CN110836801A - 一种小麦籽粒锌硒同步富集方法 - Google Patents

一种小麦籽粒锌硒同步富集方法 Download PDF

Info

Publication number
CN110836801A
CN110836801A CN201911188220.0A CN201911188220A CN110836801A CN 110836801 A CN110836801 A CN 110836801A CN 201911188220 A CN201911188220 A CN 201911188220A CN 110836801 A CN110836801 A CN 110836801A
Authority
CN
China
Prior art keywords
selenium
zinc
wheat
grains
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911188220.0A
Other languages
English (en)
Inventor
师江澜
费沛雯
王少霞
宁鹏
田霄鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN201911188220.0A priority Critical patent/CN110836801A/zh
Publication of CN110836801A publication Critical patent/CN110836801A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • G01N21/6404Atomic fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Fertilizers (AREA)

Abstract

本发明公开了一种小麦籽粒锌硒同步富集方法,以冬小麦为研究对象,于开花后7天喷施,探讨在锌硒配合喷施后小麦籽粒富锌富硒效果,旨在不影响籽粒锌含量的同时增加小麦籽粒硒含量,可为切实有效实现小麦同时富锌富硒提供一定的理论依据。本发明有以下结论:(1)锌硒配合喷施对小麦产量无影响。(2)所有未喷施硒的处理,籽粒锌含量均未达到富锌标准;所有未喷锌处理,籽粒硒含量均未达到富硒标准;锌硒配合喷施后,小麦籽粒锌硒均达到富集效果。(3)锌硒配合喷施后能够显著降低植酸/锌摩尔比,增加籽粒锌有效性,同时不影响硒的生物有效性。因此,在潜在性缺锌和低硒土壤条件下,叶面锌硒配合喷施可用于小麦籽粒的锌硒同步生物强化。

Description

一种小麦籽粒锌硒同步富集方法
技术领域
本发明属于农业技术领域,涉及一种小麦籽粒锌硒两种元素同步富集方法。
背景技术
锌、硒均是人体必需的微量元素。人体缺锌会降低代谢功能及抵抗力,造成心脏和呼吸系统疾病,增加死亡率和疾病率,而缺硒会影响人体免疫系统,激发微小病毒B19(HPVB19)的毒性,引发大骨节病、克山病等(Jaksch et al.1972;李继云1979)。人体自身是无法合成锌和硒的,因此提高饮食中这两种元素的摄入量尤为重要。小麦作为中国一半人口的主食,能够提供约20%的锌源(Ma et al.2008),同时也是硒富集能力和利用效率最强的主粮作物之一(Rotruck et al.1973;Awasihi,1975;Eija-Riitta,1997)。因而,明确提升小麦籽粒中锌和硒含量的方法,对改善人体锌和硒营养健康状况具有重要意义。
目前,我国小麦锌和硒含量均不能满足人体健康对锌和硒的需求。例如,我国22个小麦生产省冬小麦籽粒平均锌含量仅为30.3mg/kg(Liu et al.2014),其中88%的样本锌含量低于满足人体锌营养的推荐量40-60mg/kg(Cakmak 2008);我国西北地区冬小麦籽粒硒最高,平均为0.12mg/kg(刘慧2016),但距离籽粒富Se目标值0.30mg/kg还有一定差距(Lyons et al,2005)。小麦的Zn和Se生物强化,被认为是提升其籽粒及其制品Zn和Se含量最快速有效的方式(Bouis 2011;Broadley 2010)。有研究表明,小麦叶面喷施0.4%ZnSO4·7H2O对小麦籽粒及面粉锌含量的提升效果最佳,可使籽粒锌含量增加到40-60mg/kg(Li et al 2015);喷施0.01%Na2SeO3后,小麦籽粒硒浓度达到了0.45mg/kg以上(李文宗2018)。然而,已有研究仅明确了单独喷施锌肥或单独喷施硒肥的小麦籽粒富锌或富硒效果,关于锌和硒共同喷施的研究较少。本发明提出将锌和硒配合喷施,主要目的是通过降低喷施的人力和物力投入,提高喷锌和喷硒的实际应用性。然而,锌硒配合喷施时锌和硒的交互作用以及小麦籽粒锌和硒的富集效果尚不清楚。春小麦锌硒配合土壤施用结果表明,Zn与Se之间相关关系不显著(张化2005)。另有研究表明,Zn能够促进Se的吸收,Se对Zn有抑制作用(李文宗2018)。除此之外,锌硒配合喷施的最佳喷施技术(喷施浓度、时间等),以及共同喷施后对小麦籽粒其它营养元素的影响尚需明确。
发明内容
本发明的目的在于提供一种小麦籽粒锌硒同步富集方法,以冬小麦为研究对象,于开花后7天喷施,探讨在锌硒配合喷施后小麦籽粒富锌富硒效果,旨在不影响籽粒锌含量的同时增加小麦籽粒硒含量,可为切实有效实现小麦同时富锌富硒提供一定的理论依据。
其具体技术方案为:
一种小麦籽粒锌硒同步富集方法,包括以下步骤:
步骤1:土壤属黄土母质褐土类塿土亚类红油土属,类型为土垫旱耕人为土。试验开始前土壤基本理化性质为:pH 8.32(水土比=2.5∶1),有机质18.94g/kg,全氮0.969mg/g,速效磷9.06mg/kg,速效钾140.1g/kg,CaCO3 65.1g/kg,DTPA-Zn 0.72mg/kg,有效硒0.095mg/kg,土壤中有效锌与有效硒的含量均处于潜在缺乏水平,供试小麦为“小偃22”(Triticum aestium L.)。
步骤2:喷施0.4%(w/v)的ZnSO4·7H2O,喷施0.001%(w/v)的Na2SeO3、0.002%(w/v)的Na2SeO3、0.003%(w/v)的Na2SeO3;播前基肥N 120kg·hm-2,P2O5 100kg·hm-2,有机肥(当地腐熟猪粪)45000kg·hm-2,肥料为尿素和过磷酸钙,所用微量元素肥料均为化学纯试剂。
步骤3:于小麦成熟期每个微区采集15株小麦样品,同时收获各个微区所有小麦籽粒样品,人工脱粒后测产。所采集的小麦植株样品先用流动的自来水清洗5min,再用蒸馏水清洗3次,70℃下烘干后,分为茎秆、叶片、颖壳和籽粒,用球磨仪(北京鼎昊源科技有限公司,TL2020)粉碎后储存待测。另取100g籽粒用小型试验磨(Quadrumat Junior mill,Brabender,Duisburg,Germany)磨制成面粉和麸皮(出粉率约65%)。
步骤4:小麦各部分Zn、Fe、Mn、Cu含量的测定和籽粒植酸的测定。
进一步,步骤4中,小麦各部分Zn、Fe、Mn、Cu含量的测定采用干灰化,1∶1 HNO3溶解后原子吸收分光光度计(AAS)测定;Se含量的测定采用氢化物发生-原子荧光光谱法(AFS-930双道原子荧光光度计),N、P、K含量的前处理采用H2SO4-H2O2消煮,流动分析仪测定全氮(Auto Analyzer 3-AA3连续流动分析仪),钼蓝比色法测定全磷(UV-2450紫外分光光度计),原子吸收法测定全钾(PE-PinAAcle 900F原子吸收光谱仪)。样品的消解和测定过程均加入空白和国家标准物质进行质量控制(GWB08503c,Zn=(41.1±2.0)mg/kg和GWB10046,Se=(0.060±0.010)mg/kg),分析过程中锌硒回收率均在90-120%之间。
进一步,步骤4中,籽粒植酸的测定参考Haug et al.(1983)和Wang et al.(2015),用10%Na2SO4和0.2mol/L HCl溶液浸提,FeCl3沉淀植酸铁,通过原子吸收光谱仪测定浸提液中铁的浓度(CFe),计算出植酸含量,公式如下:
PA=CFe×(660/55.8)/4.2×(25/1000×7/2.5)/M)
M:籽粒称样量(g)
PA:植酸(g/kg)
CFe:铁离子浓度(μg/mL)
进一步,步骤2中,锌、硒肥采用喷壶(规格8cm×22cm)喷施,所有喷施处理均加入0.01%(v/v)吐温-20作为表面活性剂,小麦花后7天傍晚均匀喷施于小麦穗及叶片,每隔7d喷施1次,连续喷施2次,每次每个微区(1m×2m)喷300ml。
与现有技术相比,本发明的有益效果:
本发明有以下结论:
(1)锌硒配合喷施对小麦产量无影响;
(2)所有未喷施硒的处理,籽粒锌含量均未达到富锌标准;所有未喷锌处理,籽粒硒含量均未达到富硒标准;锌硒配合喷施后,小麦籽粒锌硒均达到富集效果(Zn>40mg/kg;Se>0.30mg/kg);
(3)锌硒配合喷施后能够显著降低植酸/锌摩尔比,增加籽粒中锌的生物有效性,同时不影响硒的生物有效性。
综上所述,在潜在性缺锌和低硒土壤条件下,叶面锌硒配合喷施可用于小麦籽粒的锌硒同步生物强化。该技术有助于实现小麦生产实践上的节省人力、物力以及高效的集约化目标。
附图说明
图1不同处理对小麦产量的影响(t/ha);
图2不同处理对小麦籽粒锌含量的影响(mg/kg);
图3不同处理对小麦面粉锌含量的影响(mg/kg);
图4不同处理对小麦籽粒硒含量的影响(mg/kg);
图5不同处理对小麦面粉硒含量的影响(mg/kg);
图6不同处理对小麦籽粒植酸含量的影响(g/kg);
图7不同处理对小麦面粉植酸含量的影响(g/kg);
图8不同处理对小麦籽粒植酸/锌摩尔比的影响;
图9不同处理对小麦面粉中植酸/锌摩尔比的影响。
具体实施方式
下面结合附图和实施对本发明的技术方案作进一步详细地说明。
1.材料方法
1.1试验地概况与试验设计
试验于2017年-2019年在西北农林科技大学农作一站进行(34°17′56″N,108°4′7″E)。试验土壤属黄土母质褐土类塿土亚类红油土属,类型为土垫旱耕人为土。试验开始前土壤基本理化性质为:pH 8.32(水土比=2.5∶1),有机质18.94g/kg,全氮0.969mg/g,速效磷9.06mg/kg,速效钾140.1g/kg,CaCO3 65.1g/kg,DTPA-Zn 0.72mg/kg,有效硒0.095mg/kg。供试土壤中有效锌与有效硒的含量均处于潜在缺乏水平,供试小麦为“小偃22”(Triticumaestium L.)。
试验设置2个研究因素:喷锌和喷硒。喷锌2个水平:喷施蒸馏水和喷施0.4%(w/v)的ZnSO4·7H2O,喷硒4个水平:喷施蒸馏水、喷施0.001%(w/v)的Na2SeO3(Se1)、0.002%(w/v)的Na2SeO3(Se2)、0.003%(w/v)的Na2SeO3(Se3)。采用不完全方案,共计6个处理:CK、Zn、Se2、ZnSe1、ZnSe2、ZnSe3,完全随机区组排列,重复4次。
锌、硒肥采用喷壶(规格8cm×22cm)喷施,所有喷施处理均加入0.01%(v/v)吐温-20作为表面活性剂,2018年和2019年分别于小麦花后7天傍晚均匀喷施于小麦穗及叶片,每隔7d喷施1次,连续喷施2次,每次每个微区(1m×2m)喷300ml。播前基肥N 120kg·hm-2,P2O5100kg·hm-2,有机肥(当地腐熟猪粪)45000kg·hm-2,肥料为尿素和过磷酸钙,所用微量元素肥料均为化学纯试剂。
1.2样品的采集与测定
于小麦成熟期各个微区采集15株小麦样品,同时收获各微区中剩余小麦籽粒样品,人工脱离后测产。小麦整株样品经自来水充分冲洗5min后用蒸馏水润洗3次,在70℃烘干至恒重,用球磨仪粉碎(北京鼎昊源科技有限公司,TL2020)后储存。另取100g籽粒用小型实验磨(Quadrumat Junior mill,Brabender,Duisburg,Germany)磨制成面粉和麸皮(出粉率约65%)。
小麦各部分Zn、Fe、Mn、Cu含量的测定采用原子吸收分光光度法(AAS)测定;Se含量的测定采用氢化物发生-原子荧光光谱法(AFS-930双道原子荧光光度计),N、P、K含量的前处理采用H2SO4-H2O2消煮,流动分析仪测定全氮(Auto Analyzer 3-AA3连续流动分析仪),钼蓝比色法测定全磷(UV-2450紫外分光光度计),原子吸收法测定全钾(PE-PinAAcle 900F原子吸收光谱仪)。样品的消解和测定过程均加入空白和国家标准物质进行质量控制(GWB08503c,Zn=(41.1±2.0)mg/kg和GWB10046,Se=(0.060±0.010)mg/kg),分析过程中锌硒回收率均在90-120%之间。
籽粒植酸的测定参考Haug et al.(1983)和Wang et al.(2015),用10%Na2SO4和0.2mol/L HCl溶液浸提,FeCl3沉淀植酸铁,通过原子吸收光谱仪测定浸提液中铁的浓度(CFe),计算出植酸含量,公式如下:
PA=CFe×(660/55.8)/4.2×(25/1000×7/2.5)/M)
M:籽粒称样量(g)
PA:植酸(g/kg)
CFe:铁离子浓度(μg/mL)
1.3数据统计与分析
试验数据均用Microsoft Excel 2010和SPSS Statistics 17.0统计软件进行复因素(重复测量)方差分析(ANOVA)、作图、多重比较(LSD法,差异显著性水平为5%)和相关性分析。
2.试验数据
表1大量元素与微量元素重复测量方差分析表(P值)
Figure BDA0002292928840000071
注:n.s.P>0.05
*P≤0.05
**P≤0.01
***P≤0.001
表2不同处理下大量元素及微量元素含量
Figure BDA0002292928840000072
3.试验结果
3.1不同处理对小麦产量的影响
2018年和2019年无论是锌硒单独喷施,还是锌硒配合喷施,对小麦产量均无显著影响(图1)。因此,喷锌和喷硒不影响小麦产量。
3.2锌硒施用后对小麦籽粒及面粉中锌硒含量的影响
如图2和图3所示,小麦成熟期籽粒、面粉中Zn含量对叶面喷锌响应明显,而受喷硒或与硒锌配施影响不大;如图4、图5所示,喷硒或锌硒配施明显影响籽粒及面粉中Se含量。
各喷Zn处理对小麦籽粒锌含量影响显著,籽粒中锌含量均达到推荐量40mg/kg以上(Cakmak 2008)。2018年与2019年,与CK相比(30.23mg/kg、24.09mg/kg),单独喷Zn处理小麦籽粒锌含量分别增加至58.31mg/kg和77.17mg/kg,增幅为93%和220%;单独喷Se处理与CK相比,小麦籽粒锌含量接近;二者配合喷施后较单独喷Zn处理籽粒锌含量无显著变化;锌硒配施处理,随着硒浓度的增加,对小麦籽粒锌含量无显著影响。面粉中锌含量变化趋势与籽粒中类似。
各喷Se处理对小麦籽粒锌含量影响显著,除2018年ZnSe2处理外,籽粒中硒含量达到了富Se目标值(0.30mg/kg)(Lyons et al,2005)。与CK相比(0.035mg/kg、0.020mg/kg),2018年和2019年单独喷硒处理小麦籽粒Se含量分别增加至0.743和0.503mg/kg,增加了20和24倍;单独喷Zn处理对小麦籽粒硒浓度无显著影响;二者配合喷施后,小麦籽粒硒含量均随着硒浓度的增加而增加;与Se2处理相比,ZnSe2处理2018年降低了籽粒硒含量,2019年对籽粒硒含量无显著影响。面粉中硒含量变化趋势类似于籽粒。
综上,喷锌和喷硒后,小麦籽粒中锌硒含量均达到目标值(Zn>40mg/kg;Se>0.30mg/kg)。锌硒配合施用较单施Zn处理对小麦籽粒锌含量无影响,配合施用较单施Se处理对小麦籽粒硒含量无影响或降低了籽粒硒含量。
3.3锌硒施用后对小麦籽粒及面粉中锌硒生物有效性的影响
植酸(PA)是食物中限制人体锌浓度的重要因子(Ferguson,1989;Welch,1993),植酸通过和锌结合,降低了锌的生物有效性(Erdal,2002)。本研究中(图6、图7),锌和硒叶面喷施对籽粒和面粉中植酸浓度无显著影响。
PA:Zn摩尔比代表锌的生物有效性(Oberleas,1981;Wise,1995;Gruner,1996),WHO根据其锌的潜在可用性对饮食进行分类的临时标准,基于食品的PA/Zn,将饮食分为三个标称类别:<5高,5-15中等,>15低可用性(WHO,1996),摩尔比越小,表明锌的生物有效性越高,摩尔比在20-30被认为可以降低动物对锌的吸收以及降低动物生长(Oberleas,1981;Solomons,1982)。本研究中(图8、图9),在小麦可食用部分面粉中,CK和单独喷Se处理的植酸/锌摩尔比达到了20以上;喷Zn能够显著降低籽粒及面粉中PA/Zn摩尔比,从而增加小麦锌的生物有效性;锌硒配合施用与单独喷Zn相比无显著差异,且随着硒浓度增加,对植酸/锌摩尔比无显著影响。
小麦中全部硒都是生物学上可利用的(Ensminger,1989),硒的存在形态是决定硒生物有效性的首要因素,植物中的有机硒,尤其是大分子含硒化合物被视为低毒且具有生物有效性的部分,它们具有更高的生物利用度(鲁璐2010)。富含硒的小麦粉主要含有硒代蛋氨酸(~80%),硒代半胱氨酸,Se-甲基硒代半胱氨酸和无机硒也以小比例存在(Hart等,2011)。因此,籽粒中蛋白质含量是小麦硒生物有效性的重要因素之一。在本研究中,锌硒配合后与单独喷Se处理相比,籽粒硒浓度不变或者降低;喷Se处理与CK相比,籽粒氮含量不变,ZnSe2与Se2处理相比,籽粒氮含量无显著差异。因此,锌硒配合施用后不影响籽粒硒生物有效性。
3.4各处理对小麦籽粒及面粉中大量及微量元素含量的影响
各处理对小麦籽粒磷、钾、铁、锰、铜含量均无显著影响(P>0.05)(表1、2)。2018年,各处理对小麦籽粒氮含量无显著影响,但在2019年,单独施Zn处理较CK处理显著增加了籽粒氮含量,单独施Se处理对氮含量无显著影响。锌硒配施较单独施Zn和单独施Se处理,籽粒氮含量无显著影响(ZnSe1除外),且随着硒浓度的增加,籽粒氮含量增加。
4.结论
(1)锌硒配合喷施对小麦产量无影响;
(2)所有未喷施硒的处理,籽粒锌含量均未达到富锌标准;所有未喷锌处理,籽粒硒含量均未达到富硒标准;锌硒配合喷施后,小麦籽粒锌硒均达到富集效果(Zn>40mg/kg;Se>0.30mg/kg),在潜在性缺锌和低硒土壤条件下,叶面锌硒配合喷施可用于小麦籽粒的锌硒同步生物强化;
(3)锌硒配合喷施后能够显著降低植酸/锌摩尔比,增加籽粒锌有效性,同时不影响硒的生物有效性。
以上所述,仅为本发明较佳的具体实施方式,本发明的保护范围不限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。

Claims (4)

1.一种小麦籽粒锌硒同步富集方法,其特征在于,包括以下步骤:
步骤1:土壤属黄土母质褐土类塿土亚类红油土属,类型为土垫旱耕人为土;试验开始前土壤基本理化性质为:pH 8.32,水土比=2.5∶1,有机质18.94g/kg,全氮0.969mg/g,速效磷9.06mg/kg,速效钾140.1g/kg,CaCO3 65.1g/kg,DTPA-Zn 0.72mg/kg,有效硒0.095mg/kg,土壤中有效锌与有效硒的含量均处于潜在缺乏水平,供试小麦为小偃22Triticumaestium L;
步骤2:喷施0.4%的ZnSO4·7H2O,喷施0.001%的Na2SeO3、0.002%的Na2SeO3、0.003%的Na2SeO3;播前基肥N 120kg·hm-2,P2O5 100kg·hm-2,有机肥45000kg·hm-2,肥料为尿素和过磷酸钙,所用微量元素肥料均为化学纯试剂;
步骤3:于小麦成熟期各微区采集15株小麦样品,同时收获各微区内全部籽粒样品,人工脱粒后测产;小麦整株样品经自来水充分冲洗5min后用蒸馏水润洗3次,在70℃烘干至恒重,用球磨仪粉碎后储存;另取100g籽粒用小型实验磨磨制成面粉和麸皮;
步骤4:小麦各部分Zn、Fe、Mn、Cu含量的测定和籽粒植酸的测定。
2.根据权利要求1所述的小麦籽粒锌硒同步富集方法,其特征在于,步骤4中,小麦各部分Zn、Fe、Mn、Cu含量的测定采用原子吸收分光光度法测定;Se含量的测定采用氢化物发生-原子荧光光谱法,N、P、K含量的前处理采用H2SO4-H2O2消煮,流动分析仪测定全氮,钼蓝比色法测定全磷,原子吸收法测定全钾;样品的消解和测定过程均加入空白和国家标准物质进行质量控制,GWB08503c,Zn=(41.1±2.0)mg/kg和GWB10046,Se=(0.060±0.010)mg/kg,分析过程中锌硒回收率均在90-120%之间。
3.根据权利要求1所述的小麦籽粒锌硒同步富集方法,其特征在于,步骤4中,籽粒植酸的测定用10%Na2SO4和0.2mol/L HCl溶液浸提,FeCl3沉淀植酸铁,通过原子吸收光谱仪测定浸提液中铁的浓度CFe,计算出植酸含量,公式如下:
PA=CFe×(660/55.8)/4.2×(25/1000×7/2.5)/M)
M:籽粒称样量g;
PA:植酸g/kg;
CFe:铁离子浓度μg/mL。
4.根据权利要求1所述的小麦籽粒锌硒同步富集方法,其特征在于,步骤2中,锌、硒肥采用规格8cm×22cm的喷壶喷施,所有喷施处理均加入0.01%吐温-20作为表面活性剂,小麦花后7天傍晚均匀喷施于小麦穗及叶片,每隔7d喷施1次,连续喷施2次,每次每个微区1m×2m喷300ml。
CN201911188220.0A 2019-11-28 2019-11-28 一种小麦籽粒锌硒同步富集方法 Pending CN110836801A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911188220.0A CN110836801A (zh) 2019-11-28 2019-11-28 一种小麦籽粒锌硒同步富集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911188220.0A CN110836801A (zh) 2019-11-28 2019-11-28 一种小麦籽粒锌硒同步富集方法

Publications (1)

Publication Number Publication Date
CN110836801A true CN110836801A (zh) 2020-02-25

Family

ID=69577646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911188220.0A Pending CN110836801A (zh) 2019-11-28 2019-11-28 一种小麦籽粒锌硒同步富集方法

Country Status (1)

Country Link
CN (1) CN110836801A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113575314A (zh) * 2021-07-29 2021-11-02 山西农业大学 基于铁锌硒配施提高番茄生长发育和果实品质的种植方法
IT202100002387A1 (it) * 2021-02-03 2022-08-03 Fabbrica Coop Perfosfati Cerea Soc Coop A R L Composizione e metodo per la biofortificazione di piante alimentari e piante alimentari cosi’ fortificate.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104206142A (zh) * 2014-08-19 2014-12-17 安徽省富硒香生物食品集团有限公司 一种富硒锌铁小麦的栽培方法
CN104788237A (zh) * 2015-04-27 2015-07-22 亳州师范高等专科学校 一种小麦富硒锌铁微生物发酵肥料及其制备方法和应用
CN105859438A (zh) * 2016-05-28 2016-08-17 王天玉 一种植物富硒富锌营养液及其制备方法
CN106518503A (zh) * 2017-01-06 2017-03-22 西北农林科技大学 一种小麦锌硒叶面肥及其制备方法和使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104206142A (zh) * 2014-08-19 2014-12-17 安徽省富硒香生物食品集团有限公司 一种富硒锌铁小麦的栽培方法
CN104788237A (zh) * 2015-04-27 2015-07-22 亳州师范高等专科学校 一种小麦富硒锌铁微生物发酵肥料及其制备方法和应用
CN105859438A (zh) * 2016-05-28 2016-08-17 王天玉 一种植物富硒富锌营养液及其制备方法
CN106518503A (zh) * 2017-01-06 2017-03-22 西北农林科技大学 一种小麦锌硒叶面肥及其制备方法和使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘珂: ""锌与生物刺激素或农药配合喷施对冬小麦籽粒锌强化的影响"", 《中国优秀硕士学位论文全文数据库(电子期刊) 农业科技辑》, pages 047 - 126 *
杨月娥: ""我国主要麦区施用锌硒提高小麦产量品质研究"", 《中国优秀硕士学位论文全文数据库(电子期刊) 农业科技辑》, pages 047 - 70 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100002387A1 (it) * 2021-02-03 2022-08-03 Fabbrica Coop Perfosfati Cerea Soc Coop A R L Composizione e metodo per la biofortificazione di piante alimentari e piante alimentari cosi’ fortificate.
WO2022167375A1 (en) * 2021-02-03 2022-08-11 Fabbrica Cooperativa Perfosfati Cerea S.C. Composition and method for biofortification of food plants and food plants thus fortified.
CN113575314A (zh) * 2021-07-29 2021-11-02 山西农业大学 基于铁锌硒配施提高番茄生长发育和果实品质的种植方法
CN113575314B (zh) * 2021-07-29 2023-09-29 山西农业大学 基于铁锌硒配施提高番茄生长发育和果实品质的种植方法

Similar Documents

Publication Publication Date Title
Kassem The response of date palm to calcareous soil fertilisation
Nandan et al. Agronomic fortification of Zn and Fe in chickpea an emerging tool for nutritional security–A Global Perspective
Saha et al. Can agronomic biofortification of zinc be benign for iron in cereals?
Hu et al. Antioxidant activities of Se-SPI produced from soybean as accumulation and biotransformation reactor of natural selenium
CN107082663A (zh) 一种枸杞富硒叶面肥及其制备方法
Deng et al. Effects of sulfur application on selenium uptake and seed selenium speciation in soybean (Glycine max L.) grown in different soil types
CN103896692A (zh) 天然绿色富硒锗西瓜营养肥
CN102093117A (zh) 一种水稻叶面专用肥及其应用
Mazhar et al. Zinc-aspartate-mediated drought amelioration in maize promises better growth and agronomic parameters than zinc sulfate and L-aspartate.
CN103819250B (zh) 富锌营养剂、其制作方法和富锌蒜苗的栽培方法
CN110836801A (zh) 一种小麦籽粒锌硒同步富集方法
Solanki et al. Biofortification of crops using nanoparticles to alleviate plant and human Zn deficiency: A review
Islam et al. The effect of zinc fertilization and cow dung on sterility and quantitative traits of rice
Petek et al. Status of Fe, Mn and Zn in red beet due to fertilization and environment
CN107027620B (zh) 一种同时富含硒和γ-氨基丁酸的植物的选育方法
El-Boray et al. Influence of fulvic acid plus some microelements and microorganisms on yield and quality characteristics of superior seedless grapevines
Nemtinov et al. Biochemical and cytological features of onion bulbs and leaves collected from various ecogeographical origins.
Shukla et al. Biofortification for overcoming zinc and iron malnutrition in Indian population: Current research status and way forward
Al-Mharib et al. Effect of spraying with folic acid and yeast extract on the growth, yield and calcium oxalate concentration of spinach (Spinacia oleracea L.)
Firdous et al. Zinc allocation and its re-translocation in wheat at different growth stages
Arab et al. Effect of zinc application on maize grown on alluvial soils
Ibrahem et al. Impact of Different Crystal Sizes of Nano-Iron Oxide as Fertilizer on Wheat Plants Photosynthetic Pigments Content.
CN111732486A (zh) 一种专用于水稻种植的富硒生态复合肥及其制备工艺和施肥方法
Zarzecka et al. Influence of the soil conditioner UGmax on nitrogen, phosphorus and magnesium contents in potato tubers
Raman et al. Effect of Organic and Chemical Fertilizers on the Nutritional Composition of Amaranthus spinosus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200225

WD01 Invention patent application deemed withdrawn after publication