CN110571390A - 一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法 - Google Patents

一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法 Download PDF

Info

Publication number
CN110571390A
CN110571390A CN201910786255.8A CN201910786255A CN110571390A CN 110571390 A CN110571390 A CN 110571390A CN 201910786255 A CN201910786255 A CN 201910786255A CN 110571390 A CN110571390 A CN 110571390A
Authority
CN
China
Prior art keywords
graphene
salinized
lithium
carbon nano
sulfur battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910786255.8A
Other languages
English (en)
Inventor
吕东生
梁耀辉
阮弟根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201910786255.8A priority Critical patent/CN110571390A/zh
Publication of CN110571390A publication Critical patent/CN110571390A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法,通过盐化的石墨烯来排斥多硫化物的“穿梭效应”和自放电,然后与碳纳米管的复合有效的增加石墨烯间的间距,从而有效保障Li+的迁移,提升活性物质利用率,实现锂硫电池循环稳定性和长循坏寿命。

Description

一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法
技术领域:
本发明涉及锂硫电池隔膜,具体涉及一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法。
背景技术:
高能量密度、低成本和环境友好的储能装置在电动汽车、便携式电子设备和新能源开发领域等方面都有十分巨大的需求,高能量密度的二次电池储能装置无疑在这方面占据重要的地位,这使得各国科研人员发明研究新的材料和技术用于提升电池的能量密度。由于硫的高理论比容量(1675mAh·g-1)和高理论能量密度(2600Wh·kg)以及硫的成本低且环境友好等特点近十年获得了许多研究人员的青睐。尽管锂硫电池的理论优势十分明显,但是需要解决以下三个问题来维持电池的性能:1)硫及产物Li2S/Li2S2的极差导电性严重影响了电池倍率性能和能量密度;2)充放电过程中高达约80%的体积变化容易导致活性物质从导电载体脱离,从而严重影响电池的循环寿命;3)穿梭效应:正极在放电过程中,以8个硫原子组成的S环会不断断键形成硫原子个数更少的中间产物(多硫化物),这些产物可溶于电解液中扩散至锂负极,不仅会引起活性物质损失,还会引起自放电和破坏锂负极表面等严重后果。
为了解决上面的问题,科学家从电池的各个方面做出了努力,其中通过隔膜改性来提升锂硫电池的性能被认为最可能实行商业化。目前在锂硫电池中常用Celgard公司的商业化PP(聚丙烯)和PE(聚乙烯)隔膜,虽然这些隔膜具有不错的孔隙率、化学稳定性和机械性能等,但是这些聚烯烃类无法有效抑制上述的“穿梭效应”。
发明内容:
本发明的目的是提供一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法,通过盐化的石墨烯来排斥多硫化物的“穿梭效应”和自放电,然后与碳纳米管的复合有效的增加石墨烯间的间距,从而有效保障Li+的迁移,提升活性物质利用率,实现锂硫电池循环稳定性和长循坏寿命。
本发明是通过以下技术方案予以实现的:
一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法,该方法包括以下步骤:
1)将氧化石墨烯(GO)粉末超声分散在溶剂中得到分散液,加入碱调节分散液的pH值为10~14,然后加入阴离子型有机盐,阴离子型有机盐和氧化石墨烯(GO)的质量比为(10~30):1,继续超声反应0.5~4h;所述的阴离子型有机盐为氯代乙酸盐、氯代丙酸盐、氯代丁酸盐、氯代苯甲酸盐、氯代苯乙酸盐、氯代乙基磺酸盐、氯代丁基磺酸盐、氯代苯磺酸盐、氯代苯亚磺酸盐中的一种,反应结束后加入乙醇离心得到固体物质,用洗涤液进行离心洗涤,真空干燥得到盐化的石墨烯(羧酸盐化石墨烯称为GC,磺酸盐化石墨烯称为GS);
2)将步骤1)中得到的盐化石墨烯加入到溶剂中,加入碳纳米管和粘结剂后密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜。
优选地,步骤1)中,所述的溶剂为水,所述的碱粉末为LiOH、NaOH、KOH中的一种,水和氧化石墨烯(GO)的质量比为(100~300):1,超声分散时间为10~20min,离心前加入乙醇的体积与反应后溶液的体积比为(0.6~1.2):1;所述的洗涤液选择乙醇和水的混合物,其中乙醇和水的体积比为(0.6~1.2):1,真空干燥温度为60-80℃。
优选地,所述的氯代乙酸盐、氯代丙酸盐、氯代丁酸盐、氯代苯甲酸盐、氯代苯乙酸盐、氯代乙基磺酸盐、氯代丁基磺酸盐、氯代苯磺酸盐、氯代苯亚磺酸盐中的阳离子为碱金属离子。
优选地,在步骤2)中,所述的溶剂为等体积的乙醇水溶液、DMF、NMP中的一种,所述的粘结剂为LA133、PTFE乳液、PVDF、LiPAA、海藻酸钠中的一种,盐化石墨烯和碳纳米管的质量比为(0.5~1):1,盐化石墨烯与碳纳米管的质量之和与粘结剂的质量的比值为(4~9):1。
优选地,所述碳纳米管为多壁碳纳米管。
本发明的有益效果如下:
1)原料成本低,合成制备方法简单,易于放大生产。
2)盐化的氧化石墨烯上具有阴离子官能团对多硫化物具有排斥作用,抑制多硫化物的穿梭效应,从而提升活性物质的利用率和电池的循环稳定性。
3)单纯的片层石墨烯容易堵塞空隙,不利于离子迁移,放电比容量大幅下降,然而与碳纳米管的复合,可以增大盐化石墨烯间的间距,有利于Li+的迁移。
4)隔膜改性材料用量少,对锂硫电池性能的提升大,为锂硫电池的商业化提供一种可能性。
附图说明:
图1是盐化石墨烯的合成示意图;
图2是氧化石墨烯和盐化石墨烯的红外光谱分析图;
图3是实施例5和实施例6的盐化石墨烯/碳纳米管复合改性隔膜以及对比PP隔膜(Celgard2500)、对比例1的PP/SuperP改性隔膜、对比例2的PP/MWCNT改性隔膜用于锂硫电池在0.2C(1C=1675mAhg-1)下的循环性能图。
图4是实施例5和实施例6的盐化石墨烯碳纳米管复合改性隔膜与对比例3、4的盐化石墨烯改性隔膜组装锂硫电池的充放电曲线对比图。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
1)0.5gGO粉末加入到100mL去离子水中,超声10min,加入NaOH调节溶液pH值至14左右,继续超声20min,加入10g氯丁酸钠粉末,继续在室温下超声4h。反应结束后加入等体积的无水乙醇,离心得到固体物质,用体积比水:乙醇=1:1的混合溶液离心洗涤3~5次,60℃真空干燥即可得到GC。
2)往20mL等体积乙醇水溶液中加入1mgGC和1mg工业化多壁碳纳米管,加入0.5mg的PTFE,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜。
实施例2:
1)0.5gGO粉末加入到150mL去离子水中,超声10min,加入LiOH调节溶液pH值至12左右,继续超声20min;加入10g氯乙基磺酸锂粉末,继续在室温下超声2h。反应结束后加入等体积的无水乙醇,离心得到固体物质,用体积比水:乙醇=1:1的混合溶液洗涤3~5次,60℃真空干燥即可得到GS。
2)往10mL等体积乙醇水溶液中加入1mgGS和1mg工业化多壁碳纳米管,加入0.5mg的PTFE,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜。
实施例3:
1)0.5gGO粉末加入到150mL去离子水中,超声10min,加入NaOH调节溶液pH值至11左右,继续超声20min;加入15g氯苯乙酸钠粉末,继续在室温下超声2h;反应结束后加入等体积的无水乙醇,离心得到固体物质,用体积比水:乙醇=1:1的混合溶液洗涤3~5次,60℃真空干燥即可得到GC。
2)往20mL等体积乙醇水溶液中加入1mgGC和1mg工业化多壁碳纳米管,加入0.5mg的LiPAA,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜。
实施例4:
1)0.5gGO粉末加入到150mL去离子水中,超声10min,加入LiOH调节溶液pH值至12左右,继续超声20min。加入15g氯苯磺酸锂粉末,继续在室温下超声2h。反应结束后加入等体积的无水乙醇,离心得到固体物质,用体积比水:乙醇=1:1的混合溶液洗涤3~5次,60℃真空干燥即可得到GS。
2)往10mL等体积乙醇水溶液中加入0.6mgGS和1mg工业化多壁碳纳米管,加入0.3mg的PTFE,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜。
实施例5:
1)0.5gGO粉末加入到100mL去离子水中,超声10min,加入LiOH调节溶液pH值至13左右,继续超声20min。加入10g氯乙酸锂粉末,继续在室温下超声4h。反应结束后加入等体积的无水乙醇,离心得到固体物质,用体积比水:乙醇=1:1的混合溶液洗涤3~5次,60℃真空干燥即可得到GC。
2)往20mL等体积乙醇水溶液中加入0.6mgGC和1mg工业化多壁碳纳米管,加入0.3mg的LiPAA,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜记为PP/MWCNT/GC。实施例5合成示意图参见图1,所制备盐化石墨烯的红外光谱分析图参见图2。
实施例6:
1)0.5gGO粉末加入到100mL去离子水中,超声10min,加入LiOH调节溶液pH值至12左右,继续超声20min。加入10g氯乙基磺酸锂粉末,继续在室温下超声2h。反应结束后加入等体积的无水乙醇,离心得到固体物质,用体积比水:乙醇=1:1的混合溶液洗涤3~5次,60℃真空干燥即可得到GS。
2)往10mL等体积乙醇水溶液中加入1mgGS和1mg工业化多壁碳纳米管,加入0.5mg的LiPAA,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜,记为PP/MWCNT/GS。实施例6的合成示意图参见图1,所制备盐化石墨烯的红外光谱分析图参见图2。
实施例7:
1)0.5gGO粉末加入到100mL去离子水中,超声10min,加入NaOH调节溶液pH值至13左右,继续超声20min。加入10g氯丙酸钠粉末,继续在室温下超声4h。反应结束后加入等体积的无水乙醇,离心得到固体物质,用体积比水:乙醇=1:1的混合溶液洗涤3~5次,60℃真空干燥即可得到GC。
2)往20mL等体积乙醇水溶液中加入0.6mgGC和1mg工业化多壁碳纳米管,加入0.3mg的海藻酸钠,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜。
实施例8:
1)0.5gGO粉末加入到100mL去离子水中,超声10min,加入NaOH调节溶液pH值至11左右,继续超声20min。加入15g氯乙基磺酸钠粉末,继续在室温下超声4h。反应结束后加入等体积的无水乙醇,离心得到固体物质,用体积比水:乙醇=1:1的混合溶液洗涤3~5次,60℃真空干燥即可得到GS。
2)往10mL等体积乙醇水溶液中加入0.5mgGS和1mg工业化多壁碳纳米管,加入0.2mg的海藻酸钠,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜。
对比例1:
参考实施例6,不同之处在于,没有步骤1),步骤2)为:往10mL等体积乙醇水溶液中加入2mg的SuperP粉末,加入0.5mg的LA133,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的PP/SuperP改性隔膜。
对比例2:
参考实施例6,不同之处在于,没有步骤1),步骤2)为:往10mL等体积乙醇水溶液中加入2mg的MWCNT粉末和0.5mgLA133,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的PP/MWCNT改性隔膜。
对比例3:
参考实施例5,不同之处在于,步骤2)为:往10mL等体积乙醇水溶液中加入2mg的GC粉末和0.5mgLA133,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的PP/GC改性隔膜。
对比例4:
参考实施例6,不同之处在于,步骤2)为:往10mL等体积乙醇水溶液中加入2mg的GS粉末和0.5mgLA133,密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的PP/GS改性隔膜。
实施例9:
1)正极极片的制备:
将科琴碳黑KB与硫粉S按照KB:S=8:2研磨混合,在155℃热熔12h。将KB/S复合材料、导电碳黑SuperP、粘结剂LA133按照8:1:1混合,加入适量的分散剂制备整个电极硫含量64%S和负载2.3-2.5mg/cm2的正极极片。
2)电池组装与电化学测试:
正极为以上制备好的极片,负极为锂片,电解液选取1mol/L的LiTFSI,溶剂为DOL:DME=1:1,加入1wt%LiNO3,组装成CR2032扣式电池,电压窗口选择1.7-2.8V。隔膜为实施例5、实施例6、对比例1-4制备的隔膜或对比PP隔膜(Celgard2500)。
实施例5和实施例6的盐化石墨烯/碳纳米管复合改性隔膜以及对比PP隔膜(Celgard2500)、对比例1的PP/SuperP改性隔膜、对比例2的PP/MWCNT改性隔膜用于锂硫电池在0.2C(1C=1675mAhg-1)下的循环性能图参见图3,实施例5和实施例6的盐化石墨烯/碳纳米管复合改性隔膜与对比例3、4的盐化石墨烯改性隔膜组装锂硫电池的充放电曲线对比参见图4。

Claims (7)

1.一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法,其特征在于,该方法包括以下步骤:
1)将氧化石墨烯粉末超声分散在溶剂中得到分散液,加入碱调节分散液的pH值为10~14,然后加入阴离子型有机盐,阴离子型有机盐和氧化石墨烯的质量比为(10~30):1,继续超声反应0.5~4h;所述的阴离子型有机盐为氯代乙酸盐、氯代丙酸盐、氯代丁酸盐、氯代苯甲酸盐、氯代苯乙酸盐、氯代乙基磺酸盐、氯代丁基磺酸盐、氯代苯磺酸盐、氯代苯亚磺酸盐中的一种,反应结束后加入乙醇离心得到固体物质,用洗涤液进行离心洗涤,真空干燥得到盐化的石墨烯;
2)将步骤1)中得到的盐化石墨烯加入到溶剂中,加入碳纳米管和粘结剂后密封容器,超声震荡,所得的分散液抽滤在隔膜上烘干裁剪后得到用于锂硫电池的盐化石墨烯/碳纳米管复合改性隔膜。
2.根据权利要求1所述的的方法,其特征在于,步骤1)中,所述的溶剂为水,所述的碱粉末为LiOH、NaOH、KOH中的一种,水和氧化石墨烯的质量比为(100~300):1,超声分散时间为10~20min。
3.根据权利要求1或2所述的的方法,其特征在于,步骤1)中,离心前加入乙醇的体积与反应后溶液的体积比为(0.6~1.2):1;所述的洗涤液选择乙醇和水的混合物,其中乙醇和水的体积比为(0.6~1.2):1,真空干燥温度为60-80℃。
4.根据权利要求1或2所述的的方法,其特征在于,所述的氯代乙酸盐、氯代丙酸盐、氯代丁酸盐、氯代苯甲酸盐、氯代苯乙酸盐、氯代乙基磺酸盐、氯代丁基磺酸盐、氯代苯磺酸盐、氯代苯亚磺酸盐中的阳离子为碱金属离子。
5.根据权利要求1或2所述的的方法,其特征在于,步骤2)中,所述的溶剂为等体积的乙醇水溶液、DMF、NMP中的一种,所述的粘结剂为LA133、PTFE乳液、PVDF、LiPAA、海藻酸钠中的一种。
6.根据权利要求1或2所述的的方法,其特征在于,步骤2)中,盐化石墨烯和碳纳米管的质量比为(0.5~1):1,盐化石墨烯与碳纳米管的质量之和与粘结剂的质量的比值为(4~9):1。
7.根据权利要求1或2所述的的方法,其特征在于,所述碳纳米管为多壁碳纳米管。
CN201910786255.8A 2019-08-23 2019-08-23 一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法 Pending CN110571390A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910786255.8A CN110571390A (zh) 2019-08-23 2019-08-23 一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910786255.8A CN110571390A (zh) 2019-08-23 2019-08-23 一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法

Publications (1)

Publication Number Publication Date
CN110571390A true CN110571390A (zh) 2019-12-13

Family

ID=68776085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910786255.8A Pending CN110571390A (zh) 2019-08-23 2019-08-23 一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法

Country Status (1)

Country Link
CN (1) CN110571390A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370620A (zh) * 2020-02-26 2020-07-03 华中科技大学 一种锂硫电池的功能隔膜及其制备方法
CN115895368A (zh) * 2022-12-28 2023-04-04 芜湖天弋能源科技有限公司 一种锂离子电池安全底涂浆料及其制备方法、一种集流体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489814A (zh) * 2015-12-29 2016-04-13 长沙矿冶研究院有限责任公司 一种锂硫电池用改性隔膜的制备方法、改性隔膜以及具有多层该改性隔膜的锂硫电池
CN105514482A (zh) * 2016-01-29 2016-04-20 中南大学 一种锂硫电池功能隔膜的制备方法
CN106159157A (zh) * 2015-04-13 2016-11-23 北京化工大学 一种陶瓷聚合物复合隔膜的制备方法、该陶瓷聚合物复合隔膜及其应用
CN107144617A (zh) * 2017-05-11 2017-09-08 青岛大学 一种氧化石墨烯/甲胎蛋白适体电化学传感器的制备方法
CN107159259A (zh) * 2017-05-16 2017-09-15 西北师范大学 一种金/四氧化三铁/氧化石墨烯纳米杂化材料及其制备方法
CN107383302A (zh) * 2017-07-13 2017-11-24 陕西科技大学 磺化改性氧化石墨烯/高固含量水性聚氨酯的制备方法
CN107887553A (zh) * 2017-10-18 2018-04-06 电子科技大学 一种多功能锂硫电池隔膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159157A (zh) * 2015-04-13 2016-11-23 北京化工大学 一种陶瓷聚合物复合隔膜的制备方法、该陶瓷聚合物复合隔膜及其应用
CN105489814A (zh) * 2015-12-29 2016-04-13 长沙矿冶研究院有限责任公司 一种锂硫电池用改性隔膜的制备方法、改性隔膜以及具有多层该改性隔膜的锂硫电池
CN105514482A (zh) * 2016-01-29 2016-04-20 中南大学 一种锂硫电池功能隔膜的制备方法
CN107144617A (zh) * 2017-05-11 2017-09-08 青岛大学 一种氧化石墨烯/甲胎蛋白适体电化学传感器的制备方法
CN107159259A (zh) * 2017-05-16 2017-09-15 西北师范大学 一种金/四氧化三铁/氧化石墨烯纳米杂化材料及其制备方法
CN107383302A (zh) * 2017-07-13 2017-11-24 陕西科技大学 磺化改性氧化石墨烯/高固含量水性聚氨酯的制备方法
CN107887553A (zh) * 2017-10-18 2018-04-06 电子科技大学 一种多功能锂硫电池隔膜及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JIAN-QIU HUANG等: "Porous graphene oxide/carbon nanotube hybrid films as interlayer for", 《CARBON》 *
XIAODAN WANG,等: "Antibacterial and anticoagulation properties of carboxylated graphene oxide-lanthanum complexes", 《J.MATER.CHEM》 *
YUNBO ZHANG,等: "A graphene-oxide-based thin coating on the separator: an efficient barrier towards high-stable lithium–sulfur batteries", 《2D MATER》 *
曲延镇: "载BMP2活性肽的羧基化氧化石墨烯/煅烧骨三维多孔材料的制备及成骨活性研究", 《博士学位论文医药卫生科技辑》 *
汤毅达: "聚丙烯酸/功能化氧化石墨烯复合材料的制备及其性能研究", 《硕士学位论文工程科技1辑》 *
赖双权,等: "羧基化氧化石墨烯在聚丙烯酸酯皮革涂饰剂改性中的应用", 《皮革科学与工程》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111370620A (zh) * 2020-02-26 2020-07-03 华中科技大学 一种锂硫电池的功能隔膜及其制备方法
CN115895368A (zh) * 2022-12-28 2023-04-04 芜湖天弋能源科技有限公司 一种锂离子电池安全底涂浆料及其制备方法、一种集流体
CN115895368B (zh) * 2022-12-28 2024-01-30 芜湖天弋能源科技有限公司 一种锂离子电池安全底涂浆料及其制备方法、一种集流体

Similar Documents

Publication Publication Date Title
CN103236560B (zh) 一种锂硫电池的硫/碳复合正极材料及其制备方法和应用
CN108390033B (zh) 一种制备钠离子电池负极材料碳包覆锑纳米管材料的制备方法及其应用
CN109449374A (zh) 一种以氮化物/碳纳米管作为隔层的锂硫电池正极、电池及制备方法
WO2020006788A1 (zh) 一种金属有机框架碳纳米管复合材料的制备方法
CN105161764B (zh) 锂硫电池电解液及其制备方法,以及锂硫电池
CN103219519B (zh) 一种硫-石墨烯复合结构锂硫电池正极材料制备方法
CN106920989B (zh) 一种铜硒化合物为负极材料的钠离子电池
CN108630889A (zh) 一种以氮化物/石墨烯作为隔层的锂硫电池及其正极和制备方法
CN110993358A (zh) 一种柔性锌离子电容器
CN106920936B (zh) 一种高性能有机锂离子电池正极材料及其制备方法
CN109301254B (zh) 一种锂硫电池正极材料、正极及其制备和应用
CN102623676A (zh) 一种锂硫电池正极用复合材料以及由其制成的正极和电池
CN101281822B (zh) 无机混合型锂离子超级电容器
CN104638246A (zh) 一种石墨烯基柔性锂硫电池正极材料、其制备方法以及正极的制备方法
CN110571390A (zh) 一种盐化石墨烯和碳纳米管复合改性锂硫电池隔膜的方法
CN109888178B (zh) 一种柔性自支撑锂硫电池复合正极材料及其制备方法
CN104183836B (zh) 一种锂硫电池用正极复合材料
CN107799700A (zh) 一种原位合成普鲁士蓝修饰的隔膜的制备方法及其应用
CN108075118A (zh) 一种硫基正极材料及其制备方法、锂电池正极和锂电池
CN107507958A (zh) 一种用于锂硫电池的原位粉体包覆与极板制备一体化方法
CN113178659B (zh) 改性隔膜及其制备方法及锂硫电池
CN111293255A (zh) 一种锂硫电池用改性隔膜及其制备方法
CN113422053A (zh) 基于三环喹唑啉及其衍生物的电池负极材料及其在碱金属离子电池中的应用
CN105514425A (zh) 一种高性能室温钠离子电池及其制备方法
CN109256553A (zh) 一种多孔竹碳载硫复合正极材料、制备方法及锂电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191213

RJ01 Rejection of invention patent application after publication