CN110984625A - 光伏百叶与太阳能烟囱双发电的楼体温室建筑 - Google Patents

光伏百叶与太阳能烟囱双发电的楼体温室建筑 Download PDF

Info

Publication number
CN110984625A
CN110984625A CN201911401852.0A CN201911401852A CN110984625A CN 110984625 A CN110984625 A CN 110984625A CN 201911401852 A CN201911401852 A CN 201911401852A CN 110984625 A CN110984625 A CN 110984625A
Authority
CN
China
Prior art keywords
heat
chimney
building
building body
heat collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911401852.0A
Other languages
English (en)
Inventor
田国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201911401852.0A priority Critical patent/CN110984625A/zh
Publication of CN110984625A publication Critical patent/CN110984625A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • F03D9/35Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects
    • F03D9/37Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects with means for enhancing the air flow within the tower, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏板与太阳能烟囱双发电的楼体温室建筑,其特征为:楼体1的向阳面设有侧集热棚2,顶部设有顶集热棚3,顶集热棚3顶部连接烟囱4,烟囱4内设有涡轮发电机5,侧集热棚2的底部设有进风口6,侧集热棚2和顶集热棚3内设散热隔热一体光伏板百叶7,楼体1的房间向阳面为多层透明板全采光落地墙窗8。把日光温室的大开窗和保温技术、散热隔热一体光伏板百叶与楼体太阳能烟囱发电技术、易更换相变储能技术以及全热交换通风减损技术融合在一起,提供一种在建筑的通风、保温、遮阳,以及对太阳能的充分利用等多方面都近乎完美的光伏板与太阳能烟囱双发电的楼体温室建筑。

Description

光伏百叶与太阳能烟囱双发电的楼体温室建筑
技术领域
本发明涉及一种太阳能温室建筑。
背景技术
1.随着社会生产力的发展,能源短缺、温室效应和环境污染已成为全球性问题。寻求清洁能源利用新技术已成为世界上研究的热点技术之一。太阳能作为一种清洁的可再生能源对人类来说几乎是取之不尽,用之不竭的。在各种可再生能源中,太阳能是最重要的基本能源,生物质能、风能、水能、潮汐能都是来自于太阳能。目前太阳能热利用技术成熟,并已形成产业的当属太阳能热水器和太阳能热发电,而在太阳能发电技术中光伏发电和太阳能烟囱发电前景广阔。普通的太阳能烟囱电站(也称太阳能热气流电站)由太阳能集热棚、太阳能烟囱以及涡轮发电机组3个基本部分所构成。太阳能集热棚在一块太阳辐照强、绝热性能比较好的地面上,集热棚和地面有一定间隙,可以让周围空气进入系统:集热棚中间离地面一定距离处装着烟囱,在烟囱底部装有涡轮机,太阳光照射集热棚,集热棚下面的地面吸收透过覆盖层的太阳辐射能,并加热地面和集热棚覆盖层之间的空气,使集热棚内空气温度升高,密度下降,从而引起空气沿着烟囱上升,同时集热棚周围的冷空气不断进入系统进行补充,从而形成空气循环流动。当集热棚内的空气流到烟囱底部的时候,由于烟囱效应在烟囱内将形成强大的气流,利用这股强大的气流推动装在烟囱底部的涡轮机,带动发电机发电。在空气流动过程中,伴随着三个能量转换的过程,首先空气被加热,太阳能转化为空气内能:由于空气在烟囱内的上升流动,内能转变为动能;当空气流到涡轮机时,气流推动涡轮机转子转动,动能又转化成我们所需的电能。太阳能烟囱发电技术具有以下特点:①设备较其它发电技术简单,而且运行费用低,②太阳能来源广泛,更适合于人口稀少的地区,③良好的环境效应,不会污染环境,④改善与调节楼房建筑的通风环境。与普通太阳能热气流电站相比,建筑表面及顶部太阳能热气流电站具有如下优点:①不再审批占用新的土地,在现有的建筑上固定轻薄金属架铺装玻璃即可,且成本低廉,②不用建造占主要成本、维护费用高、存在倒塌危险的的高大烟囱,使建造、维护成本更低,运行更安全,③无论大小建筑都可以铺装,④维护简单。
2.现在的人居建筑耗能巨大,建筑能耗在人类能源总消费量中所占的比重已近40%,原因一是保温不够,墙体保温不够是一方面,最严重是窗户,薄薄的一两层玻璃根本就起不到多大的保温作用,那边锅炉不停地烧、暖气片不停地加热着屋子,这边薄薄的窗户呼呼地向外散发着热气(就像是一个人在寒冷的冬天里穿着一个大棉袄却敞着怀)!二是现代楼房几乎没有什么遮阳措施,任凭夏季阳光穿过阳台窗户加热室内,而屋里却只能靠空调降温。据统计,建筑物通过窗户散失的能量约占建筑物消耗能量的30%。现有产品中一定厚度的保温百叶同时解决窗体的保温和遮阳两个问题,但一定厚度(30毫米以上)的保温百叶在窗体冬季采光时立面阻挡了一部分阳光进入室内,不仅影响视线而且增加了采暖费用。
3. 北方的日光温室,即使在寒冷冬季,晴天白天室外零下十几度,温室内的温度也高达30℃以上,有时因温度过高,还要人为的放走一部分热量,而到了晚上又因没有储热设施,温度急剧下降到5--10℃,白天的热量都白白地浪费掉了,而夜晚温度却不足10℃。夜间采用燃料加温虽可升温,但燃料的大量消耗会使运行费用很高。白昼热量过剩与夜间热量的不足是温室环境控制中一个突出的矛盾,解决这个矛盾的一个思路就是将白昼多余热量贮蓄起来,夜间使之释放到温室内进行加温。
4.一般光伏电池的光电转换效率为10%~ 20%,在运行的过程中,未被利用的太阳辐射能除了一部分被反射外 其余大部分被电池吸收转化为热能;如果这些吸收的热量不能及时排除,电池温度就会逐渐升高,发电效率降低(据统计电池组件温度每上升1摄氏度,其发电功率衰减0.4%),而且光伏电池长期在高温下工作会迅速老化、缩短使用寿命。现在电池降温技术主要是背板材质和结构的改进,现有的背板材料一般由几种高分子材料复合而成,如采用TPT、TPE、FPE等结构,但由于高分子材料的导热系数一般都较低无法有效散热,使得组件运行产生的热量不能有效的导出,导致热量积蓄。光伏电池散热的方法有被动散热与主动散热两种。前者依靠大气的自然流动带走电池热量,后者依靠电力驱动风机或泵,强制空气、水或其他流体流过人为设置在太阳电池组件上的散热设备,强化电池热量的散出过程,或者仅在太阳电池组件上增加散热设备,强化自然对流散热。由于聚光式太阳电池组件工作在数个至数十个太阳之下,不加强散热时电池温度可达上千度,组件会遭到破坏,故聚光式太阳电池组件均采取强化散热措施,例如中国专利CN101145743太阳电池高效发电散热系统,在太阳电池组件下部附加导热片和散热构件,强化向大气散热,中国专利CN201000896水冷式光伏发电系统,以导热硅胶粘接导热水管于太阳电池组件下方,管内有水循环流动对聚光式太阳电池进行冷却。此外在太阳能光伏热综合利用中,例如中国专利CN1716642,混合式光电光热收集器,中国专利CN1563844太阳电热联产装置,中国专利CN1988183太阳电池的电热联用装置,都利用水循环流过太阳电池组件背部来提取热能,同时也起到降低太阳电池温度的作用。对于普通的平板式太阳电池组件,一般认为设置复杂的散热系统意义不大,基本上未特别考虑散热问题, 其工作温度常达到50℃以上。目前散热效果最好的是一种微热管(导热性是铝的5000倍,石墨烯的200倍)平板贴附背板的散热技术------CN200810239002.0光伏电池散热装置:微热管散热平板的一侧与光伏电池板背面相贴合,且散热平板为中空结构,其内部同向设置有大量的微孔管群或微槽群,并灌装有甲醇等工质,各微孔或微槽自然形成微热管结构,所述散热平板与光伏电池板相贴合的一侧为吸热面,散热平板的其余侧面的部分或全部为散热面。散热效果非常好,但是价格是光伏板的1—2倍。对这些组件采用简便而又有效的散热措施来降低其工作温度是方向,如采用全金属背板(ZL200820200742. 9,CN201120084141. 8),但单纯依赖表面的氧化层并不能很好的满足背板材料对于长时间绝缘性的要求,使得实际过程中组件面临安全性问题,同时所采用的金属层过厚不利于组件运输和降低成本。
检索中外专利,关于建筑表面及顶部太阳能热气流电站的设计有一些,像中国专利2011103396740具有降温结构的节能楼房等,通风方面设计的很好,但对建筑的保温、遮阳,以及对太阳能的充分利用方面还不很到位。以及本人的2013205658475太阳能烟囱电站温室建筑(提升了隔热和发电效率,还可提升)。
发明内容
本发明即是把日光温室的大开窗采光集热和保温技术、散热隔热一体光伏板百叶与楼体太阳能烟囱发电技术、易更换相变储能技术以及全热交换通风减损技术融合在一起,提供一种在建筑的通风、保温、遮阳,以及对太阳能的充分利用等多方面都近乎完美的光伏板与太阳能烟囱双发电的楼体温室建筑。本发明的技术方案是:一种光伏板与太阳能烟囱双发电的楼体温室建筑,包括楼体1,侧集热棚2,顶集热棚3,烟囱4,涡轮发电机5,进风口6,散热隔热一体光伏板百叶7,多层透明板全采光落地墙窗8,其特征为:楼体1的向阳面设有侧集热棚2, 顶部设有顶集热棚3,顶集热棚3顶部连接烟囱4,烟囱4内设有涡轮发电机5,侧集热棚2的底部设有进风口6,侧集热棚2和顶集热棚3内设散热隔热一体光伏板百叶7,楼体1的房间向阳面为多层透明板全采光落地墙窗8。冬季阳光时,将散热隔热一体光伏板百叶(后面简称百叶)立起与阳光接近平行,让部分阳光从百叶缝隙射入房间,形成部分阳光发电部分阳光加热房间,房间内的地板、墙壁、家具储存热量(更好的是铺装相变储能地板9更多地储存热量),这时百叶的散热结构迅速加热流过它的空气而使百叶降温,空气因受热而密度变低,产生浮力而向上流动产生上升气流,整个楼体向阳面的上升气流汇集到楼顶的烟囱并推动涡轮发电机发电,阳光退却后,将百叶放平,变成一整面隔热板保温房间;夏季阳光时,将百叶调至与阳光成接近直角的位置发电的同时遮挡阳光不让其射入房间,从而房间里会像树荫下一样凉爽,多年的实践证明:在中国长江以北地区,只要房屋的隔热合格,阳光不能从南窗直射到房间内,基本上可以省略空调,这时百叶的散热结构迅速加热流过它的空气而使百叶降温,空气因受热而密度变低,产生浮力而向上流动,整个楼体向阳面的上升气流汇集到楼顶的烟囱并推动涡轮发电机发电。
本发明的有益效果是:把设备最简单、成本最低廉的太阳能烟囱发电技术和光伏发电技术嫁接到常规的建筑上,同时日光温室的大开窗和保温技术把常规建筑变成了能够蓄积太阳能的温室建筑,它弥补了常规建筑对阳光利用不足的缺憾,使建筑在冷天能敞开胸怀最大限度地收集这最廉价最绿色的能源----太阳能!(注:常规建筑只南面墙上部分面积开窗采光,冷天阳光射入量很有限,而温室建筑却可以南立面西立面全采光,阳光可充分加温室内,且阳光退却后,又能关闭散热隔热一体光伏板百叶充分保温窗体),基本上省略了暖气;而夏季散热隔热一体光伏板百叶发电的同时还遮挡阳光不让其射入房间,从而省略了空调。空调暖气是商住建筑的主要能耗,省略了这两项,阳光充足的话,光伏和烟囱发的电完全可以满足住户的日常用电(电视、电脑、照明、厨房卫生间电器)。
附图说明
下面结合附图和实施例对本发明进一步说明:
图1是本发明的结构示意图。
图2是本发明的结构示意图。
图3是本发明的结构示意图。
图4是本发明的结构示意图。
图5是本发明的结构示意图。
图6是本发明的结构示意图。
图7是本发明的结构示意图。
图8是本发明的结构示意图。
图9是本发明的结构示意图。
图10是本发明的结构示意图。
图11是本发明的结构示意图。
图中1. 楼体,2.侧集热棚, 3.顶集热棚,4.烟囱,5.涡轮发电机,6.进风门,7. 散热隔热一体光伏板百叶,8. 多层透明板全采光落地墙窗,9. 相变储能地板,10. 袋装相变材料,11.超薄隔音透光隔墙,a.隔热板复合翅片金属背板,b.常规翅片, c.勾脚翅片, d.排孔通道,e. 表面板,f. 光伏电池,g. 隔热板,g1.中空微珠矩阵层板,g2. 气凝胶,h.倒刺勾脚,i.电热丝,x.面纱层,y.面纱层,z. 间隔纱,z’.间隔纱树脂连筋,A. 微热管板,B.隔热层,C.光伏电池,D.微槽群,E.工质,F.散热装置,G.微热管板端头压封线,H.前板,I.后板, J.中空微珠夹胶芯层,K.中空微珠。
具体实施方式
在图1中,展示了没有安装散热隔热一体光伏板百叶7的楼体结构,楼体1的四面(至少南、西两个向阳面)设有侧集热棚2, 顶部设有顶集热棚3,顶集热棚3顶部连接烟囱4,接烟囱4内设有涡轮发电机5,侧集热棚2的下部设有进风口6。
在图2中,展示了安装了散热隔热一体光伏板百叶7的楼体结构,楼体1的四面(至少南、西两个向阳面)设有侧集热棚2,顶部设有顶集热棚3,顶集热棚3顶部连接烟囱4,接烟囱4内设有涡轮发电机5,侧集热棚2的下部设有进风口6,太高的楼侧集热棚的中部增设进风口以引入凉爽空气供散热隔热一体光伏板百叶降温。侧集热棚2和顶集热棚3内设散热隔热一体光伏板百叶7,楼体1的房间向阳面为多层透明板全采光落地墙窗8(这里被百叶遮挡,图3可以看到)。冬季阳光时,将散热隔热一体光伏板百叶(后面简称百叶)立起与阳光接近平行,让部分阳光从百叶缝隙射入房间,形成部分阳光发电部分阳光加热房间,房间内的地板、墙壁、家具储存热量(更好的是铺装相变储能地板9更多地储存热量),这时百叶的散热结构迅速加热流过它的空气而使百叶降温,空气因受热而密度变低,产生浮力而向上流动产生上升气流,整个楼体向阳面的上升气流汇集到楼顶的烟囱并推动涡轮发电机发电,阳光退却后,将百叶放平,变成一整面隔热板保温房间;夏季阳光时,将百叶调至与阳光成接近直角的位置发电的同时遮挡阳光不让其射入房间,从而房间里会像树荫下一样凉爽,多年的实践证明:在中国长江以北地区,只要房屋的隔热合格,阳光不能从南窗直射到房间内,基本上可以省略空调,这时百叶的散热结构迅速加热流过它的空气而使百叶降温,空气因受热而密度变低,产生浮力而向上流动,整个楼体向阳面的上升气流汇集到楼顶的烟囱并推动涡轮发电机发电。
在图3中,截取了一部分房间展示夏季和冬季阳光时百叶的应用状态,上图是冬季阳光时,将散热隔热一体光伏板百叶7(后面简称百叶)立起与阳光接近平行,让部分阳光从百叶缝隙通过多层透明板全采光落地墙窗8射入房间,形成部分阳光发电部分阳光加热房间,房间内的墙壁、家具、相变储能地板9地板储存热量,阳光退却后,将百叶放平,变成一整面隔热板保温房间;下图是夏季阳光时,将百叶调至与阳光成接近直角的位置发电的同时遮挡阳光不让其射入房间,从而房间里会像树荫下一样凉爽。如果室外温度太高的话可以放平百叶,让它隔绝窗体与外界热空气的接触,遮阳隔热的同时不影响百叶发电。百叶越宽保温效果越好,图中的百叶宽度接近层高,开启后不影响人们的视线。
在图4中,展示了散热隔热一体光伏板百叶单片的结构:复合翅片金属背板a为表面板e上间隔排列着多个常规翅片b和勾脚翅片c,勾脚翅片c连接隔热板g而与表面板e形成的一块复合板,复合翅片金属背板a被勾脚翅片c连接隔离成多个排孔通道d,光伏电池f贴合在复合翅片金属背板a的表面板e上。这样,光伏电池f工作时就会把产生的热量迅速地传递给与其紧贴的表面板e,表面板e再把热量传递给常规翅片b和勾脚翅片c,常规翅片和勾脚翅片再把热量传递给翅片周边的空气,排孔通道d内部空气因受热而密度变低,气流因浮力向上流动产生烟囱效应,从而光伏电池产生的热量从这一排排的小烟囱中被带向空中,降低电池温度,而隔热板则阻隔排孔内的热量向下传递。隔热板g在这里选用薄型质轻的中空微珠矩阵层板或气凝胶板以及它们的组合。中空微珠矩阵层(美国国家航空航天局, 在20世纪90年代为了解决航天飞行器传热控制问题而研发的一种新型太空绝热反射瓷层,该瓷层材料是由一些悬浮于惰性乳胶中的微小陶瓷中空颗粒构成,这种 材料是本身具有高太阳反射比、高半球发射率、低导热系数、低蓄热系数等热工性能的环保材料,这种绝热反射材料在国外经历了由航天领域,到工业及建筑业的转变,同时也由厚层向薄层的技术转变。目前在世界各地建筑和工业设施中得到了越来越多的应用)。气凝胶(导热系数低至0.015~0.018W/m.k,也就是说用传统隔热材料1/3至1/10的厚度就能够达到同样的隔热效果。作为世界最轻的固体,这种新材料密度仅为0.04~0.12g/cm3,仅为空气密度的2.75倍。这种物质看上去像凝固的烟,常规的硅系气凝胶成分与玻璃相似,所以不燃。由于它的密度极小,已广泛用于航空航天领域。其憎水率大于等于99%,避免了传统隔热材料吸潮而造成的隔热效果锐减以及包裹材料的锈蚀,由于单纯的气凝胶易碎,实际应用时要加入纤维变成纤维气凝胶板或加入树脂中抽丝制毡变成气凝胶毡)。
在图5中, 展示了一款隔热板为三维织物增强骨架的中空微珠与气凝胶复合绝热板的散热隔热一体光伏板瓦,点状分布的勾脚翅片c为倒刺勾脚h后接枝在常规翅片上,具体工艺为:采用超声波焊接(或点焊)把倒刺勾脚h点状分布焊接在已挤出成型铝散热片的常规翅片b上,然后与三维织物增强骨架的中空微珠与气凝胶复合绝热板叠合放入平板压机下,在压机的强大压力作用下,倒刺勾脚i刺入三维织物增强骨架的中空微珠与气凝胶复合绝热板,翅片金属背板与三维织物增强骨架的中空微珠与气凝胶复合绝热板多点勾挂合为一体,三维织物增强骨架的中空微珠与气凝胶复合绝热板的详细结构见图6。
在图6中, 展示了一款三维织物增强骨架的中空微珠与气凝胶复合绝热板,上小图为浸渍树脂填充气凝胶前的三维织物增强骨架,中小图为浸渍树脂填充气凝胶后的三维织物增强骨架中空微珠与气凝胶复合绝热板瓦,下小图为中小图虚线圆圈内的局部放大图。工艺为:1.采用三维织造技术织造三维织物(两层经纬纱相互交织形成面纱层x和y,再通过间隔纱z相互交织,将两层面纱层捆绑成为一个整体,得到三维机织间隔织物),2.用稀玻璃钢树脂浸渍三维织物,固化后形成一块以无数间隔纱树脂连筋z’为支柱和连接的双层透气纤维树脂板,3. 醇溶胶的制备(将正硅酸乙酯、无水乙醇、去离子水和质量浓度为0.1mol/L的盐酸水溶液按照如下摩尔比:1∶10∶6∶0.012;调节混合前驱体溶液为pH至3.5,45℃下搅拌水解8h,使之充分水解得到溶胶),4. 气凝胶的原位合成(将三维间隔织物垂直放入100mL醇溶胶中,冷却至室温,滴加75mL 0.5mol/L的氨水溶液搅拌3min;45℃水浴,10min内形成醇凝胶。湿凝胶在45℃水浴中静置老化8h;老化后,将醇凝胶浸泡在正己烷进行交换两次,每次6h;用体积分数15%的三甲基氯硅烷和正己烷混合溶液进行表面改性以提高孔隙率,50℃水浴条件下改性24h;改性完后的湿凝胶放入正己烷中浸泡、冲洗,除去表面改性剂以及其他反应产物,用去离子水反复进行两次漂洗;最后采取常压梯度干燥法,分别在60℃、80℃和120℃下各干燥12h,制备出二氧化硅气凝胶填充的玻璃纤维三维机织间隔织物,5.板瓦表面喷砂处理,除去树脂板表面的气凝胶,6,板瓦表面刷涂中空微珠玻璃钢树脂封闭纤维树脂板表面的透气孔,树脂固化后就得到一块二氧化硅气凝胶填充的玻璃纤维三维机织间隔织物为增强骨架的中空微珠与气凝胶复合绝热板。
在图7中,展示了一款适合铺装在楼顶的微热管板散热隔热一体光伏板瓦的结构,隔热层B为中空微珠矩阵层,微热管板A为经阳极氧化的铝合金中空平板,其内部同向设置有大量的微槽群D(图中左下角剖开的小边里),并灌装有工质E甲醇(图中右侧开窗里的波纹液面),G为微热管板端头压封线,各微槽自然形成微热管结构,中空微珠矩阵层B与光伏电池C分别复合在微热管板A的两个表面上,微热管板A上端延伸到光伏电池板的板幅外部,并通过该延伸端向外传递热量,延伸端装有散热装置F。这样,光伏电池C工作时产生的热量传递给微热管板A,受热的微热管板温度升高到一定温度时,其内部的工质E甲醇(沸点64.7℃)从液态变成气态,产生相变吸热,从而迅速降低蒸发处微热管板的温度,上升的气态工质在微热管板顶端(装有散热装置F)遇冷降温后又变成了液态,同时产生相变散热,然后液态甲醇在重力作用下流回微热管板的底部,工质循环往复地向微热管板顶部带去热量,散热装置持续不断地吸收带走工质产生的相变散热。隔热层B则隔绝热量的传递,杜绝夏季室外热量的侵入和冬季室内热量的流失。图中的散热装置F为水冷式,为一根带有内翅片的金属管,扁平的一面与延伸到光伏电池板的板幅外部的微热管板上端紧密贴合,工作时,液体从金属管中流过带走微热管传给它的工质产生的相变散热,然后再把热量传递给楼顶水箱里的水,为住户提供热水。
在图8中,展示了一种排管袋装结构的相变储能地板9,温室建筑的一个最大的问题就是冬季中午阳光充足时,屋外零下十几度,屋内却可以达到零上30度,而凌晨时又降到10几度,昼夜温差太大!而采用排管袋装结构的相变储能地板,高效吸收中午阳光的热量使屋内的温度不至于过热,并且把中午储存的热量转移到晚上释放出来,使夜晚、凌晨不至于太冷,从而有效地解决了这个问题。阳光不足或温度太低时,加热电热丝h(碳纤维)使其发热,热量再通过金属排管大面积高效传递给排管中的袋装相变材料10。相变储能材料寿命十年左右,排管袋装结构能够方便地从楼体侧面取出更换。
在图9中,冬季以外,打开南向窗户,上升气流在散热隔热一体光伏板百叶7的导风作用以及太阳能烟囱的烟囱效应下通过可调百叶进入房间,然后穿过房间进入背阳面,然后又被抽到顶部烟囱,使建筑实现了无动力通风。冬季可以采用全热交换通风系统进行通风。图中的百叶很窄,夏季遮阳效果很好,冬季保温效果差一些,适合冬季不需要保暖的热带地区。
在图10中,楼体1为钢构主体框架,每层铺装金属排管相变储能地板9,金属排管相变储能地板9中装有袋装相变材料10,框架外围(四面及顶部)镶嵌包裹多层透明板全采光落地墙窗8,多层透明板全采光落地墙窗8外面被覆散热隔热一体光伏板百叶7,楼体1四面及顶部在散热隔热一体光伏板百叶7外设有侧集热棚2和顶集热棚3,顶集热棚3顶部连接烟囱4,烟囱4内设有涡轮发电机5,侧集热棚2的底部设有进风口6,超薄隔音透光隔墙11为厚度11毫米的中空微珠夹胶芯层双层钢化玻璃(详见图11),替代了厚重的砖墙水泥隔墙,增加使用面积的同时,还减少了墙面的装修和维护,以及减少了深层房间的白天照明。顶部的散热隔热一体光伏板百叶下建造成空中花园12,每层的阳光能照到的大阳台也建造成阳台花园13,由于这两个花园都是在温室内,即使在北方严寒地带依然会四季如春,不会出现寒冷地区冬季室外一片凋零的景象。进风口及烟囱上口处可设置滤网,防止粉尘及蚊蝇的侵入,减少光伏百叶表面集尘和灭虫药物的污染。烟囱上口处可设置透气顶帽,透气的同时防止雨雪尘的侵入。
在图11中,中空微珠夹胶芯板中前板H后板I为5厘的磨砂钢化玻璃,中空微珠夹胶芯层J中的中空微珠K为45—150微米的中空玻璃微珠,前板H和后板I之间夹入中空微珠夹胶芯层J粘接成的一块厚度为11毫米夹胶防爆隔音隔热玻璃,中空微珠夹胶芯板中多层的中空微珠矩阵层高效阻隔已进入板体热流和声音的传导。它纤薄、质轻、隔音、透光、隔热、防潮、防水、防火、免装饰、耐擦洗、抗冲击、寿命长、节地、环保、利废、减少运输费用、施工便捷、成本低廉。
本建筑地上部分完全可以没有一砖一瓦一块水泥,组装拆除快捷的同时,所有材料都可以回收利用,几乎没有施工污染,没有建筑垃圾,没有装修污染,且能源基本自给,实现了真正的绿色建筑。

Claims (1)

1.一种光伏板与太阳能烟囱双发电的楼体温室建筑,包括楼体(1),侧集热棚(2), 顶集热棚(3),烟囱(4),涡轮发电机(5),进风口(6),散热隔热一体光伏板百叶(7),多层透明板全采光落地墙窗(8),其特征为:楼体(1)的向阳面设有侧集热棚(2),顶部设有顶集热棚(3),顶集热棚(3)顶部连接烟囱(4),烟囱(4)内设有涡轮发电机(5),侧集热棚(2)的底部设有进风口(6),侧集热棚(2)和顶集热棚(3)内设散热隔热一体光伏板百叶(7),楼体(1)的房间向阳面为多层透明板全采光落地墙窗(8)。
CN201911401852.0A 2019-12-31 2019-12-31 光伏百叶与太阳能烟囱双发电的楼体温室建筑 Pending CN110984625A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911401852.0A CN110984625A (zh) 2019-12-31 2019-12-31 光伏百叶与太阳能烟囱双发电的楼体温室建筑

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911401852.0A CN110984625A (zh) 2019-12-31 2019-12-31 光伏百叶与太阳能烟囱双发电的楼体温室建筑

Publications (1)

Publication Number Publication Date
CN110984625A true CN110984625A (zh) 2020-04-10

Family

ID=70079223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911401852.0A Pending CN110984625A (zh) 2019-12-31 2019-12-31 光伏百叶与太阳能烟囱双发电的楼体温室建筑

Country Status (1)

Country Link
CN (1) CN110984625A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112283046A (zh) * 2020-11-27 2021-01-29 林新福 一种节能环保的风力发电机传动减损结构
CN114234455A (zh) * 2021-12-28 2022-03-25 山东阳晨新能源有限公司 一种不锈钢集热器
CN115589206A (zh) * 2022-10-26 2023-01-10 宁夏启辰智能低碳科技有限公司 用于光伏一体化建筑房顶的聚光式光伏设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112283046A (zh) * 2020-11-27 2021-01-29 林新福 一种节能环保的风力发电机传动减损结构
CN114234455A (zh) * 2021-12-28 2022-03-25 山东阳晨新能源有限公司 一种不锈钢集热器
CN114234455B (zh) * 2021-12-28 2023-01-24 山东阳晨新能源有限公司 一种不锈钢集热器
CN115589206A (zh) * 2022-10-26 2023-01-10 宁夏启辰智能低碳科技有限公司 用于光伏一体化建筑房顶的聚光式光伏设备

Similar Documents

Publication Publication Date Title
CN102787701B (zh) 一种与徽派建筑遮阳檐相结合的光伏可控集热墙
CN101705751B (zh) 太阳能集成房屋
CN208458079U (zh) 一种新型太阳能集热蓄热墙采暖通风系统
CN110984625A (zh) 光伏百叶与太阳能烟囱双发电的楼体温室建筑
CN201050898Y (zh) 太阳能空气集热瓦
CN106013536A (zh) 一种适用于亚热带地区的特朗勃幕墙
CN204494579U (zh) 与建筑屋面一体化的太阳能采暖与通风复合能量系统
CN106545096B (zh) 一种太阳能蓄热式被动太阳房
CN211774865U (zh) 一种节能光伏幕墙系统
CN201874169U (zh) 一种新型太阳能集热围护结构
CN202039451U (zh) 节能节水房
CN206971430U (zh) 一种外墙用板式太阳能集热装置
CN202787558U (zh) 一种与徽派建筑遮阳檐相结合的光伏可控集热墙
CN202300098U (zh) 太阳能发电兼具热回收与隔热功效的室内建筑节能系统
CN211776079U (zh) 光伏百叶与太阳能烟囱双发电的楼体温室建筑
CN208563680U (zh) 一种基于室内外观感设计的建筑一体化光伏光热联供组件
CN207960378U (zh) 一种基于建筑室内外观感设计的光伏光热联供窗体组件
CN111236708A (zh) 一种具有可换气屋顶的厂房
CN217460885U (zh) 一种太阳能光伏装饰结构及建筑物
CN202081703U (zh) 节能节水建筑
CN116614082A (zh) 一种多功能太阳能建筑一体化构件
CN112593730A (zh) 散热隔热一体光伏板储能温室箱体
CN108457406A (zh) 一种基于室内外观感设计的建筑一体化光伏光热联供组件
CN110230457A (zh) 一种基于建筑室内外观感设计的光伏光热联供窗体组件
CN201567806U (zh) 太阳能集成房屋

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200410