,10级逆流萃取,萃取温度为30℃,萃取过程有机相与水相流量之比为1.2:1,得到负载铌的有机相及萃余液,萃余液中铌浓度0.45g/L,该萃余液补加硫酸及氢氟酸后返回浸出铌;负载铌有机相采用硫酸浓度为3mol/L、氢氟酸浓度3.3mol/L的洗水进行洗涤;洗涤后的载铌有机相采用水反萃取,反萃取级数为8级逆流反萃取,反萃取流比为2:1;铌的反萃取液加入氨水沉淀,沉淀终点pH为8.3。
CN201911259902.6A 2019-12-10 一种从铌钛铀矿中综合回收铀铌钛的方法 Active CN111020186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911259902.6A CN111020186B (zh) 2019-12-10 一种从铌钛铀矿中综合回收铀铌钛的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911259902.6A CN111020186B (zh) 2019-12-10 一种从铌钛铀矿中综合回收铀铌钛的方法

Publications (2)

Publication Number Publication Date
CN111020186A true CN111020186A (zh) 2020-04-17
CN111020186B CN111020186B (zh) 2021-11-12

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349789A (zh) * 2020-04-24 2020-06-30 核工业北京化工冶金研究院 一种具有多出口设计的碱渣浸出液铀纯化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531970A (en) * 1992-05-29 1996-07-02 Advanced Recovery Systems, Inc. Metal and fluorine values recovery from mineral ore treatment
CN102115820A (zh) * 2010-12-23 2011-07-06 核工业北京化工冶金研究院 分步反萃取分离有机相中铀钛的方法
CN102312094A (zh) * 2010-07-07 2012-01-11 核工业北京地质研究院 一种从含铀的铌钽浸出尾渣中提取铀的方法
CN106636691A (zh) * 2016-12-28 2017-05-10 核工业北京化工冶金研究院 一种从低品位矿石中提取分离铀铌的方法
CN106676291A (zh) * 2016-12-28 2017-05-17 核工业北京化工冶金研究院 一种从矿石中综合回收铀铌钽的方法
CN106854706A (zh) * 2016-12-28 2017-06-16 核工业北京化工冶金研究院 一种hf‑h2so4体系铀铌分离方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531970A (en) * 1992-05-29 1996-07-02 Advanced Recovery Systems, Inc. Metal and fluorine values recovery from mineral ore treatment
CN102312094A (zh) * 2010-07-07 2012-01-11 核工业北京地质研究院 一种从含铀的铌钽浸出尾渣中提取铀的方法
CN102115820A (zh) * 2010-12-23 2011-07-06 核工业北京化工冶金研究院 分步反萃取分离有机相中铀钛的方法
CN106636691A (zh) * 2016-12-28 2017-05-10 核工业北京化工冶金研究院 一种从低品位矿石中提取分离铀铌的方法
CN106676291A (zh) * 2016-12-28 2017-05-17 核工业北京化工冶金研究院 一种从矿石中综合回收铀铌钽的方法
CN106854706A (zh) * 2016-12-28 2017-06-16 核工业北京化工冶金研究院 一种hf‑h2so4体系铀铌分离方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349789A (zh) * 2020-04-24 2020-06-30 核工业北京化工冶金研究院 一种具有多出口设计的碱渣浸出液铀纯化方法

Similar Documents

Publication Publication Date Title
CN100549193C (zh) 从赤泥中提取金属钪、钛的方法
AU2013351773B2 (en) Monazite ballast separation and recovery method
CN103215463B (zh) 一种钙化转型-浸出分解氟碳铈矿的方法
CN106834722B (zh) 一种利用氢氧化钴镍冶炼渣和钛白废酸中和提取氧化铁、氧化铝、氧化钪的方法
CN104775026A (zh) 一种从优溶渣中提取高纯铀、钍和混合稀土的方法
CN103468975B (zh) 一种从选矿富集比低的金绿宝石型铍精矿中提取铍的方法
CN104805302B (zh) 一种从含钒钛渣中提取钒和钛的方法
CN106367590A (zh) 一种独居石矿综合利用回收工艺
CN104498723A (zh) 从钛渣氯化废盐中提取氧化钪的方法
CN103695671A (zh) 一种由生产锆盐的废酸中回收、提纯氧化钪粉体的方法
CN110004294A (zh) 白钨矿碱分解渣的处理方法
CN111020186B (zh) 一种从铌钛铀矿中综合回收铀铌钛的方法
CN111020186A (zh) 一种从铌钛铀矿中综合回收铀铌钛的方法
CN106399685B (zh) 一种铀、铁、钍、稀土萃取分离工艺
CN106676291A (zh) 一种从矿石中综合回收铀铌钽的方法
CN109280770B (zh) 一种从含钪钛酸浸液中回收钪和钛的方法
CN106987734B (zh) 一种从低铁铝精矿溶铝渣中富集钪的方法
CN109735720A (zh) 高钙高磷钒渣深度提钒的方法
CN108300878A (zh) 一种用酸性膦从二次资源浸出液中富集回收钪的萃取工艺
US9896742B2 (en) Method for processing vanadium-titanium magnetite finished ores by using wet process
CN107151031A (zh) 一种从铪钛富集渣中制备氧化铪的方法
CN111333108B (zh) 一种利用含钛高炉渣制备二氧化钛的方法
CN111349789B (zh) 一种具有多出口设计的碱渣浸出液铀纯化方法
CN109837400B (zh) 一种从富铌渣中提取稀土和铌的方法
CN106480329A (zh) 一种高纯硝酸钍的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant