CN110645912A - A machine vision panoramic measurement system and measurement method - Google Patents
A machine vision panoramic measurement system and measurement method Download PDFInfo
- Publication number
- CN110645912A CN110645912A CN201910961570.XA CN201910961570A CN110645912A CN 110645912 A CN110645912 A CN 110645912A CN 201910961570 A CN201910961570 A CN 201910961570A CN 110645912 A CN110645912 A CN 110645912A
- Authority
- CN
- China
- Prior art keywords
- measurement
- machine vision
- axial
- nut mechanism
- radial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/0002—Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
- G01B5/0004—Supports
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种机器视觉全景测量系统及测量方法,包括上位机A、下位机B、径向电机驱动器C、直流电源D、轴向电机驱动器E、机器视觉测量滑台F组成。所述机器视觉全景测量系统从测量相机位置固定,而测量平台运动的角度出发,设计一种机器视觉全景测量系统及测量方法。所述系统可以在上下位机的联合控制下,根据测量需要,自动控制测量滑台带动装夹工件完成轴、径向的直线运动和测量平台内的圆弧运动,实现工件高精度的全景扫描和三维重建,并配置手轮,方便故障时手动调节,对工作环境适应性良好;所述测量滑台上设有接近开关传感器和限位开关,用以实时反馈并定位工件运行位置和工作异常时装置的自我保护。所述机器视觉测量滑台系统可同时装夹多个工件,且适应多种视觉采集方式的任务要求,包括单目视觉测量、双目视觉测量和结构光测量,适应性强,定位精度高,在机器视觉测量领域具有较高的可推广性。
The invention discloses a machine vision panoramic measurement system and measurement method, comprising an upper computer A, a lower computer B, a radial motor driver C, a DC power supply D, an axial motor driver E, and a machine vision measurement slide table F. The machine vision panoramic measurement system is designed from the perspective that the position of the measurement camera is fixed and the measurement platform moves, and a machine vision panoramic measurement system and measurement method are designed. The system can automatically control the measuring slide to drive the workpiece to be clamped under the joint control of the upper and lower computers and according to the measurement needs to complete the axial and radial linear motion and the circular arc motion in the measuring platform, so as to realize the high-precision panoramic scanning of the workpiece. and three-dimensional reconstruction, and equipped with handwheel, which is convenient for manual adjustment in case of failure, and has good adaptability to the working environment; the measuring slide is provided with proximity switch sensors and limit switches, which are used for real-time feedback and locating the running position of the workpiece and abnormal work. self-protection of the device. The machine vision measurement slide table system can clamp multiple workpieces at the same time, and adapt to the task requirements of various vision acquisition methods, including monocular vision measurement, binocular vision measurement and structured light measurement, with strong adaptability and high positioning accuracy. It has high generalizability in the field of machine vision measurement.
Description
技术领域technical field
本发明属于机器视觉测量技术领域,具体为一种机器视觉全景测量系统及测量方法。The invention belongs to the technical field of machine vision measurement, in particular to a machine vision panoramic measurement system and a measurement method.
背景技术Background technique
机器视觉测量技术是利用相机、专有卡具等设备对待测物进行动态或者静态拍摄得到序列或单帧图像,应用视觉测量可以对复杂结构进行精确测量。在实际工业测量环境中,如果待测工件表面形貌复杂或多工件同时并行测量,采集相机单次测量难以获取完整形貌,需要采集相机从多个角度进行拍摄,通过多幅图片的特征匹配重建成像。在测量过程中,若工件位置固定,相机需要在不同的位置进行图像采集,相机参数需要重复标定,如果测量定位不精准,则测量结果不精确,且工作效率不高。Machine vision measurement technology is to use cameras, proprietary fixtures and other equipment to take dynamic or static shots of the object to be measured to obtain sequence or single-frame images. The application of visual measurement can accurately measure complex structures. In the actual industrial measurement environment, if the surface topography of the workpiece to be measured is complex or multiple workpieces are measured simultaneously, it is difficult for the acquisition camera to obtain the complete topography in a single measurement. Reconstructed imaging. During the measurement process, if the position of the workpiece is fixed, the camera needs to capture images at different positions, and the camera parameters need to be repeatedly calibrated. If the measurement positioning is not accurate, the measurement results are inaccurate and the work efficiency is not high.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种机器视觉全景测量系统及测量方法,固定采集相机位置,精密定位控制装夹多工件的载物平台移动,用以解决当前视觉测量中相机重复标定,效率不高以及测量定位不准确的问题。The purpose of the present invention is to provide a machine vision panoramic measurement system and measurement method, which can fix the position of the acquisition camera, precisely position and control the movement of the carrier platform for clamping multiple workpieces, so as to solve the problem of repeated calibration of the camera in the current visual measurement, low efficiency and low efficiency. The problem of inaccurate measurement and positioning.
为解决上述视觉测量问题,本发明的具体技术方案如下:For solving the above-mentioned visual measurement problem, the concrete technical scheme of the present invention is as follows:
一种机器视觉全景测量系统及测量方法,包括上位机A、下位机B、径向电机驱动器C、直流电源D、轴向电机驱动器E、机器视觉测量滑台F,通过上位机A和下位机B编程控制径向电机驱动器C和轴向电机驱动器E工作,驱动电机带动载物板200实现直线和圆弧运动,完成测量任务;所述径向电机驱动器C和轴向电机驱动器E由直流电源D供电,接收下位机B的指令驱动电机转动;机器视觉测量滑台F由龙门架视觉采集机构100、载物板200、主动径向丝杠螺母机构300、固定板400、主动轴向丝杠螺母机构500、从动轴向滑块机构600和从动径向滑块机构700组成;所述龙门架视觉采集机构100的图像采集方式可据测量需要选择单目、双目或结构光测量;所述固定板400上开槽用以定位安装接近开关传感器405、406、407、408、409、410,限位开关401、402、403、404通过螺钉连接固定于固定板上,直线滑动导轨603与固定板400通过螺钉连接;直线滑动导轨603用以实现主动轴向丝杠螺母机构500中滑块502在固定板400上的平稳运动,所述主动轴向丝杠螺母机构500通过支撑座501和固定座505的螺栓连接在固定板400上,支撑座501和固定座505中设有轴承,用以嵌套丝杠504,丝杠504一端通过联轴器506与驱动电机508转动轴相连,驱动电机508通过螺钉连接安装在电机座507上,电机座507通过固定板400底部的螺钉安装在固定板400上,驱动电机508另一端转动轴设有手轮509,主动径向丝杠螺母机构300与所述主动轴向丝杠螺母机构500连接方式相同,从动轴向螺母机构600和从动径向螺母机构700的滑块连接方式,与所述主动轴向丝杠螺母机构500的滑块502连接方式相同;所述主动轴向丝杠螺母机构500的滑块502下方通过螺钉连接固定板400,上方通过螺钉连接有直线滑动导轨601,直线滑动导轨601上方安装载物板200,载物板200可据工件结构外形和数量完成装夹。A machine vision panoramic measurement system and measurement method, comprising an upper computer A, a lower computer B, a radial motor driver C, a DC power supply D, an axial motor driver E, and a machine vision measurement slide F, through the upper computer A and the lower computer B is programmed to control the radial motor driver C and the axial motor driver E to work, and the drive motor drives the
作为优选,所述龙门架视觉采集机构100中的相机采用大恒MER-130-30UM相机,上位机使用Intel(R)Core(TM)i5-4200 CPU@2.80GHz处理器,内存为8GB,下位机选用单片机控制器。Preferably, the camera in the gantry
作为优选,所述固定板400的开槽与接近开关传感器405、406、407、408、409、410和直线滑动导轨603采用过渡配合进行精准定位,接近开关传感器405、406、407、408、409、410采用金属接近传感器。Preferably, the slots of the
作为优选,所述主动轴向丝杠螺母机构500和主动径向丝杠螺母机构300的驱动电机508、305均选用步进电机,手轮509、301上均匀刻有滚花。Preferably, the driving motors 508 and 305 of the active axial
作为优选,所述直线滑动导轨601、603中的螺钉均采用沉头螺钉。Preferably, the screws in the linear
作为优选,所述机器视觉测量滑台系统测量定位步骤如下:Preferably, the measurement and positioning steps of the machine vision measurement slide system are as follows:
步骤I:根据测量需要布置安装龙门架视觉采集机构100和精密滑台机构,在载物板200上根据需要装夹多个工件,下位机B给出归零指令,使载物板200位置归零,径向电机驱动器C和轴向电机驱动器E驱动电机305、508带动丝杠309、504转动,归零接近开关传感器406、409用以定位归零位置,反馈给单片机控制系统,完成装置归零;Step 1: Arrange and install the gantry
步骤II:载物板200位置归零后,上位机通信给出下位机测量位置坐标数据,下位机发出指令给径向电机驱动器C和轴向电机驱动器E,驱动电机305、508带动丝杠309、504转动,螺母机构将丝杠转动变换为滑块直线运动,完成载物板200的径向和轴向运动,设置在固定板400上的接近开关传感器405、407、408、410用于载物板200的位置反馈,精确定位工件位置,实现轴、径向的精密直线运动;轴、径向丝杠螺母机构运用插补方法,搭配从动轴向滑块机构600和从动径向滑块机构700,可实现圆弧式运动,进行工件的全景扫描测量;Step II: After the position of the
步骤III:若运行位置不合理,触发限位开关401、402、403、404,即时反馈给单片机控制系统,停止驱动电机508、305转动,保护装置。Step III: If the running position is unreasonable, trigger the limit switches 401, 402, 403, 404, and immediately feedback to the single-chip control system, stop the rotation of the driving motors 508, 305, and protect the device.
步骤IV:测量任务完成后,单片机控制系统给出归零指令,在接近开关传感器409、406的定位作用下,控制驱动电机508、305转动,将载物板位置重新归零,方便下次操作。Step IV: After the measurement task is completed, the single-chip control system gives a zeroing instruction, and under the positioning action of the proximity switch sensors 409 and 406, it controls the driving motors 508 and 305 to rotate, and resets the position of the carrier plate to zero, which is convenient for the next operation. .
本发明的有益效果在于:The beneficial effects of the present invention are:
1.本发明可以在保证相机测量位置不变的情况下,精密定位控制多装夹工件的载物平台移动来完成工件扫描,相比于固定工件而移动相机的测量方式,可避免相机参数的重复标定问题,大大提高了测量效率和定位精准度;1. The present invention can precisely position and control the movement of the carrier platform of the multi-clamped workpiece to complete the workpiece scanning under the condition that the measurement position of the camera remains unchanged. Compared with the measurement method of fixing the workpiece and moving the camera, the camera parameters can be avoided. Repeated calibration problem greatly improves measurement efficiency and positioning accuracy;
2.本发明的载物板200与滑块602,滑块602和固定板400均通过直线滑动导轨601、603连接,具有较好的平面度,能够保证精密滑台运行平稳,载物板200可根据工件结构和数量安装卡具,更具有装夹实用性;2. The
3.本发明设有接近开关传感器405、406、407、408、409、410,能够精准定位和反馈滑台运行状态,实现限位和归零操作,更具有实时定位反馈能力,限位开关401、402、403、404的安装,可以在运行位置不合理时即刻断电,保护精密滑台不受损坏,更具有装置自我保护能力;3. The present invention is provided with proximity switch sensors 405, 406, 407, 408, 409, 410, which can accurately locate and feedback the running state of the sliding table, realize the limit and return operations, and have real-time positioning feedback capability. The limit switch 401 , 402, 403, 404 installation, can immediately power off when the running position is unreasonable, protect the precision sliding table from damage, and have the ability of self-protection of the device;
4.本发明的主动轴向丝杠螺母机构500和主动径向丝杠螺母机构300的驱动电机508、305的转动轴均设有手轮509、301,可根据情况手动调节;4. The rotating shafts of the driving motors 508 and 305 of the active axial
5.本发明的采集相机的夹持支架可以适用于更多相机型号,图像采集方式可根据需要更换单目、双目和结构光等,具有更广的应用面。5. The clamping bracket of the acquisition camera of the present invention can be applied to more camera models, and the image acquisition method can be changed to monocular, binocular and structured light according to needs, and has a wider application area.
附图说明Description of drawings
图1是一种机器视觉全景测量系统的整体结构示意图Figure 1 is a schematic diagram of the overall structure of a machine vision panoramic measurement system
图2是一种机器视觉全景测量系统机器视觉测量滑台的整体结构图Figure 2 is the overall structure of the machine vision measurement slide of a machine vision panoramic measurement system
图3是一种机器视觉全景测量系统机器视觉测量滑台的整体结构分解图Figure 3 is an exploded view of the overall structure of the machine vision measurement slide of a machine vision panoramic measurement system
图4是一种机器视觉全景测量系统轴向主动丝杠螺母机构分解图Figure 4 is an exploded view of the axial active screw nut mechanism of a machine vision panoramic measurement system
图5是一种机器视觉全景测量系统径向主动丝杠螺母机构分解图Figure 5 is an exploded view of the radial active screw nut mechanism of a machine vision panoramic measurement system
图6是一种机器视觉全景测量系统从动滑块结构分解图Figure 6 is an exploded view of the driven slider structure of a machine vision panoramic measurement system
图7是一种机器视觉全景测量系统固定板部件示意图Figure 7 is a schematic diagram of the fixed plate components of a machine vision panoramic measurement system
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be described below through specific embodiments shown in the accompanying drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present invention.
以下结合附图进一步说明本发明的具体结构及实施方式。本发明的系统组成如图1-图6,采用如下方案:The specific structure and embodiments of the present invention are further described below with reference to the accompanying drawings. The system composition of the present invention is as shown in Figure 1 to Figure 6, and the following scheme is adopted:
实施例1:Example 1:
一种机器视觉全景测量系统的结构组成包括:上位机A、下位机B、径向电机驱动器C、直流电源D、轴向电机驱动器E、机器视觉测量滑台F组成。所述上位机A和下位机B编程控制径向电机驱动器C和轴向电机驱动器E工作,驱动电机带动载物板200实现直线和圆弧运动,完成测量任务;所述径向电机驱动器C和轴向电机驱动器E由直流电源D供电,接收下位机B的指令驱动电机转动;机器视觉测量滑台F作为测量系统的执行机构,装夹多个工件,根据控制指令完成直线和圆弧等运行方式的测量任务。The structural composition of a machine vision panoramic measurement system includes: an upper computer A, a lower computer B, a radial motor driver C, a DC power supply D, an axial motor driver E, and a machine vision measurement slide table F. The upper computer A and the lower computer B program and control the radial motor driver C and the axial motor driver E to work, and the driving motor drives the
所述机器视觉测量滑台F由龙门架视觉采集机构100、载物板200、主动径向丝杠螺母机构300、固定板400、主动轴向丝杠螺母机构500、从动轴向滑块机构600和从动径向滑块机构700组成;所述龙门架视觉采集机构100和固定板400布置在工作平台;主动径向丝杠螺母机构300和主动轴向丝杠螺母机构500通过支撑座302、501和固定座308、505上的螺栓连接在固定板400上,主动径向丝杠螺母机构300和主动轴向丝杠螺母机构500上的滑块303、502下方通过直线滑动导轨603与固定板400螺钉连接,上方通过直线滑动导轨601与载物板200螺钉连接;从动轴向滑块机构600和从动径向滑块机构700下方通过直线滑动导轨603与固定板400螺钉连接,上方通过直线滑动导轨601与载物板200螺钉连接。The machine vision measurement slide table F consists of a gantry
所述主动轴向丝杠螺母机构500由支撑座501、滑块502、滚珠螺母503、丝杠504、固定座505、联轴器506、电机座507、驱动电机508和手轮509组成,驱动电机508用螺钉连接固定在电机座507上,电机座507通过固定板400底面的螺钉连接在固定板400上,所述驱动电机508通过联轴器506带动丝杠504正反向转动,手轮509可手动调节丝杠504转动,螺母机构将丝杠转动变换为滑块的直线运动,配合从动轴向滑块机构600实现载物板200的轴向的运动。The active axial lead
所述主动径向丝杠螺母机构300由手轮301、支撑座302、滑块303、螺母304、丝杠309、固定座308、联轴器307、电机座306和驱动电机305组成,运行方式和连接关系与主动轴向丝杠螺母机构500相同。The active radial screw and
所述固定板400设有接近开关传感器405、406、407、408、409、410用以装置归零和定位控制,限位开关401、402、403、404用以装置运行位置不合理时的自我保护。The fixing
实施例2:Example 2:
本发明中,机器视觉测量滑台系统测量定位步骤如下:In the present invention, the measurement and positioning steps of the machine vision measurement slide system are as follows:
步骤I:根据测量需要布置安装龙门架视觉采集机构100和精密滑台机构,在载物板200上根据需要装夹多个工件,下位机B给出归零指令,使载物板200位置归零,径向电机驱动器C和轴向电机驱动器E驱动电机305、508带动丝杠309、504转动,归零接近开关传感器406、409用以定位归零位置,反馈给单片机控制系统,完成装置归零;Step 1: Arrange and install the gantry
步骤II:载物板200位置归零后,上位机通信给出下位机测量位置坐标数据,下位机发出指令给径向电机驱动器C和轴向电机驱动器E,驱动电机305、508带动丝杠309、504转动,螺母机构将丝杠转动变换为滑块直线运动,完成载物板200的径向和轴向运动,设置在固定板400上的接近开关传感器405、407、408、410用于载物板200的位置反馈,精确定位工件位置,实现轴、径向的精密直线运动;轴、径向丝杠螺母机构运用插补方法,搭配从动轴向滑块机构600和从动径向滑块机构700,可实现圆弧式运动,进行工件的全景扫描测量;Step II: After the position of the
步骤III:若运行位置不合理,触发限位开关401、402、403、404,即时反馈给单片机控制系统,停止驱动电机508、305转动,保护装置。Step III: If the running position is unreasonable, trigger the limit switches 401, 402, 403, 404, and immediately feedback to the single-chip control system, stop the rotation of the driving motors 508, 305, and protect the device.
步骤IV:测量任务完成后,单片机控制系统给出归零指令,在接近开关传感器409、406的定位作用下,控制驱动电机508、305转动,将载物板位置重新归零,方便下次操作。Step IV: After the measurement task is completed, the single-chip control system gives a zeroing instruction, and under the positioning action of the proximity switch sensors 409 and 406, it controls the driving motors 508 and 305 to rotate, and resets the position of the carrier plate to zero, which is convenient for the next operation. .
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。The basic principles and main features of the present invention and the advantages of the present invention have been shown and described above. The present invention is not limited by the above-mentioned embodiments. The above-mentioned embodiments and descriptions only illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will also have various changes and improvements. These changes and modifications are within the scope of the claimed invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910961570.XA CN110645912A (en) | 2019-10-11 | 2019-10-11 | A machine vision panoramic measurement system and measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910961570.XA CN110645912A (en) | 2019-10-11 | 2019-10-11 | A machine vision panoramic measurement system and measurement method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110645912A true CN110645912A (en) | 2020-01-03 |
Family
ID=68993775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910961570.XA Pending CN110645912A (en) | 2019-10-11 | 2019-10-11 | A machine vision panoramic measurement system and measurement method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110645912A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114111571A (en) * | 2021-11-15 | 2022-03-01 | 天津大学 | Visual precision detection device for measuring special-shaped workpiece |
CN117308780A (en) * | 2023-09-26 | 2023-12-29 | 深圳市深杰皓科技有限公司 | Fan blade detection device and system based on visual detection |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5256745B2 (en) * | 2008-01-17 | 2013-08-07 | 株式会社ニコン | 3D shape measuring device |
CN206892635U (en) * | 2017-04-24 | 2018-01-16 | 成都智凯自动化科技有限公司 | The reciprocal detection platform of machine vision based on PLC |
CN208483806U (en) * | 2018-06-26 | 2019-02-12 | 广州中国科学院先进技术研究所 | A kind of high-accuracy alignment device of view-based access control model system |
CN209014981U (en) * | 2018-11-02 | 2019-06-21 | 广州中国科学院先进技术研究所 | A high-precision parallel platform with alignment demonstration function |
CN110253509A (en) * | 2019-05-28 | 2019-09-20 | 广东工业大学 | A visual positioning macro-micro composite platform |
-
2019
- 2019-10-11 CN CN201910961570.XA patent/CN110645912A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5256745B2 (en) * | 2008-01-17 | 2013-08-07 | 株式会社ニコン | 3D shape measuring device |
CN206892635U (en) * | 2017-04-24 | 2018-01-16 | 成都智凯自动化科技有限公司 | The reciprocal detection platform of machine vision based on PLC |
CN208483806U (en) * | 2018-06-26 | 2019-02-12 | 广州中国科学院先进技术研究所 | A kind of high-accuracy alignment device of view-based access control model system |
CN209014981U (en) * | 2018-11-02 | 2019-06-21 | 广州中国科学院先进技术研究所 | A high-precision parallel platform with alignment demonstration function |
CN110253509A (en) * | 2019-05-28 | 2019-09-20 | 广东工业大学 | A visual positioning macro-micro composite platform |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114111571A (en) * | 2021-11-15 | 2022-03-01 | 天津大学 | Visual precision detection device for measuring special-shaped workpiece |
CN117308780A (en) * | 2023-09-26 | 2023-12-29 | 深圳市深杰皓科技有限公司 | Fan blade detection device and system based on visual detection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201107639Y (en) | A large-scale work-in-progress geometric measurement device using machine vision | |
CN207832140U (en) | A kind of ten degree of freedom blue light spatial digitizers of intelligent control | |
CN112587246B (en) | Self-balancing adjusting support platform, robot and self-balancing adjusting method | |
CN206311086U (en) | A kind of great-scale displacement sensor calibrating installation | |
CN108356458B (en) | Three-axis real-time tracking welding device capable of rotating symmetrically for welding | |
CN110567375A (en) | Multi-workpiece parallel vision measurement precision sliding table | |
CN109552450B (en) | An automatic assembly machine for a power compartment | |
CN207816184U (en) | A kind of external dimensions detection device of part or exemplar | |
CN110645912A (en) | A machine vision panoramic measurement system and measurement method | |
CN104197856A (en) | In-place surface topography detection workbench | |
CN110842767A (en) | Automatic adjusting workbench for grinding | |
CN113970700A (en) | Brushless motor performance testing device based on multimode winding | |
CN111207682A (en) | Trapezoidal lead screw parameter automatic measuring device and method based on machine vision | |
CN208719798U (en) | It is a kind of can machine automatically adjust two industrial camera positions support device | |
CN201218801Y (en) | Vision inspection device for slender cavities | |
CN213795001U (en) | Positioning platform and welding equipment | |
CN204649198U (en) | A kind of micro-machine vision metrology device with five degree of freedom | |
CN204445937U (en) | Pinpoint three-D ultrasonic image work actuator | |
CN113983952B (en) | Large-scale shaft part outline non-contact accurate measurement device and method | |
CN204085464U (en) | A kind of surface profile measurement worktable in place | |
CN207946058U (en) | A kind of RV retarders pin gear composition error device for fast detecting | |
CN216206091U (en) | Loader movable arm coaxiality detection device based on machine vision | |
CN214839454U (en) | A general inspection platform for machine vision | |
CN212378699U (en) | A vision-guided laser non-contact precision measurement device for the dimensions and tolerances of circumferential circulating body parts | |
CN210440827U (en) | Adjustable measuring platform device of double cameras |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200103 |
|
WD01 | Invention patent application deemed withdrawn after publication |