CN110726677B - 一种污染场地遥感探测与空间热区识别系统和方法 - Google Patents

一种污染场地遥感探测与空间热区识别系统和方法 Download PDF

Info

Publication number
CN110726677B
CN110726677B CN201910993174.5A CN201910993174A CN110726677B CN 110726677 B CN110726677 B CN 110726677B CN 201910993174 A CN201910993174 A CN 201910993174A CN 110726677 B CN110726677 B CN 110726677B
Authority
CN
China
Prior art keywords
polluted site
remote sensing
site
polluted
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910993174.5A
Other languages
English (en)
Other versions
CN110726677A (zh
Inventor
匡文慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Geographic Sciences and Natural Resources of CAS
Original Assignee
Institute of Geographic Sciences and Natural Resources of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Geographic Sciences and Natural Resources of CAS filed Critical Institute of Geographic Sciences and Natural Resources of CAS
Priority to CN201910993174.5A priority Critical patent/CN110726677B/zh
Publication of CN110726677A publication Critical patent/CN110726677A/zh
Application granted granted Critical
Publication of CN110726677B publication Critical patent/CN110726677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Evolutionary Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种污染场地遥感探测与空间热区识别系统和方法,包括空间数据采集与预处理模块、污染场地遥感探测模块和污染场地热区探测模块。该系统服务于污染场地监测以及热点区域探测等工作。该系统包括提出一种新型的污染场地遥感图像探测方法框架,且实现了针对污染场地集中分布区域的识别方法。该系统具有实用性强的特点,在当前污染场地现状监测、污染场地规划、生态环境修复等相关领域具有急迫的应用需求。

Description

一种污染场地遥感探测与空间热区识别系统和方法
技术领域
本发明涉及一种污染场地遥感探测与空间热区识别系统和方法,属于城市规划及环境保护行业应用的遥感和地理信息技术应用领域,重点应用在污染场地管理工作中,服务于宏观监测污染场地空间分布,探测污染场地集中分布区域,在当前污染场地管理、测绘与地理信息和生态环境保护领域具有广泛而急迫的应用需求。
背景技术
近年来污染场地管理行业在场地信息收集、污染调查以及法规建设方面已经有了长足的进步,但当前大量污染场地处于高风险状态,在土地用途转换以及二次开发利用过程中尚缺乏有效监管,严重威胁着人居环境安全和公众健康,环境隐患尤为突出。初步估计,我国各类工业污染场地至少以数十万计,多数分布在经济发达地区和老工业基地。据《中国环境年鉴》统计,仅1998~2009年我国关停并转迁企业总数累积就达到15.5万之多。自国家2010年启动实施高分专项工程以来,高分辨率对地观测系统技术迅速发展,国产高分影像被广泛应用于生态环境监测和评估等领域,利用高分卫星影像实时、高效和准确地探测污染场地的空间位置和集中分布区域,加强污染场地监测,在污染场地管理和生态环境保护领域具有广泛而急迫的应用需求。
中国专利公报公开显示,“污染场地”正成为专利授权的热点领域和新兴方向。如“一种石油类污染场地土壤的原位联合修复方法”(公开号CN105772499B、公开日2019年4月23日),“一种污染土壤修复范围及边界的优化方法”(公开号CN106446435B、公开日20198年4月5日),“一种重金属污染场地注浆修复剂及其制备方法”(公开号CN105602568B、公开日2018年12月25日),“一种用于污染场地修复的太阳能通风系统装置”(公开号CN106001076B、公开日2018年5月11日)等一批专利取得授权。但是,这些发明专利主要集中于针对某种具体类型的污染场地修复工作或发明某种污染场地修复装置,较少有针对污染场地遥感识别和热区探测方面的相关专利,不能满足污染场地规划设计、现状评估的应用需求。因此,针对污染场地遥感探测方面的现有技术相对较少。
当前在污染场地遥感探测和热区识别中存在以下困难:(1)基于科学合理的分类系统,确定不同类型污染物边界;(2)通过遥感影像快速、准确和实时地区分场地污染物,获取污染物位置、面积、形状等信息(3)污染场地热区识别,分析污染场地热区空间分布;
为解决上述问题,本方法提出一种新的污染场地遥感图像探测方法,实现了针对污染场地集中分布区域的识别方法,且具有实用性强的特点,在当前污染场地现状监测、污染场地规划、生态环境修复等相关领域具有广阔的应用前景。
发明内容
本发明技术解决问题:克服现有技术的不足,提供一种污染场地遥感识别和空间热区探测的系统和方法。该系统方法在污染场地监测、测绘与地理信息和生态环境保护领域具有急迫的应用需求和重大的应用价值,为识别污染场地空间分布提供科学依据,实现在大数据支持下的以污染场地管理为目标的可视化空间决策支持功能。
本发明所采用的技术方案为:一种污染场地遥感探测与空间热区识别方法,包括如下步骤:
步骤(1),空间数据采集与预处理;
首先,获取GF-1号高分辨率遥感影像并对遥感影像进行预处理,包括辐射校正、大气校正、正射校正操作,作为污染场地遥感分类的数据基础;然后,针对研究区建立地物分类系统,作为污染场地遥感分类的分类依据;
步骤(2),污染场地遥感探测,基于所述的分类系统与预处理后的遥感影像,采用面向对象方法进行污染场地遥感探测;
首先,建立遥感解译标志库,为遥感解译提供样本参考和先验知识,解译标志包括光谱、形状、大小、纹理;
然后,基于解译标志,确定分类特征,构建分类规则;
最后,基于分类规则,使用模糊函数确定地物类型的隶属度,进行地物分类,提取不同类型污染场地,从而获得区域内污染场地分类结果;
步骤(3),污染场地热区探测;
首先,基于所述的污染场地分类结果,利用GIS空间分析方法,计算污染场地空间分布密度;
然后,构建污染场地空间分布热度模型,并计算污染场地空间分布热度指数;
最后,对污染场地空间分布热度指数等级进行划分,探寻污染场地空间分布热区。
所述空间数据采集与预处理包括:
(1.1)所述的GF-1号高分辨率遥感影像,其多光谱空间分辨率为16m,全色波段的空间分辨率最高为2m,GF-1号遥感影像下载自地理国情监测云平台;
(1.2)遥感影像的预处理,基于ENVI5.1软件进行;首先,对多光谱波段,进行辐射定标、大气校正、正射校正预处理;对全色波段,进行辐射定标和大气校正;然后,将多光谱与全色波段进行图像融合,获得处理后的遥感图像,便于模块二进行地物识别;
(1.3)所述的地物分类系统,包括7个大类:植被、水体、裸地、建筑、道路、工矿区污染场地和其他,其中工矿区污染场地可进一步细分为4类:排土排矸场、尾矿库、煤矸石堆场、采煤坑。
所述污染场地遥感探测步骤具体如下:
(2.1)所述的各地物类型遥感解译类型,包括裸地、建筑、道路、排土排矸场、尾矿库、煤矸石堆放场、采煤坑、植被、水体;
(2.2)所述的分类特征,包括亮度、比率、各方向灰度均值、面积、形状指数、长宽比、距离、矩形相似度、归一化水体指数、归一化建筑指数和归一化植被指数;
(2.3)所述的具体分类规则,见如下规则(1):
Figure BDA0002238919960000031
其中,B为亮度、R为比率、G为各方向灰度均值、A为面积、S为形状指数、LW为长宽比、RF为矩形相似度、NDWI为归一化水体指数、NDBI为归一化建筑指数、NDVI为归一化植被指数。
所述污染场地热区识别具体如下:
(3.1)根据所述的污染场地遥感分类数据,在ArcGIS中,利用Arc Toolbox里的Feature to point工具,将污染场地矢量面状要素转为点状要素,得到污染场地的点位空间分布数据;然后,基于密度分析方法,分析污染场地分布特征,使用GIS空间分析中的基于点要素的核密度分析方法,计算污染场地的周围邻域中的空间分布密度,从而获得污染场地分布密度指数数据;
(3.2)基于污染场地面积指数数据与污染场地分布密度指数数据,构建污染场地空间分布热度模型,计算污染场地空间分布热度指数,污染场地空间分布热度指数计算公式(2)如下:
Figure BDA0002238919960000041
式中,Di为第i个栅格单元的污染场地分布密度值;Dmin为所有Di的最小值,Dmax为所有Di的最大值;Ri为第i个栅格单元的污染场地空间分布热度指数;
(3.3)基于污染场地空间分布热度指数数据,在GIS中,利用基于自然断点的数据标准分类方法,识别污染场地空间分布热区并划分等级,在Arc GIS中,对污染场地空间分布热度指数数据进行自然断点分级,共分为4类,见如下规则(2):
Figure BDA0002238919960000042
其中,Ri为第i个栅格单元的污染场地空间分布热度指数;
从而形成污染场地空间分布高聚集区、中聚集区、低聚集区和无分布区,完成污染场地空间分布热区的识别。
另一方面,本发明还提出一种污染场地遥感探测与空间热区识别系统,包括:空间数据采集与预处理模块、污染场地遥感识别模块和污染场地热区探测模块,其中:
空间数据采集与预处理模块,首先,获取GF-1号高分辨率遥感影像并对遥感影像进行预处理,包括辐射校正、大气校正、正射校正操作,作为污染场地遥感分类的数据基础;然后,针对研究区建立地物分类系统,作为污染场地遥感分类的分类依据;
污染场地遥感探测模块,基于所述的分类系统与预处理后的遥感影像,采用面向对象方法进行污染场地遥感探测;首先,建立遥感解译标志库,为遥感解译提供样本参考和先验知识,解译标志包括光谱、形状、大小、纹理;然后,基于解译标志,确定分类特征,构建分类规则;最后,基于分类规则,使用模糊函数确定地物类型的隶属度,进行地物分类,提取不同类型污染场地,从而获得区域内污染场地分类结果;
污染场地热区探测模块,首先,基于所述的污染场地分类结果,利用GIS空间分析方法,计算污染场地空间分布密度;然后,构建污染场地空间分布热度模型,并计算污染场地空间分布热度指数;最后,对污染场地空间分布热度指数等级进行划分,探寻污染场地空间分布热区。
进一步的,所述空间数据采集与预处理模块具体实现如下:
(1)所述的GF-1号高分辨率遥感影像,其多光谱空间分辨率为16m,全色波段的空间分辨率最高为2m,GF-1号遥感影像下载自地理国情监测云平台;
(2)遥感影像的预处理,基于ENVI5.1软件进行;首先,对多光谱波段,进行辐射定标、大气校正、正射校正预处理;对全色波段,进行辐射定标和大气校正;然后,将多光谱与全色波段进行图像融合,获得处理后的遥感图像,便于模块二进行地物识别;
(3)所述的地物分类系统,包括7个大类:植被、水体、裸地、建筑、道路、工矿区污染场地和其他,其中工矿区污染场地可进一步细分为4类:排土排矸场、尾矿库、煤矸石堆场、采煤坑。
进一步的,污染场地遥感探测模块具体实现如下:
(1)所述的各地物类型遥感解译标志,包括裸地、建筑、道路、排土排矸场、尾矿库、煤矸石堆放场、采煤坑、植被、水体;
(2)所述的分类特征,包括亮度、比率、各方向灰度均值、面积、形状指数、长宽比、距离、矩形相似度、归一化水体指数、归一化建筑指数和归一化植被指数;
(3)所述的具体分类规则,见规则(1):
Figure BDA0002238919960000051
其中,B为亮度、R为比率、G为各方向灰度均值、A为面积、S为形状指数、LW为长宽比、RF为矩形相似度、NDWI为归一化水体指数、NDBI为归一化建筑指数、NDVI为归一化植被指数。
进一步的,所述污染场地热区识别模块具体实现如下:
(1)根据所述的污染场地遥感分类数据,在ArcGIS中,利用Arc Toolbox里的Feature to point工具,将污染场地矢量面状要素转为点状要素,得到污染场地的点位空间分布数据;然后,基于密度分析方法,分析污染场地分布特征,使用GIS空间分析中的基于点要素的核密度分析方法,计算污染场地的周围邻域中的空间分布密度,从而获得污染场地分布密度指数数据;
(2)基于污染场地面积指数数据与污染场地分布密度指数数据,构建污染场地空间分布热度模型,计算污染场地空间分布热度指数,污染场地空间分布热度指数计算公式如下:
Figure BDA0002238919960000061
式中,Di为第i个栅格单元的污染场地分布密度值;Dmin为所有Di的最小值,Dmax为所有Di的最大值;Ri为第i个栅格单元的污染场地空间分布热度指数;
(3)基于污染场地空间分布热度指数数据,在GIS中,利用基于自然断点的数据标准分类方法,识别污染场地空间分布热区并划分等级,在Arc GIS中,对污染场地空间分布热度指数数据进行自然断点分级,共分为4类,具体划分规则(2)如下:
Figure BDA0002238919960000062
其中,Ri为第i个栅格单元的污染场地空间分布热度指数;
从而形成污染场地空间分布高聚集区、中聚集区、低聚集区和无分布区,完成污染场地空间分布热区的识别。
本发明与现有技术相比的优点在于:
(1)本发明针对污染场地监测遇到的突出问题,提出了一种污染场地遥感探测与空间热区识别方法。针对中国快速的工业化和城市化进程导致污染场地数量和规模显著增加等现象,提出了服务于基于遥感图像的污染场地识别完整的方法体系,研发的模型系统具有直观明确、可操作性强、具有较强的可视化程度和辅助决策支持功能,对于环境监管部门具有重要的意义。
(2)本发明提出了一种污染场地遥感探测方法,使用高分卫星遥感影像,应用计算机自动分类方式,区分不同类型污染物,实现快速和准确的获取污染场地位置、面积、形状等信息,为污染场地管控方面的规划者或决策者提供规划参考依据,具有广泛的行业应用需求。
(3)本发明提出了一种利用污染场地空间分布信息、基础地理信息,通过核密度分析方法,探测污染场地分布热区的方法,可以快速获取和检测哪些区域污染场地分布较多,哪些区域污染场地分布较为聚集。解决了污染场地空间分布情况与变化情况等一系列污染场地检测与分析识别问题。
附图说明
图1为本发明污染场地遥感探测与空间热区识别系统结构图;
图2为高分一号多光谱遥感影像预处理技术流程图;
图3为污染场地遥感探测模块技术流程图;
图4为污染场地热区探测模块技术流程图;
图5为污染场地遥感探测结果示意图;
图6为污染场地热区分布示意图。
具体实施方式
下面结合附图及实施例对本发明进行详细说明。
如图1所示,本发明所述的系统包括空间数据采集与预处理模块、污染场地遥感探测模块、污染场地热区识别模块。
如图2所示,本发明中空间数据采集与预处理模块用于进行空间数据采集与预处理,包括如下步骤:
步骤1-1,对下载的高分一号原始影像进行辐射校正操作;首先,借助ENVI 5.1软件,打开原始遥感影像;然后,借助Radiometric Calibration工具,选择需要进行辐射校正的影像,设置定标形式(Calibration Type)为默认的Radiance,将Output Interleave改为BIL顺序,输出类型默认浮点型,将Scale Factor改为0.10,选择输出路径,运行,得到辐射定标结果,辐射定标结果以DAT文件格式存储,以此作为步骤1-2进行大气校正的输入数据;
步骤1-2,对经辐射定标后的高分一号影像进行大气校正;首先,获取影像对应区域平均海拔高程,通过Elevation(GMTED2010),打开ENVI自带全球900米分辨率的DEM数据,打开Compute Statistics输入文件对话框,选择GMTED2010.jp2数据。单击Stats Subset按钮,打开Select Statistics Subset对话框,选择统计区域对应的高分一号图像。在统计面板中,选择Basic Stats基本统计,得到平均海拔高程(单位:“米”);然后,进行大气校正操作;借助FLAASH Atmospheric Correction工具,设置相关参数,选择上一步生成的辐射定标结果作为输入辐射定标数据,选择将单一比例参数应用到所有波段,将Single scalefactor默认设置为1,Sensor Type设置为UNKNOWN-MSI,Sensor Altitude设置为传感器高度645km,Ground Elevation设置为计算的影像对应区域平均高程,需要将米转为千米,Pixel Size设置为16m,Flight Date设置为影像获取时间,可通过查看原始影像元数据View metadata获取,Atmospheric Model大气模型设置根据影像实际情况选择,AerosolRetrieval气溶胶反演算法,设置为None,设置大气校正结果输出位置;最后,在Multispectral Settings面板进行多光谱参数设置,Filter Function File设置为对应的波谱响应函数,其他参数保持默认,运行大气校正模块,获得大气校正结果,作为步骤1-3的输入数据;
步骤1-3,对高分一号影像进行正射校正;首先,利用RPC OrthorectificationWorkflow,打开正射校正工作流,选择大气校正后的影像;然后,进入Orthorectification参数设置,图像像元大小设置为16,重采样方式设置为三次卷积,其他默认;最后,设置正射校正后的影像输出路径,运行正射校正模块,获得正射校正后的影像;
步骤1-4,对高分一号影像进行几何校正;首先,利用Image RegistrationWorkflow,选择基准影像为完全覆盖待处理区域的Landsat8影像,待校正影像为正射校正后的影像;然后,设置影像配准主要参数;最后,设置输出路径;运行几何校正模块,获得几何校正输出结果,完成原始高分一号影像的预处理,经预处理后的影像作为步骤2的输入数据,进行污染场地的遥感探测;
步骤1-5,建立进行污染场地遥感探测的地物分类系统,将典型地物分为7个大类:植被、水体、裸地、建筑、道路、工矿区污染场地和其他,其中工矿区污染场地可进一步细分为5类:排土排矸场(采矿中剥离的表土和围岩)、尾矿(矿物含量较低而无法用于生产的废弃物堆积)、煤矸石堆场、采煤坑等,作为步骤2污染场地遥感探测的分类基础。
如图3所示,本发明中污染场地遥感探测模块用于进行污染场地遥感探测,具体实现如下:
步骤2-1,建立遥感解译标志,为遥感解译提供样本参考和先验知识,解译标志包括光谱、形状、大小、纹理等,根据区域地表状况,分为植被、水体、裸地、建筑、道路、排土排矸场、尾矿库、煤矸石堆场和采煤坑等地物类型。
步骤2-2,基于步骤2-1确定的解释标志,确定分类特征,构建分类规则,分类特征具体包括亮度(Brightness)、比率(Ratio)、各方向灰度均值(GLCM Mean all dir)、面积(Area)、形状指数(Shape Index)、长宽比(Length/Width)、距离(Distance to)、矩形相似度(Rectangular fit)、归一化水体指数(NDWI)、归一化建筑指数(NDBI)和归一化植被指数(NDVI)等,具体见规则(1),如下:
其中,裸地分类特征为亮度大于2000,比率小于0.3,各方向灰度均值介于4.8-9.3之间;建筑分类特征为归一化建筑指数小于0.18;道路分类特征为长度大于4.6,长宽比大于2.5;排土排矸场分类特征为面积大于82,形状指数大于0.9;尾矿库分类特征为矩形相似度介于0.34-0.67之间;煤矸石堆放场分类特征为长度大于2031,面积大于82;采煤坑分类特征为长度介于756-898之间;植被分类特征为归一化植被指数大于0.2;水体特征为归一化水体指数小于-0.045;
步骤2-3,基于步骤2-2获得的预处理后的GF-1号遥感影像,对影像进行面向对象分割;
首先,基于易康软件,选择实验影像,选择加载多光谱的蓝、绿、红以及近红外四个波段信息,完成图像加载;
然后,利用process tree工具,打开进程树窗口,添加新的分类树节点,将name修改为Segmentation,其他参数默认;
最后,点击Segmentation,新建Rule,建立insert child,Name设置为“分割”,算法选择设置为多尺度分割算法multiresolution segmentation,image object domain设置为像素水平,根据分类区域地物种类及分布情况,将scale parameter设置为50,levelname设置为level 1,形状因子设置为0.5,紧致度设置为0.5;
步骤2-4,基于步骤2-2确定的分类规则和步骤2-3获得的分割后的影像,对典型地物进行面向对象分类;
首先,基于易康软件,打开Class Hierarchy窗体,调出类层次窗体,添加地物类型,设置类别名称,基于规则2的分类规则,设置Contained,设置分类特征和模糊函数;
然后,通过process tree中的“分割”节点,添加新的分类树节点,Name设置为地物类型名称,Algorithm设置为classification,Image Object Domain设置为image objectlevel;最后,将Active classes设置为在Class Hierarchy窗体已经添加过的相应地物类型;
最后,执行分类操作,得到分类结果,将工矿业污染场地进行提取,即可获得污染场地空间分布区域,作为污染场地热区识别模块的输入数据;
如图4所示,本发明中污染场地热区识别模块具体实现如下:
步骤3-1,基于步骤2-4得到的地物分类图,提取污染场地类型地物要素,并计算污染场地分布密度;
首先,基于ArcGIS,利用Feature to point工具将污染场地面状要素转换成点要素,形成污染场地点位矢量数据图层;
然后,基于核密度分析方法,对污染场地点要素空间分布密度进行分析。在Spatial Analyst支持下,选择Kerneral Density工具,依次输入各个参数:其中,输入要素设置为前一步骤生成的污染场地点位矢量数据图层;Population field设置为“NONE”,即每个污染场地点状要素只计数一次;输出栅格单元尺寸设置为10,搜索半径设置为300,面积单位设置为“SQUARE_KILOMETERS”,即平方公里。
最后,运行工具,得到栅格格式的污染场地密度分布数据,作为步骤3-2的输入数据;
步骤3-2,使用步骤3-1获得的污染场地分布密度栅格,基用公式(1)计算污染场地空间分布热度指数;
Figure BDA0002238919960000101
式中,Di为第i个栅格单元的污染场地分布密度值;Dmin为所有Di的最小值,Dmax为所有Di的最大值;Ri为第i个栅格单元的污染场地空间分布热度指数;
基于步骤3-1得到的污染场地分布密度栅格,打开数据属性信息,并在属性窗口中的Classification Statistics信息中查得栅格单元值的最大值Dmax和最小值Dmin;然后,在Map Algebra工具集下,选择并打开Raster Calculator工具,基于公式(1),输入栅格计算表达式“(D–Dmin)/(Dmax–Dmin)”,其中,D为污染场地分布密度栅格,输出的结果栅格即为污染场地空间分布热度指数栅格数据,作为步骤3-3的输入数据;
步骤3-3,进行污染场地空间分布热度等级的划分。基于步骤3-3生成的污染场地空间分布热度指数栅格数据,利用规则(2)如下:
即将栅格单元的污染场地空间分布热度指数介于0.47-1之间栅格单元作为污染场地空间分布高聚集区,将栅格单元的污染场地空间分布热度指数介于0.24-0.47之间栅格单元作为污染场地空间分布中聚集区,将栅格单元的污染场地空间分布热度指数介于0.11-0.24之间作为污染场地空间分布低聚集区,将栅格单元的污染场地空间分布热度指数介于0-0.11之间作为污染场地空间分布无分布区,在ArcGIS软件中,基于自然断点分级的数据标准分类方法对前述的污染场地空间分布热度指数进行分级,共分为4类,形成污染场地的高聚集区、中聚集区、低聚集区和无分布区,完成污染场地空间分布热区的识别。
如图5所示,为污染场地遥感探测结果示意图,即步骤2-4的结果。
基于步骤2-2确定的分类规则和步骤2-3获得的分割后的影像,对典型地物进行面向对象分类,典型地物类型包括7个大类:植被、水体、裸地、建筑、道路、工矿区污染场地和其他,其中工矿区污染场地可进一步细分为4类:排土排矸场、尾矿库、煤矸石堆场、采煤坑等。
如图6所示,为污染场地热区分布示意图,即步骤3-3的结果。
基于步骤3-3生成的污染场地空间分布热度指数栅格数据,利用规则(2),在ArcGIS软件中,基于自然断点分级的数据标准分类方法对前述的污染场地空间分布热度指数进行分级,共分为4类,图中颜色绿色、黄色和红色表示的区域依次为污染场地的低聚集区、中聚集区和高聚集区。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (8)

1.一种污染场地遥感探测与空间热区识别系统,其特征在于,包括:空间数据采集与预处理模块、污染场地遥感识别模块和污染场地热区探测模块,其中:
空间数据采集与预处理模块,首先,获取GF-1号高分辨率遥感影像并对遥感影像进行预处理,包括辐射校正、大气校正、正射校正操作,作为污染场地遥感分类的数据基础;然后,针对研究区建立地物分类系统,作为污染场地遥感分类的分类依据;
污染场地遥感探测模块,基于所述的分类系统与预处理后的遥感影像,采用面向对象方法进行污染场地遥感探测;首先,建立遥感解译标志库,为遥感解译提供样本参考和先验知识,解译标志包括光谱、形状、大小、纹理;然后,基于解译标志,确定分类特征,构建分类规则;最后,基于分类规则,使用模糊函数确定地物类型的隶属度,进行地物分类,提取不同类型污染场地,从而获得区域内污染场地分类结果;
污染场地热区探测模块,首先,基于所述的污染场地分类结果,利用GIS空间分析方法,计算污染场地空间分布密度;然后,构建污染场地空间分布热度模型,并计算污染场地空间分布热度指数;最后,对污染场地空间分布热度指数等级进行划分,探寻污染场地空间分布热区。
2.根据权利要求1所述的一种污染场地遥感探测与空间热区识别系统,其特征在于:所述空间数据采集与预处理模块具体实现如下:
(1)所述的GF-1号高分辨率遥感影像,其多光谱空间分辨率为16m,全色波段的空间分辨率最高为2m,GF-1号遥感影像下载自地理国情监测云平台;
(2)遥感影像的预处理,基于ENVI5.1软件进行;首先,对多光谱波段,进行辐射校正、大气校正、正射校正预处理;对全色波段,进行辐射定标和大气校正;然后,将多光谱与全色波段进行图像融合,获得处理后的遥感图像,便于污染场地遥感探测模块进行地物识别;
(3)所述的地物分类系统,包括7个大类:植被、水体、裸地、建筑、道路、工矿区污染场地和其他,其中工矿区污染场地可进一步细分为4类:排土排矸场、尾矿库、煤矸石堆场、采煤坑。
3.根据权利要求1所述的污染场地遥感探测与空间热区识别系统,其特征在于:
污染场地遥感探测模块具体实现如下:
(1)各地物类型遥感解译标志,包括裸地、建筑、道路、排土排矸场、尾矿库、煤矸石堆放场、采煤坑、植被、水体;
(2)所述的分类特征,包括亮度、比率、各方向灰度均值、面积、形状指数、长宽比、距离、矩形相似度、归一化水体指数、归一化建筑指数和归一化植被指数;
(3)具体分类规则,见规则(1):
Figure FDA0002719433230000021
其中,B为亮度、R为比率、G为各方向灰度均值、A为面积、S为形状指数、LW为长宽比、RF为矩形相似度、NDWI为归一化水体指数、NDBI为归一化建筑指数、NDVI为归一化植被指数;L为长度。
4.根据权利要求1所述的污染场地遥感探测与空间热区识别系统,其特征在于:所述污染场地热区探测模块具体实现如下:
(1)根据污染场地遥感分类数据,在ArcGIS中,利用Arc Toolbox里的Feature topoint工具,将污染场地矢量面状要素转为点状要素,得到污染场地的点位空间分布数据;然后,基于密度分析方法,分析污染场地分布特征,使用GIS空间分析中的基于点要素的核密度分析方法,计算污染场地的周围邻域中的空间分布密度,从而获得污染场地分布密度指数数据;
(2)基于污染场地面积指数数据与污染场地分布密度指数数据,构建污染场地空间分布热度模型,计算污染场地空间分布热度指数,污染场地空间分布热度指数计算公式如下:
Figure FDA0002719433230000022
式中,Di为第i个栅格单元的污染场地分布密度值;Dmin为所有Di的最小值,Dmax为所有Di的最大值;Ri为第i个栅格单元的污染场地空间分布热度指数;
(3)基于污染场地空间分布热度指数数据,在GIS中,利用基于自然断点的数据标准分类方法,识别污染场地空间分布热区并划分等级,在Arc GIS中,对污染场地空间分布热度指数数据进行自然断点分级,共分为4类,具体划分规则(2)如下:
Figure FDA0002719433230000031
其中,Ri为第i个栅格单元的污染场地空间分布热度指数;
从而形成污染场地空间分布高聚集区、中聚集区、低聚集区和无分布区,完成污染场地空间分布热区的识别。
5.一种污染场地遥感探测与空间热区识别方法,其特征在于,包括如下步骤:
步骤(1),空间数据采集与预处理;
首先,获取GF-1号高分辨率遥感影像并对遥感影像进行预处理,包括辐射校正、大气校正、正射校正操作,作为污染场地遥感分类的数据基础;然后,针对研究区建立地物分类系统,作为污染场地遥感分类的分类依据;
步骤(2),污染场地遥感探测,基于所述的分类系统与预处理后的遥感影像,采用面向对象方法进行污染场地遥感探测;
首先,建立遥感解译标志库,为遥感解译提供样本参考和先验知识,解译标志包括光谱、形状、大小、纹理;
然后,基于解译标志,确定分类特征,构建分类规则;
最后,基于分类规则,使用模糊函数确定地物类型的隶属度,进行地物分类,提取不同类型污染场地,从而获得区域内污染场地分类结果;
步骤(3),污染场地热区探测;
首先,基于所述的污染场地分类结果,利用GIS空间分析方法,计算污染场地空间分布密度;
然后,构建污染场地空间分布热度模型,并计算污染场地空间分布热度指数;
最后,对污染场地空间分布热度指数等级进行划分,探寻污染场地空间分布热区。
6.根据权利要求5所述的一种污染场地遥感探测与空间热区识别方法,其特征在于:所述空间数据采集与预处理包括:
(1.1)所述的GF-1号高分辨率遥感影像,其多光谱空间分辨率为16m,全色波段的空间分辨率最高为2m,GF-1号遥感影像下载自地理国情监测云平台;
(1.2)遥感影像的预处理,基于ENVI5.1软件进行;首先,对多光谱波段,进行辐射校正、大气校正、正射校正预处理;对全色波段,进行辐射定标和大气校正;然后,将多光谱与全色波段进行图像融合,获得处理后的遥感图像,便于污染场地遥感探测模块进行地物识别;
(1.3)所述的地物分类系统,包括7个大类:植被、水体、裸地、建筑、道路、工矿区污染场地和其他,其中工矿区污染场地可进一步细分为4类:排土排矸场、尾矿库、煤矸石堆场、采煤坑。
7.根据权利要求5所述的一种污染场地遥感探测与空间热区识别方法,其特征在于:污染场地遥感探测步骤具体如下:
(2.1)各地物类型遥感解译类型,包括裸地、建筑、道路、排土排矸场、尾矿库、煤矸石堆放场、采煤坑、植被、水体;
(2.2)所述的分类特征,包括亮度、比率、各方向灰度均值、面积、形状指数、长宽比、距离、矩形相似度、归一化水体指数、归一化建筑指数和归一化植被指数;
(2.3)具体分类规则,见如下规则(1):
Figure FDA0002719433230000041
其中,B为亮度、R为比率、G为各方向灰度均值、A为面积、S为形状指数、LW为长宽比、RF为矩形相似度、NDWI为归一化水体指数、NDBI为归一化建筑指数、NDVI为归一化植被指数,L为长度。
8.根据权利要求5所述的一种污染场地遥感探测与空间热区识别方法,其特征在于:所述污染场地热区探测具体如下:
(3.1)根据污染场地遥感分类数据,在ArcGIS中,利用Arc Toolbox里的Feature topoint工具,将污染场地矢量面状要素转为点状要素,得到污染场地的点位空间分布数据;然后,基于密度分析方法,分析污染场地分布特征,使用GIS空间分析中的基于点要素的核密度分析方法,计算污染场地的周围邻域中的空间分布密度,从而获得污染场地分布密度指数数据;
(3.2)基于污染场地面积指数数据与污染场地分布密度指数数据,构建污染场地空间分布热度模型,计算污染场地空间分布热度指数,污染场地空间分布热度指数计算公式(2)如下:
Figure FDA0002719433230000051
式中,Di为第i个栅格单元的污染场地分布密度值;Dmin为所有Di的最小值,Dmax为所有Di的最大值;Ri为第i个栅格单元的污染场地空间分布热度指数;
(3.3)基于污染场地空间分布热度指数数据,在GIS中,利用基于自然断点的数据标准分类方法,识别污染场地空间分布热区并划分等级,在Arc GIS中,对污染场地空间分布热度指数数据进行自然断点分级,共分为4类,见如下规则(2):
Figure FDA0002719433230000052
其中,Ri为第i个栅格单元的污染场地空间分布热度指数;
从而形成污染场地空间分布高聚集区、中聚集区、低聚集区和无分布区,完成污染场地空间分布热区的识别。
CN201910993174.5A 2019-10-18 2019-10-18 一种污染场地遥感探测与空间热区识别系统和方法 Active CN110726677B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910993174.5A CN110726677B (zh) 2019-10-18 2019-10-18 一种污染场地遥感探测与空间热区识别系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910993174.5A CN110726677B (zh) 2019-10-18 2019-10-18 一种污染场地遥感探测与空间热区识别系统和方法

Publications (2)

Publication Number Publication Date
CN110726677A CN110726677A (zh) 2020-01-24
CN110726677B true CN110726677B (zh) 2021-02-23

Family

ID=69220318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910993174.5A Active CN110726677B (zh) 2019-10-18 2019-10-18 一种污染场地遥感探测与空间热区识别系统和方法

Country Status (1)

Country Link
CN (1) CN110726677B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111598048B (zh) * 2020-05-31 2021-06-15 中国科学院地理科学与资源研究所 一种融合高分遥感影像和街景影像的城中村识别方法
CN111666909A (zh) * 2020-06-11 2020-09-15 中科山水(北京)科技信息有限公司 基于面向对象和深度学习的疑似污染场地空间识别方法
CN112182125B (zh) * 2020-09-14 2022-07-05 中国科学院重庆绿色智能技术研究院 一种商务集聚区边界识别系统
CN112288247B (zh) * 2020-10-20 2024-04-09 浙江大学 一种基于空间交互关系的土壤重金属风险识别方法
CN112379453B (zh) * 2020-11-04 2024-05-17 西安建筑科技大学 交通困难地区沉积型碳酸盐铅锌矿勘测方法、系统、设备及应用
CN112347926B (zh) * 2020-11-06 2023-05-23 天津市勘察设计院集团有限公司 基于建筑形态分布的高分辨率影像城中村检测方法
CN114239918B (zh) * 2021-11-19 2022-05-24 哈尔滨工业大学 基于e2sfca可达分析的移动式压缩装备巡逻寻优方法
CN115082546B (zh) * 2022-06-22 2023-03-21 中科三清科技有限公司 污染物排放量的确定方法、装置、电子设备及介质
CN115144350B (zh) * 2022-09-06 2023-02-17 中国科学院地理科学与资源研究所 基于高光谱相似像元比对的场地烃类污染判识方法及系统
CN117593614B (zh) * 2023-10-26 2024-08-23 中国环境科学研究院 一种污染场地多源异构数据融合方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944880A (zh) * 2012-11-13 2013-02-27 中国科学院城市环境研究所 一种基于遥感的城市工业热污染源调查方法
CN102999927A (zh) * 2012-11-23 2013-03-27 中国科学院亚热带农业生态研究所 一种土壤污染物含量空间分布的精细分区方法
CN106372074A (zh) * 2015-07-22 2017-02-01 中国科学院城市环境研究所 一种用于污染场地风险评估可视化系统的架构方法
CN107328720A (zh) * 2017-08-14 2017-11-07 武汉大学 土壤重金属污染程度的空地一体化协同监测系统及方法
CN110009226A (zh) * 2019-04-03 2019-07-12 中国科学院地理科学与资源研究所 一种场地污染风险等级评测及敏感受体影响识别系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EE01321U1 (et) * 2013-11-25 2015-10-15 Ldi Innovation Oü Seade nafta avastamiseks kaugseirel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944880A (zh) * 2012-11-13 2013-02-27 中国科学院城市环境研究所 一种基于遥感的城市工业热污染源调查方法
CN102999927A (zh) * 2012-11-23 2013-03-27 中国科学院亚热带农业生态研究所 一种土壤污染物含量空间分布的精细分区方法
CN106372074A (zh) * 2015-07-22 2017-02-01 中国科学院城市环境研究所 一种用于污染场地风险评估可视化系统的架构方法
CN107328720A (zh) * 2017-08-14 2017-11-07 武汉大学 土壤重金属污染程度的空地一体化协同监测系统及方法
CN110009226A (zh) * 2019-04-03 2019-07-12 中国科学院地理科学与资源研究所 一种场地污染风险等级评测及敏感受体影响识别系统

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Application of infrared spectrum for rapid classification of dominant petroleum hydrocarbon fractions for contaminated site assessment;Liang Wang et al.;《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》;20180915;第207卷;第183-188页 *
Contaminated-site remediation: role and classification;Katalin Gruiz;《Land Contamination & Reclamation》;20091231;第17卷(第3-4期);第533-542页 *
Remote sensing and GIS applications for municipal waste management;Ajay Singh;《Journal of environment management》;20190509;第243卷;第22-29页 *
Study on contaminated site risk classification based on the set theory;Wu Dan et al.;《Applied Mechanics and Materials》;20140922;第644-650卷;第6321-6326页 *
典型矿区土壤重金属污染对植被影响遥感监测分析——以江西省德兴铜矿为例;付卓等;《环境与可持续发展》;20161231(第6期);第66-68页 *
发达国家污染场地分类机制及其对中国的启示;余勤飞等;《环境污染与防治》;20101130;第32卷(第11期);第78-83页 *
基于多源遥感的典型污染场地土壤污染监测初步探讨;熊文成等;《中国环境科学学会学术年会论文集》;20171231;第1996-2002页 *
基于遥感的内蒙古地级市土地覆盖结构时空变化特征分析;迟文峰等;《遥感技术与应用》;20190228;第34卷(第1期);第33-45页 *

Also Published As

Publication number Publication date
CN110726677A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
CN110726677B (zh) 一种污染场地遥感探测与空间热区识别系统和方法
Aksoy et al. Landslide identification and classification by object-based image analysis and fuzzy logic: An example from the Azdavay region (Kastamonu, Turkey)
Bock et al. Spatial indicators for nature conservation from European to local scale
CN108288059B (zh) 一种基于高分辨率遥感技术的建筑垃圾监测方法
Veljanovski et al. Object-based image analysis of VHR satellite imagery for population estimation in informal settlement Kibera-Nairobi, Kenya
CN111667183A (zh) 一种耕地质量监测方法及系统
CN113033381B (zh) 基于遥感数据的矿山和固废填埋场自动提取方法和装置
CN107330422A (zh) 一种基于高精度数字高程模型对半干旱地区进行微地形分类的方法
Pesaresi et al. The global human settlement layer from landsat imagery
Uhl et al. Towards the automated large-scale reconstruction of past road networks from historical maps
CN112070056A (zh) 一种基于面向对象和深度学习的敏感用地识别方法
CN116486289A (zh) 一种多源数据和知识驱动下的燃气管道高后果区识别方法
Juliev et al. Surface displacement detection using object-based image analysis, Tashkent region, Uzbekistan
CN113780175B (zh) 高植被覆盖区台风暴雨型滑坡的遥感识别方法
Dinis et al. Hierarchical object-based classification of dense urban areas by integrating high spatial resolution satellite images and lidar elevation data
CN117475314A (zh) 一种地质灾害隐患立体识别方法、系统及介质
CN109598310B (zh) 一种多因子敏感设施识别方法
Rosli et al. Sustainable urban forestry potential based quantitative and qualitative measurement using geospatial technique
Wyard et al. UAVs for fine-scale open-source landfill mapping
Brigante et al. USE OF MULTISPECTRAL SENSORS WITH HIGH SPATIAL RESOLUTION FOR TERRITORIAL AND ENVIRONMENTAL ANALYSIS.
Bawahidi Integrated land use change analysis for soil erosion study in ulu kinta catchment
Talebi et al. Automated classification of urban areas for storm water management using aerial photography and LiDAR
Marrocco et al. Illegal Microdumps Detection in Multi-Mission Satellite Images with Deep Neural Network and Transfer Learning Approach
Kunapo et al. Towards automation of impervious surface mapping using high resolution orthophoto
Li et al. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant