CN110993503A - 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法 - Google Patents

基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法 Download PDF

Info

Publication number
CN110993503A
CN110993503A CN201911166674.8A CN201911166674A CN110993503A CN 110993503 A CN110993503 A CN 110993503A CN 201911166674 A CN201911166674 A CN 201911166674A CN 110993503 A CN110993503 A CN 110993503A
Authority
CN
China
Prior art keywords
type
layer
perovskite
substrate
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911166674.8A
Other languages
English (en)
Other versions
CN110993503B (zh
Inventor
关赫
汪钰成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weihua Semiconductor Suzhou Co ltd
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201911166674.8A priority Critical patent/CN110993503B/zh
Publication of CN110993503A publication Critical patent/CN110993503A/zh
Application granted granted Critical
Publication of CN110993503B publication Critical patent/CN110993503B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/111Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明属于半导体技术领域,具体公开了一种基于氧化镓/钙钛矿传输层异质结的n型晶体管的制备方法,晶体管包括n型β‑Ga2O3衬底、生长在所述n型β‑Ga2O3衬底表面两端的源电极和漏电极、生长在n型β‑Ga2O3衬底表面位于源电极和漏电极中间的电子传输层、生长在所述电子传输层表面的钙钛矿光吸收层、生长在所述钙钛矿光吸收层表面/背面的栅介质绝缘层以及生长在栅介质绝缘层表面的栅电极,制备方法公开了具体的制备步骤,以上制备方法以及制备的晶体管提高了现有技术中的Ga2O3晶体管器件的迁移率、开关比等重要参数。

Description

基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法
技术领域
本发明属于半导体技术领域,尤其涉及一种基于氧化镓/钙钛矿传输层异质结的N型晶体管及其制备方法。
背景技术
氧化镓(Ga2O3)是一种发展迅速的第三代半导体材料,其中,β- Ga2O3的禁带宽度为4.9eV,其巴利加优值是碳化硅的8.4倍,氮化镓的3.3倍,具有化学性质稳定、高耐压、低损耗、低漏电、耐高温、抗辐照、可靠性高等优势,因此在半导体器件制备方面具有广阔的前景。Ga2O3可以用来制备晶体管器件,其原理为通过调控栅压来开启或关断沟道,从而使器件可以在不同的状态下工作。为使Ga2O3晶体管器件能正常工作,其栅极必须能够有效的开启或关断沟道,因此在 Ga2O3晶体管的制作中,栅和沟道会影响整个器件的最终性能。但目前的氧化镓晶体管器件普遍存在迁移率低、开关比小的问题。
发明内容
为解决上述问题,本发明提供了一种基于氧化镓/钙钛矿传输层异质结的n型晶体管的制备方法,包括以下步骤:
(a)选取重掺杂的n型β-Ga2O3衬底,并利用RCA标准清洗工艺对其进行清洗;
(b)在所述n型β-Ga2O3衬底表面使用第一掩模版生长源电极和漏电极;
(c)在所述的n型β-Ga2O3衬底表面使用第二掩模版生长电子传输层;
(d)在所述电子传输层表面生长钙钛矿光吸收层;
(e)在所述钙钛矿光吸收层表面或所述n型β-Ga2O3衬底背面生长栅介质绝缘层;
(f)在所述栅介质绝缘层表面生长栅电极,最终形成所述基于氧化镓/钙钛矿传输层异质结的n型晶体管。
作为上述方案的进一步说明,所述步骤(b)中,所述漏电极的生长工艺为磁控溅射法或者热蒸镀法或者光刻法;所述步骤(c)中,电子传输层的生长工艺为磁控溅射法或者化学气象沉积或者溶胶-凝胶法;所述步骤(d)中,钙钛矿光吸收层的生长工艺为溶胶-凝胶法或者磁控溅射法;所述步骤(e)中,栅介质绝缘层的生长工艺为磁控溅射法或者原子层沉积法或者化学气象沉积法;所述步骤(f)中,栅电极的生长工艺为磁控溅射法或者热蒸镀法。
作为上述方案的进一步说明,步骤(b)中源电极和漏电极的生长工艺、步骤(c)中电子传输层的生长工艺、步骤(e)中栅介质绝缘层的生长工艺、步骤(f)中栅电极的生长工艺均采用磁控溅射法;步骤(d)中钙钛矿光吸收层的生长工艺采用溶胶-凝胶法;
本发明还提供了一种基于氧化镓/钙钛矿传输层异质结的n型晶体管,包括n型β-Ga2O3衬底、生长在所述n型β-Ga2O3衬底表面两端的源电极和漏电极、生长在n型β-Ga2O3衬底表面位于源电极和漏电极中间的电子传输层、生长在所述电子传输层表面的钙钛矿光吸收层、生长在所述钙钛矿光吸收层表面的栅介质绝缘层以及生长在栅介质绝缘层表面的栅电极。
本发明还提供了一种基于氧化镓/钙钛矿传输层异质结的n型晶体管,包括n型β-Ga2O3衬底、生长在所述n型β-Ga2O3衬底表面两端的源电极和漏电极、生长在n型β-Ga2O3衬底表面位于源电极和漏电极中间的电子传输层、生长在所述电子传输层表面的钙钛矿光吸收层、生长在所述n型β-Ga2O3衬底背面的栅介质绝缘层以及生长在栅介质绝缘层表面的栅电极。
作为上述方案的进一步说明,所述源电极和漏电极的材料为Ni、 Ag、Au、Al中的一种;所述电子传输层的材料为SnO2,TiO2、ZnO、富勒烯衍生物PCBM的一种;所述钙钛矿光吸收层的材料为无机钙钛矿或有机-无机杂化钙钛矿;所述栅介质绝缘层的材料为SiO2,Al2O3,La2O3的一种,所述栅电极的材料为Au、ITO、FTO的一种。
本发明的有益效果:
(1)在氧化镓晶体管结构中添加了钙钛矿/电子传输层,钙钛矿层结构能在光照的作用下产生电子空穴对,而电子传输层能够有效地阻挡空穴并传输光生电子到沟道中,增大氧化镓晶体管的载流子迁移率。
(2)氧化镓/钙钛矿传输层异质结晶体管从传统的场控器件转变成了可以同时光控和场控的双控器件。通过施加某一方向的栅压,提高了钙钛矿光吸收层产生的电子-空穴对,从而增大了向沟道注入的载流子数目,提高器件整体开关比。
附图说明
图1-6、8-9:本发明中的一种基于氧化镓/钙钛矿传输层异质结的n型晶体管的制备方法各步骤中形成的截面示意图;
图7:本发明中的一种基于氧化镓/钙钛矿传输层异质结的n型晶体管(正面栅)的俯视结构示意图;
图10:本发明中的一种基于氧化镓/钙钛矿传输层异质结的n型晶体管(背面栅)的俯视结构示意图;
附图标记说明:
1-n型β-Ga2O3衬底;2-源电极;3-漏电极;4-电子传输层;5-钙钛矿光吸收层;6-栅介质;7-栅电极。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合说明书附图和具体实施例对本发明的技术方案进行清楚、完整地描述。
实施例1:
结合图1-6、图8-9,本实施例提供了一种基于氧化镓/钙钛矿传输层异质结的n型晶体管的制备方法包括以下步骤:
第一步,先选取重掺杂的n型β-Ga2O3衬底,并利用RCA标准清洗工艺对其进行清洗(图1);
第二步,在上述n型β-Ga2O3衬底表面使用第一掩模版生长源电极和漏电极(图2);
第三步,在上述的n型β-Ga2O3衬底表面使用第二掩模版生长电子传输层(图3);
第四步,在上述电子传输层表面生长钙钛矿光吸收层(图4);
第五步,在上述钙钛矿光吸收层表面(图5)或所述n型β-Ga2O3衬底背面(图8)生长栅介质绝缘层;
第六步,在所述栅介质绝缘层表面生长栅电极,最终形成所述基于氧化镓/钙钛矿传输层异质结的n型晶体管(图6、图9)。
实施例2:
在实施例1的基础上,在第二步中,源电极和漏电极的生长工艺为磁控溅射法或者热蒸镀法,本实施例中采用磁控溅射法;在第三步中,电子传输层的生长工艺为磁控溅射法或者化学气象沉积或者溶胶 -凝胶法,本实施例中采用磁控溅射法;在第四步中,钙钛矿光吸收层的生长工艺为溶胶-凝胶法或者磁控溅射法,本实施例中采用溶胶- 凝胶法;在第五步中,栅介质绝缘层的生长工艺为磁控溅射法或者原子层沉积法或者化学气象沉积法,本实施例中采用磁控溅射法;在第六步中,栅电极的生长工艺为磁控溅射法或者热蒸镀法,本实施例中采用磁控溅射法。
具体的,首先选取重掺杂的n型β-Ga2O3衬底1,衬底浓度为 1017-1019cm-3,衬底厚度为300-500μm,利用RCA标准清洗工艺对上述Ga2O3衬底进行清洗:
(1)将n型β-Ga2O3衬底1在3:1的H2SO4-H2O2中煮洗15分钟,加热至250℃,稍微冷却后用热水冲洗;
(2)配置HPM(SC-2)(HCl:H2O2:H2O=1:1:5),放入β-Ga2O3衬底15分钟后取出,放于热水中冲洗;再用去离子水冲洗20分钟;
然后采用磁控溅射法生长源电极2、漏电极3:以氩气作为溅射气体通入溅射腔体中;在工作功率60-80W,真空度5×10-4-6×10-3Pa 的条件下,使用第一掩膜版,在所述衬底表面溅射形成源电极和漏电极金属材料;在氮气和氩气的气氛下,利用快速热退火工艺在β- Ga2O3衬底上表面与源电极和漏电极金属材料表面处形成欧姆接触完成源电极2、漏电极3的制备;
接着采用磁控溅射工艺在β-Ga2O3衬底上使用掩膜版生长一层以TiO2为主的电子传输层4,其中TiO2电子传输层的厚度为50~ 200nm,磁控溅射工艺的工作功率为40-100W、真空度为 5×10-4-6×10-3Pa;
接着选择溶胶-凝胶法在电子传输层表面生长钙钛矿光吸收层5:在无水无氧并且充满高纯氮气的环境下在传输层上旋涂形成钙钛矿前驱体溶液:在加热台上烘烤5-15分钟,加热温度为100-130℃;其中旋涂时间为40-60s,旋涂转速为2000r/min-4000r/min,钙钛矿光活性层的厚度为550-600nm;
再利用磁控溅射法在钙钛矿光吸收层5表面上使用掩膜版生长一层栅介质6绝缘层,厚度为50~200nm,磁控溅射工艺的工作功率为40-100W、真空度为5×10-4~6×10-3Pa;
最后,继续采用磁控溅射法以氩气作为溅射气体通入溅射腔体中;在工作功率60-80W,真空度5×10-4-6×10-3Pa的条件下,在栅介质表面溅射形成栅电极7;
本实施例的有益效果:本方法操作简单,可以提高制备的n型晶体管迁移率、开关比等重要参数。
实施例3:
结合图6-7,本实施例提供了一种基于氧化镓/钙钛矿传输层异质结的n型晶体管,包括n型β-Ga2O3衬,1、生长在n型β-Ga2O3衬底表面两端的源电极2和漏电极3、生长在n型β-Ga2O3衬底1表面位于源电极2和漏电极3中间的电子传输层4、生长在电子传输层4表面的钙钛矿光吸收层5、生长在钙钛矿光吸收层5表面的栅介质6绝缘层以及生长在栅介质6绝缘层表面的栅电极7;其中源电极2和漏电极3的材料为Ni、Ag、Au、Al中的一种,本实施例采用Ni;电子传输层4的材料为SnO2,TiO2、ZnO、富勒烯衍生物PCBM的一种,本实施例采用SnO2;钙钛矿光吸收层5的材料为无机钙钛矿或有机-无机杂化钙钛矿,本实施例采用无机钙钛矿;栅介质6绝缘层的材料为SiO2,Al2O3,La2O3的一种,本实施例采用SiO2,栅电极7 的材料为Au、ITO、FTO的一种,本实施例采用Au。
本实施例的有益效果:提高了现有技术中的Ga2O3晶体管器件的迁移率、开关比等重要参数。
实施例4:
结合图9-10,本实施例提供了一种基于氧化镓/钙钛矿传输层异质结的n型晶体管,包括n型β-Ga2O3衬底1、生长在n型β-Ga2O3衬底表面两端的源电极2和漏电极3、生长在n型β-Ga2O3衬底1表面位于源电极2和漏电极3中间的电子传输层4、生长在电子传输层 4表面的钙钛矿光吸收层5、生长在n型β-Ga2O3衬底1背面的栅介质6绝缘层以及生长在栅介质6绝缘层表面的栅电极7;其中源电极2和漏电极3的材料为Ni、Ag、Au、Al中的一种,本实施例采用 Ni;电子传输层4的材料为SnO2,TiO2、ZnO、富勒烯衍生物PCBM 的一种,本实施例采用SnO2;钙钛矿光吸收层5的材料为无机钙钛矿或有机-无机杂化钙钛矿,本实施例采用无机钙钛矿;栅介质6绝缘层的材料为SiO2,Al2O3,La2O3的一种,本实施例采用SiO2,栅电极 7的材料为Au、ITO、FTO的一种,本实施例采用Au。
本实施例在提高现有技术中的Ga2O3晶体管器件的迁移率、开关比等重要参数的同时,在Ga2O3衬底背面生长栅介质和栅金属,更有利于顶层钙钛矿光吸收层的光吸收。
以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims (6)

1.一种基于氧化镓/钙钛矿传输层异质结的n型晶体管的制备方法,其特征在于,包括以下步骤:
(a)选取重掺杂的n型β-Ga2O3衬底,并利用RCA标准清洗工艺对其进行清洗;
(b)在所述n型β-Ga2O3衬底表面使用第一掩模版生长源电极和漏电极;
(c)在所述的n型β-Ga2O3衬底表面使用第二掩模版生长电子传输层;
(d)在所述电子传输层表面生长钙钛矿光吸收层;
(e)在所述钙钛矿光吸收层表面或所述n型β-Ga2O3衬底背面生长栅介质绝缘层;
(f)在所述栅介质绝缘层表面生长栅电极,最终形成所述基于氧化镓/钙钛矿传输层异质结的n型晶体管。
2.如权利要求1所述的一种基于氧化镓/钙钛矿传输层异质结的n型晶体管的制备方法,其特征在于,所述步骤(b)中,所述源电极和漏电极的生长工艺为磁控溅射法或者热蒸镀法或者光刻法;所述步骤(c)中,电子传输层的生长工艺为磁控溅射法或者化学气象沉积或者溶胶-凝胶法;所述步骤(d)中,钙钛矿光吸收层的生长工艺为溶胶-凝胶法或者磁控溅射法;所述步骤(e)中,栅介质绝缘层的生长工艺为磁控溅射法或者原子层沉积法或者化学气象沉积法;所述步骤(f)中,栅电极的生长工艺为磁控溅射法或者热蒸镀法。
3.如权利要求2所述的一种基于氧化镓/钙钛矿传输层异质结的n型晶体管的制备方法,其特征在于,步骤(b)中源电极和漏电极的生长工艺、步骤(c)中电子传输层的生长工艺、步骤(e)中栅介质绝缘层的生长工艺、步骤(f)中栅电极的生长工艺均采用磁控溅射法;步骤(d)中钙钛矿光吸收层的生长工艺采用溶胶-凝胶法。
4.一种基于氧化镓/钙钛矿传输层异质结的n型晶体管,其特征在于,包括n型β-Ga2O3衬底、生长在所述n型β-Ga2O3衬底表面两端的源电极和漏电极、生长在n型β-Ga2O3衬底表面位于源电极和漏电极中间的电子传输层、生长在所述电子传输层表面的钙钛矿光吸收层、生长在所述钙钛矿光吸收层表面的栅介质绝缘层以及生长在栅介质绝缘层表面的栅电极。
5.一种基于氧化镓/钙钛矿传输层异质结的n型晶体管,其特征在于,包括n型β-Ga2O3衬底、生长在所述n型β-Ga2O3衬底表面两端的源电极和漏电极、生长在所述n型β-Ga2O3衬底表面位于源电极和漏电极中间的电子传输层、生长在所述电子传输层表面的钙钛矿光吸收层、生长在所述n型β-Ga2O3衬底背面的栅介质绝缘层以及生长在栅介质绝缘层表面的栅电极。
6.如权利要求4或5所述的一种基于氧化镓/钙钛矿传输层异质结的n型晶体管,其特征在于,所述源电极和漏电极的材料为Ni、Ag、Au、Al中的一种;所述电子传输层的材料为SnO2,TiO2、ZnO、富勒烯衍生物PCBM的一种;所述钙钛矿光吸收层的材料为无机钙钛矿或有机-无机杂化钙钛矿;所述栅介质绝缘层的材料为SiO2,Al2O3,La2O3的一种,所述栅电极的材料为Au、ITO、FTO的一种。
CN201911166674.8A 2019-11-25 2019-11-25 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法 Active CN110993503B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911166674.8A CN110993503B (zh) 2019-11-25 2019-11-25 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911166674.8A CN110993503B (zh) 2019-11-25 2019-11-25 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN110993503A true CN110993503A (zh) 2020-04-10
CN110993503B CN110993503B (zh) 2023-02-24

Family

ID=70086622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911166674.8A Active CN110993503B (zh) 2019-11-25 2019-11-25 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN110993503B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864005A (zh) * 2020-06-16 2020-10-30 张香丽 氧化镓基pn结光电探测器、远程电晕监测系统及制作方法
CN111933697A (zh) * 2020-08-20 2020-11-13 西安电子科技大学 一种二维全无机钙钛矿晶体管及其制备方法
CN113594099A (zh) * 2021-06-18 2021-11-02 西北工业大学 基于钙钛矿单晶衬底与二维材料沟道的CMOS FinFET器件及其制备方法
WO2022046891A1 (en) * 2020-08-26 2022-03-03 Board Of Regents, The University Of Texas System Radiation detectors having perovskite films

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197790A1 (en) * 1997-12-22 2002-12-26 Kizilyalli Isik C. Method of making a compound, high-K, gate and capacitor insulator layer
US6548854B1 (en) * 1997-12-22 2003-04-15 Agere Systems Inc. Compound, high-K, gate and capacitor insulator layer
CN103782392A (zh) * 2011-09-08 2014-05-07 株式会社田村制作所 Ga2O3 系半导体元件
CN106449993A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 采用钙钛矿作为光吸收层的n型hemt器件及其制备方法
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN109256438A (zh) * 2018-09-26 2019-01-22 北京镓族科技有限公司 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
US20190207022A1 (en) * 2017-12-27 2019-07-04 Rohm Co., Ltd. Semiconductor device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197790A1 (en) * 1997-12-22 2002-12-26 Kizilyalli Isik C. Method of making a compound, high-K, gate and capacitor insulator layer
US6548854B1 (en) * 1997-12-22 2003-04-15 Agere Systems Inc. Compound, high-K, gate and capacitor insulator layer
CN103782392A (zh) * 2011-09-08 2014-05-07 株式会社田村制作所 Ga2O3 系半导体元件
CN106449993A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 采用钙钛矿作为光吸收层的n型hemt器件及其制备方法
US20190207022A1 (en) * 2017-12-27 2019-07-04 Rohm Co., Ltd. Semiconductor device and manufacturing method thereof
CN108470675A (zh) * 2018-02-28 2018-08-31 唐为华 一种Si基氧化镓薄膜背栅极日盲紫外光晶体管及其制备方法
CN109256438A (zh) * 2018-09-26 2019-01-22 北京镓族科技有限公司 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈建清等: "复合钙钛矿太阳能电池电荷传输层材料研究进展", 《材料导报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864005A (zh) * 2020-06-16 2020-10-30 张香丽 氧化镓基pn结光电探测器、远程电晕监测系统及制作方法
CN111933697A (zh) * 2020-08-20 2020-11-13 西安电子科技大学 一种二维全无机钙钛矿晶体管及其制备方法
WO2022046891A1 (en) * 2020-08-26 2022-03-03 Board Of Regents, The University Of Texas System Radiation detectors having perovskite films
CN113594099A (zh) * 2021-06-18 2021-11-02 西北工业大学 基于钙钛矿单晶衬底与二维材料沟道的CMOS FinFET器件及其制备方法
CN113594099B (zh) * 2021-06-18 2024-07-05 西北工业大学 基于钙钛矿单晶衬底与二维材料沟道的CMOS FinFET器件及其制备方法

Also Published As

Publication number Publication date
CN110993503B (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
CN110993503B (zh) 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法
KR101774520B1 (ko) 고성능 금속 산화물 및 금속 산질화물 박막 트랜지스터들을 제조하기 위한 게이트 유전체의 처리
CN105304749A (zh) 太阳能电池及其制造方法
CN102386246B (zh) 一种p型导电氧化锌薄膜材料及制备方法
CN102244108A (zh) 复合介质层的SiCMOS电容及其制作方法
CN105470288B (zh) Delta沟道掺杂SiC垂直功率MOS器件制作方法
CN113421914B (zh) p型金属氧化物电流阻挡层Ga2O3垂直金属氧化物半导体场效应晶体管
CN103077963A (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
TWI557930B (zh) 量子井結構太陽能電池及其製造方法
CN112038409A (zh) 双异质结增强型金属氧化物场效应晶体管及制备方法
CN107032341B (zh) 一种石墨烯材料及其修饰方法与应用
Chambouleyron et al. Properties of chemically sprayed SnO2 antireflecting films on Si solar cells
CN112038443B (zh) 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法
CN116581151B (zh) 一种低开启电压氧化镓肖特基二极管及其制备方法
CN104576713A (zh) pn结及其制备方法
KR101033955B1 (ko) 산화아연계 반도체 박막의 제조방법, 이를 이용한 박막트랜지스터 및 그 제조방법
CN111029461B (zh) 一种基于P型SiC的新型晶体管器件及其制备方法
CN203026510U (zh) 一种欧姆接触电极及包含该欧姆接触电极的半导体元件
CN115377224A (zh) 一种高击穿双极场限环结构的氧化镓肖特基二极管及制备方法
CN110911565B (zh) 一种基于N型SiC的新型晶体管器件及其制备方法
Stanchina et al. Effects and characterization of ion implantation enhanced GaAs Schottky barriers
CN107863392A (zh) 一种SiC MOS电容及其制造方法
CN111029460B (zh) 一种基于互补型SiC的新型晶体管器件及其制备方法
KR101120045B1 (ko) 다결정 실리콘층 제조 방법
CN111081788B (zh) 一种底部为肖特基接触的铟铝锌氧化物二极管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230118

Address after: Rooms B604 and B606, No. 388, Ruoshui Road, Suzhou Industrial Park, Suzhou District, Suzhou, Jiangsu 215000

Applicant after: Weihua semiconductor (Suzhou) Co.,Ltd.

Address before: 710000 No. 127 Youyi West Road, Beilin District, Xi'an City, Shaanxi Province

Applicant before: Northwestern Polytechnical University

GR01 Patent grant
GR01 Patent grant