CN1106582A - Variable cycle acoustics superlattice and ultra-high-requency wideband acoustic/optical device - Google Patents

Variable cycle acoustics superlattice and ultra-high-requency wideband acoustic/optical device Download PDF

Info

Publication number
CN1106582A
CN1106582A CN 94101603 CN94101603A CN1106582A CN 1106582 A CN1106582 A CN 1106582A CN 94101603 CN94101603 CN 94101603 CN 94101603 A CN94101603 A CN 94101603A CN 1106582 A CN1106582 A CN 1106582A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
superlattice
acoustic
material
acousto
piezoelectric
Prior art date
Application number
CN 94101603
Other languages
Chinese (zh)
Inventor
闵乃本
朱永元
程士德
陈延峰
刘治国
刘俊明
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The ultra-high-frequency acousto-optic device made of acoustic super lattice material features that the device is made up of multi-layer composite material including ferroelectric single crystal with 180 deg. domain reversing structure, piezoelectric and non-piezoelectric materials prepared by MOCVD or PLD method, or piezoelectric materials with different piezoelectric coefficients, and acousto-optical interaction medium by cold-pressure welding of indium or ultrasonic welding. Conducting electrode is coated or grown on both surfaces of acoustic super lattice material.

Description

本发明涉及超高频宽带声光器件的制作。 The present invention relates to production of ultra-high frequency band acoustic optical device.

声光器件可以对激光束的频率,方向和强度等各种特性进行快速而有效的控制,因此被广泛用于声光调频,激光锁模和光讯号处理等领域中。 Acousto-optical device may be fast and efficient control of the various characteristics of the frequency, direction and intensity of the laser beam, thus FM sound and light, the mode-locked laser and an optical signal processing and the like are widely used in the art. 其中体波声光器件适用于诸如激光显示和激光记录等需要强激光或需要激光束能量有较大利用率的场合。 Wherein the acoustic bulk wave such as laser light applied to the display device and the like require strong recording laser beam or laser beam energy of the laser requires a greater utilization of the occasion. 为了满足体波声光器件对可分辨点数和带宽的要求,超声波的频率应处于100MHz至数千兆之间,低于100MHz,不能满足上述要求,而频率过高,则由于声光互作用介质的声衰减太大而无法实用化。 To bulk wave acoustic-optical device can meet the requirements for resolution and bandwidth point, should be in the ultrasonic frequency between 100MHz to terabytes, 100MHz below, can not meet the above requirements, and the frequency is too high, since the acousto-optical interaction medium sound attenuation too large to be practical. 体波声光器件的关键是压电换能器。 The key body wave acousto-optic device is a piezoelectric transducer. 目前国内外制备体波超高频声光器件均采用单片压电换能器,因片厚极薄,加工困难,且换能效率不高。 FABRICATION currently abroad UHF wave acousto-optical devices are monolithic piezoelectric transducer, because of difficulties thin sheet thickness, processing, and conversion efficiency is not high.

本发明的目的是用变周期声学超晶格材料制作换能效率高和工作频率高的声光器件,可大幅度增加带宽,并可通过变周期的设计而得到所需的带宽。 Is the acoustic object of the present invention with varying period superlattice materials of high conversion efficiency and high operating frequency of the acousto-optical device, can greatly increase the bandwidth, and to give the desired bandwidth by varying the design cycle.

变周期声学超晶格声光器件的工作原理大致如下:通过导电电极给变周期声学超晶格加上一交变外电场,由于超晶格是压电材料,这一外电场将在超晶格内激发出超声波,当超声波传入声光互作用介质后,则与激光束发生相互作用,使激光束发生衍射,衍射光偏转角的大小与超声波的频率成正比,衍射光的强度与超声波的强度成正比,因此通过改变超声波的频率可获得不同方向的衍射光,通过改变超声波的强度可调制衍射光的强度。 Acoustic varying period superlattice acoustooptical device works as follows: a conductive electrode by varying period superlattice acoustic plus an alternating external field, since the superlattice is a piezoelectric material, the external electric field in superlattice Neg the ultrasound excitation, when the incoming ultrasonic wave acousto-optical interaction medium, the occurrence of interaction with the laser beam, the laser beam is diffracted, the diffracted light intensity proportional to the frequency and magnitude of the deflection angle of the ultrasonic wave, the ultrasonic diffracted light It is proportional to the intensity, thus obtained by varying the frequency of the ultrasonic waves of the diffracted light in different directions, by varying the intensity of the ultrasonic wave intensity of the diffracted light can be modulated.

变周期声学超晶格是指层厚逐渐变化的声学超晶格,包括用直拉法(Czochralski)制备的具有变周期180度畴反转结构的铁电单晶体(如LiNbO3,LiTaO3,Ba2NaNb5O15等),和用MOCVD,PLD(Pulsed Laser Deposition)方法制备的多层复合材料,具体方法是:选择压电材料,如LiNbO3,LiTaO3,PbTiO3,Li2B4O7,石英,ZnO,PZT,PLZT,Bi12GeO20,Bi4Ti3O12等,和非压电材料,如MgO,TiO2,SrTiO3,Al2O3等,在合适的衬底材料上通过控制每一层的生长时间,生长出二组元或多组元的变周期声学超晶格;也可用任意二种或多种压电常数不同的材料生长,譬如:用MOCVD或PLD法交替生长压电材料LiNbO3和非压电材料MgO即可制成声学超晶格。 Acoustic varying period superlattice layer thickness refers to a gradual change in acoustic superlattice, 180 comprises a single crystal ferroelectric domain inversion structure having a varying period Czochralski prepared (the Czochralski) (such as LiNbO3, LiTaO3, Ba2NaNb5O15 etc.) , and using MOCVD, PLD (Pulsed Laser Deposition) method for preparing the multilayer composite material, the specific method is: selecting a piezoelectric material such as LiNbO3, LiTaO3, PbTiO3, Li2B4O7, quartz, ZnO, PZT, PLZT, Bi12GeO20, Bi4Ti3O12, etc., and a non-piezoelectric material such as MgO, TiO2, SrTiO3, Al2O3, etc., on a suitable substrate material by controlling the growth time for each layer, the growth component or two component acoustic superlattice of varying period; also It can be used any two or more different piezoelectric constant material growth, for example: using a PLD method or MOCVD growth of piezoelectric material alternating LiNbO3 and MgO can be made of non-piezoelectric material, the acoustic superlattice. 变周期声学超晶格的层数可为数层至数百层,层的厚度可在亚微米(零点几微米)至数十微米的范围内选择。 Acoustic varying period superlattice layers may be several layers to hundreds of layers, thickness of the layer can be selected from the range of tens of microns to sub-micron (a few tenths of micrometers).

以变周期声学超晶格作压电换能器,以氧化碲,钼酸铅,石英,单畴LiNbO3或Al2O3等作声光互作用介质,用铟冷压焊,超声焊等方法将两者键合起来即制成声光器件。 In varying period superlattice as an acoustic piezoelectric transducer for sound to tellurium oxide, lead molybdate, quartz, or the like Al2O3 monodomain LiNbO3 optical interaction medium, with indium cold welding method, ultrasonic welding or the like both i.e., bonded together acoustooptical device made. 或是在上述声光互作用介质上先生长一导电电极层(包括Au,Ag,Al等金属或导电陶瓷,如La0.5Sr0.5CoO3等),再生长变周期声学超晶格,最后再生长一层导电电极层。 Either regrowth at the end of said acoustic optical length Mr a conductive electrode layer on the medium (including Au, Ag, Al, or a conductive ceramic, such as La0.5Sr0.5CoO3 etc.) interactions, acoustic regrowth varying period superlattice, a conductive electrode layer.

与单片换能器相比,变周期声学超晶格具有如下特点:一是工作频率高(频率与层厚成反比,层越薄,频率越高),二是换能效率高(周期声学超晶格的换能效率与层数的平方成正比,变周期声学超晶格的换能效率小于周期声学超晶格,但远大于单片换能器),三是可获得很大的带宽,且加工较易。 Compared with monolithic transducer, acoustic varying period superlattice has the following characteristics: First, the high operating frequency (the frequency is inversely proportional to the layer thickness, the thinner the layer, the higher the frequency), the second is a high conversion efficiency (acoustic cycle conversion efficiency proportional to the square of the number of layers of the superlattice, the acoustic conversion efficiency varying period superlattice is smaller than the acoustic period superlattice, but much larger than the monolithic transducer), three are available a lot of bandwidth and processing easier.

以下结合附图和通过实施例对本发明作进一步的说明:图一为本发明的结构和应用示意图。 The following Examples and accompanying drawings further illustrate the present invention: schematic view of a structure and applications of the present invention. 压电材料(或正畴)1与非压电材料(或负畴)2相间,层数在几到几百之间,层厚在微米量级,在超晶格材料的两端均生长或镀有电极3。 The piezoelectric material (or n-domains) and a non-piezoelectric material (or negative domain) 2 phase, between a few to hundreds of layers, layer thickness on the order of micrometers, were grown on both ends of the superlattice material, or 3 plated electrode. 电极上外加高频电压(频率范围在几百兆到数千兆,电压幅度为几伏至数十伏),传入声光互作用介质4的超声波5可以使入射激光6发生衍射7。 High frequency voltage applied to the upper electrode (in the frequency range of several hundred to several giga voltage amplitude of several volts to tens of volts), the incoming ultrasonic wave acousto-optical interaction medium 54 may be incident laser beam 6 is diffracted 7.

以下实施例:所用压电,非压电材料均在上述范围选择,声光互作用介质材料也是如此。 The following Example: a piezoelectric, a non-piezoelectric materials are selected in the range described above, acousto-optic interaction is true dielectric material used.

(1)正常布拉格衍射器件:超声波为纵波模式(例如用C轴取向的LiNbO3变周期声学超晶格作压电换能器可满足此要求)。 (1) normal Bragg diffraction device: an ultrasonic wave is a longitudinal mode (e.g. by varying period LiNbO3 acoustic superlattice as C-axis orientation of the piezoelectric transducer may meet this requirement). 周期为几微米到十几微米的变周期声学超晶格可激发几百兆至1-2千兆的纵波超声波。 Period of several microns to ten microns can be chirped superlattice acoustic excitation of hundreds of megabytes to 1-2 Gigabit longitudinal ultrasonic wave.

(2)反常布拉格衍射器件:超声波为切变波模式(例如用A轴取向的LiNbO3变周期声学超晶格作压电换能器可满足此要求)。 (2) Abnormal Bragg diffraction device: an ultrasonic shear wave mode is (e.g. by an acoustic LiNbO3 varying period superlattice as A-axis orientation of the piezoelectric transducer may meet this requirement). 周期为几微米到十几微米的变周期声学超晶格可激发几百兆至1-2千兆的切变波超声波。 Period of several microns to ten microns can be chirped superlattice acoustic excitation of hundreds of megabytes to 1-2 Gigabit ultrasonic shear wave.

(3)宽带布拉格衍射器件:例如用层厚从9微米变化至40微米的变周期声学晶格作换能器,层数在30左右,其带宽可达600MHz左右。 (3) broadband Bragg diffraction device: for example, with a layer thickness of from 9 microns to 40 microns varying period of lattice as an acoustic transducer, about 30 layers, up to the bandwidth of 600MHz.

Claims (3)

  1. 1.一种声学超晶格材料制成的超高频声光器件,其特征是用直拉法制备的具有180度畴反转结构的铁电单晶体和用MOCVD,PLD方法制备的压电材料和非压电材料或多种压电系数不同的压电材料交替迭合的多层复合材料与声光互作用介质以铟冷压焊或超声焊等方法键合而成,在超晶格材料的两面均镀有或生长有导电电极。 UHF acoustooptical device made 1. An acoustic superlattice material, which is prepared wherein the Czochralski Method single crystal having ferroelectric domain inversion structure 180 and the piezoelectric material is prepared by MOCVD, PLD method and a non a plurality of different piezoelectric material or piezoelectric constant of the piezoelectric material are alternately stacked and bonded multilayer composite acousto-optical interaction medium key indium cold welding method or ultrasonic welding or the like bonded together, on both sides of the superlattice They are grown or plated with conductive electrodes.
  2. 2.由权利1所述的超高频声光器件其特征是在声光互作用介质材料上直接生长电极,再生长声学超晶格材料或是直接利用直拉法制备的具有180度畴反转结构的铁电单晶体,在镀上电极后和声光互作用介质材料键合而成。 2. The light from the ultra-high frequency acoustic device according to claim 1 wherein the electrodes are directly grown on the acousto-optical interaction medium material, regrowth or acoustic superlattice material directly with 180 degree domain inversion structure Czochralski Preparation of ferroelectric single crystals, acousto-optical interaction in the dielectric material coated on the electrode key bonded together.
  3. 3.由权利1,2所述的超高频声光器件其特征是声光互作用介质材料在下列材料中选择:氧化碲,钼酸铅,石英,单畴LiNbO3或Al2O3等。 3. The light from the ultra-high frequency acoustic device according to claim 1, characterized in that the acousto-optical interaction medium is a material selected in the following materials: tellurium oxide, lead molybdate, quartz, LiNbO3, or the like monodomain Al2O3. 压电材料为LiNbO3,LiTaO3,PbTiO3,Li2B4O7,石英,ZnO,PZT,PLZT,Bi12GeO20,Bi4Ti3O12等,非压电材料为MgO,TiO2,SrTiO3,Al2O3等。 The piezoelectric material is LiNbO3, LiTaO3, PbTiO3, Li2B4O7, quartz, ZnO, PZT, PLZT, Bi12GeO20, Bi4Ti3O12, etc., a non-piezoelectric material is MgO, TiO2, SrTiO3, Al2O3 and the like. 变周期声学超晶格的层数可为数层至数百层,层的厚度可在亚微米(零点几微米)至数十微米的范围内选择。 Acoustic varying period superlattice layers may be several layers to hundreds of layers, thickness of the layer can be selected from the range of tens of microns to sub-micron (a few tenths of micrometers).
CN 94101603 1994-02-02 1994-02-02 Variable cycle acoustics superlattice and ultra-high-requency wideband acoustic/optical device CN1106582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 94101603 CN1106582A (en) 1994-02-02 1994-02-02 Variable cycle acoustics superlattice and ultra-high-requency wideband acoustic/optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 94101603 CN1106582A (en) 1994-02-02 1994-02-02 Variable cycle acoustics superlattice and ultra-high-requency wideband acoustic/optical device

Publications (1)

Publication Number Publication Date
CN1106582A true true CN1106582A (en) 1995-08-09

Family

ID=5030256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 94101603 CN1106582A (en) 1994-02-02 1994-02-02 Variable cycle acoustics superlattice and ultra-high-requency wideband acoustic/optical device

Country Status (1)

Country Link
CN (1) CN1106582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237947B (en) 2005-08-05 2013-03-27 皇家飞利浦电子股份有限公司 Curved two-dimensional array transducer
CN105158846A (en) * 2015-05-29 2015-12-16 福建福晶科技股份有限公司 Method of making optical planar waveguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237947B (en) 2005-08-05 2013-03-27 皇家飞利浦电子股份有限公司 Curved two-dimensional array transducer
CN105158846A (en) * 2015-05-29 2015-12-16 福建福晶科技股份有限公司 Method of making optical planar waveguide

Similar Documents

Publication Publication Date Title
Newell Face-mounted piezoelectric resonators
US3401275A (en) Composite resonator
Bleustein et al. Forced Thickness‐Shear Vibrations of Discontinuously Plated Piezoelectric Plates
US3422371A (en) Thin film piezoelectric oscillator
Harris et al. ELECTRONICALLY TUNABLE ACOUSTO‐OPTIC FILTER
Lakin et al. Development of miniature filters for wireless applications
US5706564A (en) Method for designing ultrasonic transducers using constraints on feasibility and transitional Butterworth-Thompson spectrum
Takeuchi et al. Electromechanical properties of (Pb, Ln)(Ti, Mn) O3 ceramics (Ln= rare earths)
US3590287A (en) Piezoelectric thin multilayer composite resonators
US6127768A (en) Surface acoustic wave and bulk acoustic wave devices using a Zn.sub.(1-X) Yx O piezoelectric layer device
US4952832A (en) Surface acoustic wave device
US4346965A (en) Light modulator/deflector using acoustic surface waves
Jaffe et al. Piezoelectric transducer materials
US6761692B2 (en) High frequency and multi frequency band ultrasound transducers based on ceramic films
US5221870A (en) Surface acoustic wave device
US6424237B1 (en) Bulk acoustic resonator perimeter reflection system
Hickernell DC triode sputtered zinc oxide surface elastic wave transducers
Uchida et al. Acoustooptic deflection materials and techniques
US6208063B1 (en) Surface acoustic wave device having polycrystalline piezoelectric ceramic layers
US20020063941A1 (en) Magneto-optical member and optical isolator using the same
Nakamura et al. Domain structures in KNbO 3 crystals and their piezoelectric properties
Shibayama et al. Optimum cut for rotated Y-cut LiNbO 3 crystal used as the substrate of acoustic-surface-wave filters
Marshall et al. Surface acoustic wave multistrip components and their applications
Warner et al. Acousto‐optic light deflectors using optical activity in paratellurite
US5233259A (en) Lateral field FBAR

Legal Events

Date Code Title Description
C06 Publication
C01 Deemed withdrawal of patent application (patent law 1993)