CN110504229A - A kind of high thermal conductivity material and its preparation method and application - Google Patents
A kind of high thermal conductivity material and its preparation method and application Download PDFInfo
- Publication number
- CN110504229A CN110504229A CN201810474067.7A CN201810474067A CN110504229A CN 110504229 A CN110504229 A CN 110504229A CN 201810474067 A CN201810474067 A CN 201810474067A CN 110504229 A CN110504229 A CN 110504229A
- Authority
- CN
- China
- Prior art keywords
- layer
- diamond
- gallium
- containing compound
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3732—Diamonds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3738—Semiconductor materials
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明提供了一种高导热材料的制备方法,包括提供衬底,在衬底上沉积含镓化合物层;利用物理气相沉积在含镓化合物层上沉积类金刚石层;利用化学气相沉积在类金刚石层上沉积第一金刚石层,在化学气相沉积过程中,类金刚石层转变为第二金刚石层;去除所述衬底,得到高导热材料,经过在含镓化合物层和第一金刚石层之间增设类金刚石层,用于在高温沉积第一金刚石层时保护含镓化合物层不被裂解,同时类金刚石层转变为金刚石层,含镓化合物层与金刚石层直接接触且结合力高,金刚石层形核密度高、结晶质量好,最终制得的高导热材料的热导效率高,散热性能好,在半导体器件中具有广泛的应用前景。
The invention provides a method for preparing a high thermal conductivity material, comprising providing a substrate, depositing a gallium-containing compound layer on the substrate; depositing a diamond-like carbon layer on the gallium-containing compound layer by using physical vapor deposition; depositing a diamond-like carbon layer on the gallium-containing compound layer by using chemical vapor deposition The first diamond layer is deposited on the layer, and during the chemical vapor deposition process, the diamond-like layer is transformed into a second diamond layer; the substrate is removed to obtain a high thermal conductivity material, which is added between the gallium-containing compound layer and the first diamond layer. The diamond-like layer is used to protect the gallium-containing compound layer from being cracked when the first diamond layer is deposited at high temperature, and at the same time the diamond-like layer is transformed into a diamond layer. The gallium-containing compound layer is in direct contact with the diamond layer and has a high bonding force, and the diamond layer nucleates The density is high, the crystallization quality is good, and the thermal conductivity efficiency of the final high thermal conductivity material is high, the heat dissipation performance is good, and it has a wide application prospect in semiconductor devices.
Description
技术领域technical field
本发明涉及半导体领域,特别是涉及一种高导热材料及其制备方法和应用。The invention relates to the field of semiconductors, in particular to a high thermal conductivity material and its preparation method and application.
背景技术Background technique
氮化镓、磷化镓等含镓化合物基半导体材料具有禁带宽度大、直接间隙、电子飘移速度快等特点,在制作大功率、高频电子器件以及光电器件方面具有优势。例如,氮化镓主要外延生长在硅、蓝宝石等衬底上,但这些衬底的热导率较低,严重制约了氮化镓器件的散热,限制器件使用性能。Gallium-containing compound-based semiconductor materials such as gallium nitride and gallium phosphide have the characteristics of large band gap, direct gap, and fast electron drift, and have advantages in the production of high-power, high-frequency electronic devices and optoelectronic devices. For example, gallium nitride is mainly epitaxially grown on substrates such as silicon and sapphire, but the thermal conductivity of these substrates is low, which seriously restricts the heat dissipation of gallium nitride devices and limits the performance of devices.
金刚石是最高的导热材料,导热系数高达2000W/(m·k),且其化学性质稳定,具有大的禁带宽度,为理想的衬底材料选择。然而,金刚石理想生长温度为800℃-1000℃,在此温度范围内,含镓化合物与活性氢等离子体反应,导致含镓化合物薄膜分解,沉积得到的金刚石薄膜界面与含镓化合物层间的结合力差,金刚石薄膜容易出现剥落、开裂等情况;若降低金刚石生长温度,虽然能在一定程度上减少含镓化合物的分解,但氢等离子体的环境下含镓化合物的分解却不可避免,并且在低温条件下,金刚石生长速率缓慢,沉积得到的金刚石质量差。Diamond is the highest thermal conductivity material, with a thermal conductivity of up to 2000W/(m·k), and its chemical properties are stable, and it has a large band gap, making it an ideal substrate material choice. However, the ideal growth temperature of diamond is 800°C-1000°C. In this temperature range, the gallium-containing compound reacts with the active hydrogen plasma, resulting in the decomposition of the gallium-containing compound film, and the bond between the deposited diamond film interface and the gallium-containing compound layer If the force is poor, the diamond film is prone to peeling and cracking; if the diamond growth temperature is lowered, although the decomposition of gallium-containing compounds can be reduced to a certain extent, the decomposition of gallium-containing compounds is inevitable in the hydrogen plasma environment, and in Under low temperature conditions, the growth rate of diamond is slow, and the quality of deposited diamond is poor.
因此,如何克服含镓化合物层的裂解以及金刚石薄膜脱落的问题,提高金刚石的结晶质量以及和含镓化合物表面的结合力,从而提高热导效率是亟需解决的问题。Therefore, how to overcome the cracking of the gallium-containing compound layer and the peeling off of the diamond film, improve the crystal quality of diamond and the bonding force with the surface of the gallium-containing compound, so as to improve the thermal conductivity is an urgent problem to be solved.
发明内容Contents of the invention
有鉴于此,本发明提供了一种高导热材料的制备方法,包括在衬底上制备含镓化合物层、类金刚石层和第一金刚石层,在沉积第一金刚石层时,类金刚石层保护含镓化合物层在高温条件下不被裂解,同时类金刚石层转变为第二金刚石层,最后去除衬底即可。制得的高导热材料包括含镓化合物层以及设置在含镓化合物层上的金刚石层,金刚石层包括第一金刚石层和第二金刚石层,含镓化合物层与金刚石层直接接触,同时,金刚石层形核密度高、结晶质量好,与含镓化合物层的结合力高,制得了具有高导热效率的材料。In view of this, the present invention provides a method for preparing a high thermal conductivity material, comprising preparing a gallium-containing compound layer, a diamond-like layer and a first diamond layer on a substrate, and when depositing the first diamond layer, the diamond-like layer protects the The gallium compound layer is not cracked under high temperature conditions, and the diamond-like carbon layer is transformed into a second diamond layer at the same time, and the substrate can be finally removed. The prepared high thermal conductivity material includes a gallium-containing compound layer and a diamond layer disposed on the gallium-containing compound layer. The diamond layer includes a first diamond layer and a second diamond layer. The gallium-containing compound layer is in direct contact with the diamond layer. At the same time, the diamond layer The nucleation density is high, the crystallization quality is good, and the bonding force with the gallium-containing compound layer is high, and a material with high thermal conductivity is obtained.
第一方面,本发明提供了一种高导热材料的制备方法,包括:In a first aspect, the present invention provides a method for preparing a high thermal conductivity material, comprising:
提供衬底,在所述衬底上沉积含镓化合物层;providing a substrate on which to deposit a gallium-containing compound layer;
利用物理气相沉积在所述含镓化合物层上沉积类金刚石层;depositing a diamond-like carbon layer on the gallium-containing compound layer by physical vapor deposition;
利用化学气相沉积在所述类金刚石层上沉积第一金刚石层,在所述化学气相沉积过程中,所述类金刚石层转变为第二金刚石层;depositing a first diamond layer on the diamond-like layer by chemical vapor deposition during which the diamond-like layer is transformed into a second diamond layer;
去除所述衬底,得到高导热材料。Removing the substrate yields a highly thermally conductive material.
可选的,所述衬底的材质包括硅、碳化硅、氮化铝、氧化锌、砷化镓和蓝宝石(Al2O3)中的至少一种。Optionally, the material of the substrate includes at least one of silicon, silicon carbide, aluminum nitride, zinc oxide, gallium arsenide and sapphire (Al 2 O 3 ).
可选的,所述含镓化合物层的材质包括氮化镓、磷化镓、砷化镓、铝砷化镓、铝磷化镓、铟氮化稼和磷化铝铟镓中的至少一种。进一步可选的,所述含镓化合物层的材质包括氮化镓、磷化镓、铝磷化镓、和磷化铝铟镓中的至少一种。更进一步可选的,所述镓化合物层的材质包括氮化镓。Optionally, the material of the gallium-containing compound layer includes at least one of gallium nitride, gallium phosphide, gallium arsenide, aluminum gallium arsenide, aluminum gallium phosphide, indium gallium nitride, and aluminum indium gallium phosphide . Further optionally, the material of the gallium-containing compound layer includes at least one of gallium nitride, gallium phosphide, aluminum gallium phosphide, and aluminum indium gallium phosphide. Further optionally, the material of the gallium compound layer includes gallium nitride.
可选的,所述在所述衬底上沉积含镓化合物层,包括:Optionally, the depositing a gallium-containing compound layer on the substrate includes:
利用金属有机化学气相沉积、分子束外延、液相生长或蒸镀在所述衬底上沉积所述含镓化合物层。The gallium-containing compound layer is deposited on the substrate by metal organic chemical vapor deposition, molecular beam epitaxy, liquid phase growth or evaporation.
进一步可选的,利用金属有机化学气相沉积在所述衬底上沉积含镓化合物层。Further optionally, a gallium-containing compound layer is deposited on the substrate by metal organic chemical vapor deposition.
可选的,所述含镓化合物层的厚度为0.2μm-1.4μm。进一步可选的,所述含镓化合物层的厚度为0.3μm-1.0μm。Optionally, the thickness of the gallium-containing compound layer is 0.2 μm-1.4 μm. Further optionally, the thickness of the gallium-containing compound layer is 0.3 μm-1.0 μm.
可选的,所述物理气相沉积包括真空蒸镀、离子镀膜、磁控溅射、分子束外延中的至少一种。进一步可选的,利用磁控溅射在所述含镓化合物层上沉积类金刚石层。具体的,所述磁控溅射的条件:氢气流量为10sccm-20sccm,氩气流量为20sccm-40sccm,氢气与氩气体积比为(1-1.5):(2-3),腔室压强为1mtorr-8mtorr,工作电压为400V-700V,磁控溅射功率为4kW-9kW,溅射时间为5min-15min。Optionally, the physical vapor deposition includes at least one of vacuum evaporation, ion coating, magnetron sputtering, and molecular beam epitaxy. Further optionally, magnetron sputtering is used to deposit a diamond-like carbon layer on the gallium-containing compound layer. Specifically, the conditions of the magnetron sputtering: the flow of hydrogen is 10sccm-20sccm, the flow of argon is 20sccm-40sccm, the volume ratio of hydrogen to argon is (1-1.5):(2-3), and the chamber pressure is 1mtorr-8mtorr, working voltage 400V-700V, magnetron sputtering power 4kW-9kW, sputtering time 5min-15min.
可选的,所述类金刚石层的厚度为200nm-500nm。进一步可选的,所述类金刚石层的厚度为230nm-450nm。具体的,所述类金刚石层的厚度可以但不限于为250nm-435nm、275nm-420nm或290nm-400nm。Optionally, the thickness of the diamond-like carbon layer is 200nm-500nm. Further optionally, the thickness of the diamond-like carbon layer is 230nm-450nm. Specifically, the thickness of the diamond-like carbon layer may be, but not limited to, 250nm-435nm, 275nm-420nm or 290nm-400nm.
可选的,所述利用化学气相沉积在所述类金刚石层上沉积第一金刚石层,包括:Optionally, the depositing the first diamond layer on the diamond-like layer by chemical vapor deposition includes:
对沉积有所述含镓化合物层和所述类金刚石层的所述衬底进行预处理,并置于金刚石粉的悬浊液中,进行植晶操作,再利用化学气相沉积在所述类金刚石层上制备第一金刚石层。Pretreating the substrate deposited with the gallium-containing compound layer and the diamond-like carbon layer, placing it in a suspension of diamond powder, performing a crystal planting operation, and then using chemical vapor deposition on the diamond-like carbon A first diamond layer is prepared on the layer.
可选的,所述预处理包括对所述衬底进行清洗和干燥处理。具体的,所述清洗和干燥处理可以但不限于为将所述衬底在去离子水中超声清洗后在丙酮中超声清洗,再静止干燥。Optionally, the pretreatment includes cleaning and drying the substrate. Specifically, the cleaning and drying treatment may be, but not limited to, ultrasonically cleaning the substrate in deionized water, then ultrasonically cleaning in acetone, and then statically drying.
可选的,所述金刚石粉的粒径为3nm-10nm。进一步可选的,所述金刚石粉的粒径为4nm-9nm。具体的,所述金刚石粉的粒径可以为5nm、5.8nm、6.3nm、7.5nm或8nm等。所述金刚石粉可以为纳米金刚石粉、爆轰纳米金刚石粉等,具体的可以根据实际需要进行选择,在此不作限定。Optionally, the particle size of the diamond powder is 3nm-10nm. Further optionally, the particle size of the diamond powder is 4nm-9nm. Specifically, the particle size of the diamond powder may be 5nm, 5.8nm, 6.3nm, 7.5nm or 8nm, etc. The diamond powder can be nano-diamond powder, detonation nano-diamond powder, etc., which can be selected according to actual needs, and is not limited here.
可选的,所述金刚石粉的悬浊液中所述金刚石粉的质量浓度为0.003%-0.01%。进一步可选的,所述金刚石粉的悬浊液中所述金刚石粉的质量浓度为0.005%-0.01%。Optionally, the mass concentration of the diamond powder in the diamond powder suspension is 0.003%-0.01%. Further optionally, the mass concentration of the diamond powder in the diamond powder suspension is 0.005%-0.01%.
可选的,所述植晶操作包括在功率2kW-8kW下超声处理15min-45min。进一步可选的,所述植晶操作包括在功率3kW-7kW下超声处理20min-45min。更进一步可选的,所述植晶操作包括在功率4kW下超声处理30min。具体的,将所述衬底置于所述金刚石粉的悬浊液中进行超声处理,即为植晶操作。Optionally, the crystal planting operation includes ultrasonic treatment at a power of 2kW-8kW for 15min-45min. Further optionally, the crystal planting operation includes ultrasonic treatment at a power of 3kW-7kW for 20min-45min. Further optionally, the crystal planting operation includes ultrasonic treatment for 30 min at a power of 4 kW. Specifically, placing the substrate in the suspension of diamond powder for ultrasonic treatment is a crystal planting operation.
可选的,所述化学气相沉积的沉积速率为300nm/h-500nm/h。Optionally, the deposition rate of the chemical vapor deposition is 300nm/h-500nm/h.
可选的,所述化学气相沉积包括常压化学气相沉积、低压化学气相沉积、超高真空化学气相沉积和热丝化学气相沉积中的至少一种。具体的,可以但不限于为为热丝化学气相沉积。Optionally, the chemical vapor deposition includes at least one of atmospheric pressure chemical vapor deposition, low pressure chemical vapor deposition, ultra-high vacuum chemical vapor deposition and hot wire chemical vapor deposition. Specifically, it can be, but not limited to, hot wire chemical vapor deposition.
可选的,所述化学气相沉积的工艺参数包括:抽腔室真空至0.1Pa以下,采用钽丝作为热丝,热丝的数量为7根-13根,热丝的直径为0.3mm-1mm,通入氢气的流量为800sccm-1000sccm,甲烷的流量为12sccm-32sccm,沉积温度为750℃-950℃,沉积功率为6500W-7500W,气压为3500Pa-4500Pa。Optionally, the process parameters of the chemical vapor deposition include: evacuate the chamber to below 0.1Pa, use tantalum wire as the heating wire, the number of heating wires is 7-13, and the diameter of the heating wire is 0.3mm-1mm , the flow rate of hydrogen is 800sccm-1000sccm, the flow rate of methane is 12sccm-32sccm, the deposition temperature is 750°C-950°C, the deposition power is 6500W-7500W, and the air pressure is 3500Pa-4500Pa.
在本发明中,类金刚石层的材质为类金刚石,含有sp3和sp2键碳混杂的非晶亚稳态结构,在化学气相沉积过程中,由于沉积温度较高,其中的氢气转变为氢自由基,与sp2杂化碳原子反应而形成sp3杂化碳原子。因此,在利用化学气相沉积金刚石层的同时,类金刚石层中碳原子的sp2杂化转化为sp3杂化,从而变为金刚石,类金刚石层转变为第二金刚石层。在最终沉积结束后,含镓化合物层上为金刚石层,而没有类金刚石层,含镓化合物层与第二金刚石层直接接触。金刚石层包括第一金刚石层和第二金刚石层。In the present invention, the material of the diamond-like carbon layer is diamond-like carbon, which contains an amorphous metastable structure with sp3 and sp2 bonded carbon mixed. During the chemical vapor deposition process, due to the high deposition temperature, the hydrogen in it is converted into hydrogen free radicals , react with sp2 hybridized carbon atoms to form sp3 hybridized carbon atoms. Therefore, while the diamond layer is deposited by chemical vapor phase, the sp2 hybridization of carbon atoms in the diamond-like layer is transformed into sp3 hybridization, thereby becoming diamond, and the diamond-like layer is transformed into the second diamond layer. After the final deposition, the gallium-containing compound layer is covered with a diamond layer without the diamond-like carbon layer, and the gallium-containing compound layer is in direct contact with the second diamond layer. The diamond layer includes a first diamond layer and a second diamond layer.
可选的,所述去除所述衬底,包括:Optionally, the removing the substrate includes:
采用激光剥离技术、化学剥离技术或外延层剥离技术去除所述衬底。The substrate is removed by laser lift-off technology, chemical lift-off technology or epitaxial layer lift-off technology.
进一步可选的,采用激光剥离技术去除所述衬底。Further optionally, the substrate is removed using a laser lift-off technique.
在本发明中,利用洛氏压痕法测定所述含镓化合物层与所述金刚石层的结合力为400N-1000N。利用扫描电镜测定所述金刚石层中金刚石的形核密度为(5-10)×1010个/cm2。In the present invention, the binding force between the gallium-containing compound layer and the diamond layer measured by Rockwell indentation method is 400N-1000N. The nucleation density of diamonds in the diamond layer measured by scanning electron microscopy is (5-10)×10 10 pieces/cm 2 .
本发明第一方面提供的一种高导热材料的制备方法,包括在衬底上制备含镓化合物层、类金刚石层和第一金刚石层,最后去除衬底;在含镓化合物层和第一金刚石层之间增设类金刚石层,可以在高温沉积第一金刚石层时保护含镓化合物层,隔绝活性氢等离子体与含镓化合物层反应,避免了含镓化合物层的裂解;在制备金刚石层时,类金刚石层中的sp2杂化碳原子转变形成sp3杂化碳原子,最终变为金刚石,可以作为金刚石层生长的碳源,提高形核密度,得到连续、致密的第一金刚石层,同时,类金刚石层转变为第二金刚石层;在最终制得的高导热材料中,含镓化合物层与金刚石层直接接触,金刚石结晶质量好,与含镓化合物层的结合力高,从而获得具有高热导效率材料。A method for preparing a high thermal conductivity material provided by the first aspect of the present invention comprises preparing a gallium-containing compound layer, a diamond-like carbon layer and a first diamond layer on a substrate, and finally removing the substrate; Adding a diamond-like layer between the layers can protect the gallium-containing compound layer when depositing the first diamond layer at high temperature, isolate the active hydrogen plasma from reacting with the gallium-containing compound layer, and avoid the cracking of the gallium-containing compound layer; when preparing the diamond layer, The sp2 hybridized carbon atoms in the diamond-like layer transform into sp3 hybridized carbon atoms, and finally become diamonds, which can be used as a carbon source for the growth of the diamond layer, increase the nucleation density, and obtain a continuous and dense first diamond layer. At the same time, the like The diamond layer is transformed into a second diamond layer; in the final high thermal conductivity material, the gallium-containing compound layer is in direct contact with the diamond layer, the diamond crystal quality is good, and the bonding force with the gallium-containing compound layer is high, thereby obtaining high thermal conductivity. Material.
第二方面,本发明提供了一种高导热材料,由第一方面所述的制备方法制得,所述高导热材料包括含镓化合物层以及设置在所述含镓化合物层上的金刚石层,所述金刚石层包括所述第一金刚石层和所述第二金刚石层。In a second aspect, the present invention provides a high thermal conductivity material prepared by the preparation method described in the first aspect, the high thermal conductivity material comprising a gallium-containing compound layer and a diamond layer disposed on the gallium-containing compound layer, The diamond layer includes the first diamond layer and the second diamond layer.
可选的,所述含镓化合物层与所述金刚石层的结合力为400N-1000N,所述金刚石层中金刚石的形核密度为(5-10)×1010个/cm2。Optionally, the binding force between the gallium-containing compound layer and the diamond layer is 400N-1000N, and the nucleation density of diamonds in the diamond layer is (5-10)×10 10 pieces/cm 2 .
本发明提供了一种高导热材料,其中,含镓化合物层不存在裂解情况,金刚石层中的金刚石形核密度;含镓化合物层与金刚石层直接接触,结合力高;同时由于金刚石层的存在,高导热材料的散热效率高。The invention provides a high thermal conductivity material, wherein the gallium-containing compound layer does not have cracking, and the diamond nucleation density in the diamond layer; the gallium-containing compound layer is in direct contact with the diamond layer, and the bonding force is high; at the same time, due to the existence of the diamond layer , High thermal conductivity material with high heat dissipation efficiency.
第三方面,本发明提供了一种半导体器件,包括如第一方面所述的制备方法制得的高导热材料或第二方面所述的高导热材料,所述高导热材料作为所述半导体器件的外延层。In a third aspect, the present invention provides a semiconductor device, including the high thermal conductivity material prepared by the preparation method described in the first aspect or the high thermal conductivity material described in the second aspect, and the high thermal conductivity material is used as the semiconductor device epitaxial layer.
其中,所述半导体器件包括晶体二极管、双极型晶体管和场效应晶体管中的至少一种。具体的,可以但不限于当所述半导体器件为发光二极管时,所述高导热材料作为所述发光二极管的外延层。Wherein, the semiconductor device includes at least one of a crystal diode, a bipolar transistor and a field effect transistor. Specifically, when the semiconductor device is a light emitting diode, the high thermal conductivity material may be used as an epitaxial layer of the light emitting diode.
本发明的有益效果:Beneficial effects of the present invention:
(1)本发明提供了一种高导热材料的制备方法,包括在衬底上制备含镓化合物层、类金刚石层和第一金刚石层,最后去除衬底;在含镓化合物层和第一金刚石层之间增设类金刚石层,可以在高温沉积第一金刚石层时保护含镓化合物层,隔绝活性氢等离子体与含镓化合物层反应,避免了含镓化合物层的裂解;在制备金刚石层时,类金刚石层中的sp2杂化碳原子转变为sp3杂化碳原子,最终变为金刚石,可以作为金刚石层生长的碳源,提高形核密度,得到连续、致密的第一金刚石层,同时,类金刚石层转变为第二金刚石层,含镓化合物层与金刚石层直接接触;(1) The present invention provides a kind of preparation method of high thermal conductivity material, comprise preparing gallium-containing compound layer, diamond-like carbon layer and the first diamond layer on the substrate, remove substrate at last; Adding a diamond-like layer between the layers can protect the gallium-containing compound layer when depositing the first diamond layer at high temperature, isolate the active hydrogen plasma from reacting with the gallium-containing compound layer, and avoid the cracking of the gallium-containing compound layer; when preparing the diamond layer, The sp2 hybridized carbon atoms in the diamond-like layer are transformed into sp3 hybridized carbon atoms, and finally become diamond, which can be used as a carbon source for the growth of the diamond layer to increase the nucleation density and obtain a continuous and dense first diamond layer. At the same time, the like The diamond layer is transformed into a second diamond layer, and the gallium-containing compound layer is in direct contact with the diamond layer;
(2)本发明提供了一种高导热材料,含镓化合物层不存在裂解情况,金刚石层中的金刚石形核密度;含镓化合物层与金刚石层直接接触,结合力高,提高了高导热材料的热导效率,在半导体器件,尤其是半导体外延层中具有较好的应用前景。(2) The present invention provides a kind of high thermal conductivity material, there is no cracking situation in the gallium-containing compound layer, and the diamond nucleation density in the diamond layer; the gallium-containing compound layer is in direct contact with the diamond layer, the bonding force is high, and the high thermal conductivity material is improved. The thermal conduction efficiency has a good application prospect in semiconductor devices, especially in semiconductor epitaxial layers.
附图说明Description of drawings
图1为本发明实施例提供的一种高导热材料的制备方法流程图;Fig. 1 is a flow chart of a method for preparing a high thermal conductivity material provided by an embodiment of the present invention;
图2为本发明实施例提供的一种高导热材料的制备方法中步骤S101的示意图;2 is a schematic diagram of step S101 in a method for preparing a high thermal conductivity material provided by an embodiment of the present invention;
图3为本发明实施例提供的一种高导热材料的制备方法中步骤S102的示意图;3 is a schematic diagram of step S102 in a method for preparing a high thermal conductivity material provided by an embodiment of the present invention;
图4为本发明实施例提供的一种高导热材料的制备方法中步骤S103的示意图;4 is a schematic diagram of step S103 in a method for preparing a high thermal conductivity material provided by an embodiment of the present invention;
图5为本发明实施例提供的一种高导热材料的制备方法中步骤S104的示意图。FIG. 5 is a schematic diagram of step S104 in a method for preparing a high thermal conductivity material provided by an embodiment of the present invention.
具体实施方式Detailed ways
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。The following descriptions are preferred implementations of the embodiments of the present invention. It should be pointed out that those skilled in the art can make some improvements and modifications without departing from the principles of the embodiments of the present invention. These improvements And retouching are also regarded as the scope of protection of the embodiments of the present invention.
请参阅图1,为本发明提供的一种高导热材料的制备方法,包括:Please refer to Fig. 1, the preparation method of a kind of high thermal conductivity material provided by the present invention, comprises:
步骤S101:提供衬底,在所述衬底上沉积含镓化合物层。Step S101: providing a substrate, and depositing a gallium-containing compound layer on the substrate.
在步骤S101中,请参阅图2,提供衬底10,在所述衬底10上沉积含镓化合物层11。其中,衬底10的材质包括硅、碳化硅、氮化铝、氧化锌、砷化镓和蓝宝石(Al2O3)中的至少一种。含镓化合物层11的材质包括氮化镓、磷化镓、砷化镓、铝砷化镓、铝磷化镓、铟氮化稼和磷化铝铟镓中的至少一种。进一步可选的,含镓化合物层11的材质包括氮化镓、磷化镓、铝磷化镓、和磷化铝铟镓中的至少一种。更进一步可选的,镓化合物层11的材质包括氮化镓。在本发明实施方式中,在衬底10上沉积含镓化合物层11包括:利用金属有机化学气相沉积、分子束外延、液相生长或蒸镀在衬底10上沉积含镓化合物层11。进一步可选的,利用金属有机化学气相沉积在衬底10上沉积含镓化合物层11。可选的,含镓化合物层11的厚度为0.2μm-1.4μm。进一步可选的,含镓化合物层11的厚度为0.3μm-1.0μm。衬底10的厚度不作限定,根据实际需要进行选择。In step S101 , referring to FIG. 2 , a substrate 10 is provided, and a gallium-containing compound layer 11 is deposited on the substrate 10 . Wherein, the material of the substrate 10 includes at least one of silicon, silicon carbide, aluminum nitride, zinc oxide, gallium arsenide and sapphire (Al 2 O 3 ). The material of the gallium-containing compound layer 11 includes at least one of gallium nitride, gallium phosphide, gallium arsenide, aluminum gallium arsenide, aluminum gallium phosphide, indium gallium nitride and aluminum indium gallium phosphide. Further optionally, the material of the gallium-containing compound layer 11 includes at least one of gallium nitride, gallium phosphide, aluminum gallium phosphide, and aluminum indium gallium phosphide. Further optionally, the material of the gallium compound layer 11 includes gallium nitride. In an embodiment of the present invention, depositing the gallium-containing compound layer 11 on the substrate 10 includes: depositing the gallium-containing compound layer 11 on the substrate 10 by metal organic chemical vapor deposition, molecular beam epitaxy, liquid phase growth or evaporation. Further optionally, the gallium-containing compound layer 11 is deposited on the substrate 10 by metal organic chemical vapor deposition. Optionally, the thickness of the gallium-containing compound layer 11 is 0.2 μm-1.4 μm. Further optionally, the thickness of the gallium-containing compound layer 11 is 0.3 μm-1.0 μm. The thickness of the substrate 10 is not limited, and can be selected according to actual needs.
步骤S102:利用物理气相沉积在所述含镓化合物层上沉积类金刚石层。Step S102: depositing a diamond-like carbon layer on the gallium-containing compound layer by physical vapor deposition.
在步骤S102中,请参阅图3,利用物理气相沉积在所述含镓化合物层11上沉积类金刚石层12。可选的,物理气相沉积包括真空蒸镀、离子镀膜、磁控溅射、分子束外延中的至少一种。进一步可选的,利用磁控溅射在含镓化合物层11上沉积类金刚石层12。具体的,磁控溅射的条件:氢气流量为10sccm-20sccm,氩气流量为20sccm-40sccm,氢气与氩气体积比为(1-1.5):(2-3),腔室压强为1mtorr-8mtorr,工作电压为400V-700V,磁控溅射功率为4kW-9kW,溅射时间为5min-15min。类金刚石层12的厚度为200nm-500nm。进一步可选的,类金刚石层12的厚度为230nm-450nm。具体的,类金刚石层12的厚度可以但不限于为250nm-435nm、275nm-420nm或290nm-400nm。物理气相沉积中的沉积温度比化学气相沉积的温度低,不会产生活性氢等离子体,不会造成含镓化合物11的裂解,并且类金刚石层12与含镓化合物11之间的结合力大,不会造成类金刚石层12脱落。In step S102 , referring to FIG. 3 , a diamond-like carbon layer 12 is deposited on the gallium-containing compound layer 11 by physical vapor deposition. Optionally, physical vapor deposition includes at least one of vacuum evaporation, ion coating, magnetron sputtering, and molecular beam epitaxy. Further optionally, the diamond-like carbon layer 12 is deposited on the gallium-containing compound layer 11 by magnetron sputtering. Specifically, the conditions of magnetron sputtering: the flow rate of hydrogen is 10sccm-20sccm, the flow rate of argon is 20sccm-40sccm, the volume ratio of hydrogen to argon is (1-1.5):(2-3), and the chamber pressure is 1mtorr- 8mtorr, the working voltage is 400V-700V, the magnetron sputtering power is 4kW-9kW, and the sputtering time is 5min-15min. The thickness of the diamond-like carbon layer 12 is 200nm-500nm. Further optionally, the thickness of the diamond-like carbon layer 12 is 230nm-450nm. Specifically, the thickness of the diamond-like carbon layer 12 may be, but not limited to, 250nm-435nm, 275nm-420nm or 290nm-400nm. The deposition temperature in physical vapor deposition is lower than the temperature of chemical vapor deposition, no active hydrogen plasma will be generated, no cracking of the gallium-containing compound 11 will be caused, and the binding force between the diamond-like layer 12 and the gallium-containing compound 11 is large, It will not cause the diamond-like carbon layer 12 to fall off.
步骤S103:利用化学气相沉积在所述类金刚石层上沉积第一金刚石层,在所述化学气相沉积过程中,所述类金刚石层转变为第二金刚石层。Step S103: Depositing a first diamond layer on the diamond-like layer by chemical vapor deposition, and during the chemical vapor deposition process, the diamond-like layer is transformed into a second diamond layer.
在步骤S103中,请参阅图4,利用化学气相沉积在所述类金刚石层12上沉积第一金刚石层13,在所述化学气相沉积过程中,所述类金刚石层12中的sp2杂化碳原子变为sp3杂化碳原子,所述类金刚石层12变为第二金刚石层14。在本发明实施方式中,利用化学气相沉积在类金刚石层12上沉积第一金刚石层13,包括:对沉积有含镓化合物层11和类金刚石层12的衬底10进行预处理,并置于金刚石粉的悬浊液中,进行植晶操作,再利用化学气相沉积在类金刚石层12上制备第一金刚石层13。在本发明实施方式中,所述预处理包括进行清洗和干燥处理。具体的,清洗和干燥处理可以但不限于为将沉积有含镓化合物层11和类金刚石层12的衬底10在去离子水中超声清洗后在丙酮中超声清洗,再静止干燥。在本发明实施方式中,金刚石粉的粒径为3nm-10nm。进一步可选的,金刚石粉的粒径为4nm-9nm。具体的,金刚石粉的粒径可以为5nm、5.8nm、6.3nm、7.5nm或8nm等。金刚石粉可以为纳米金刚石粉、爆轰纳米金刚石粉等,具体的可以根据实际需要进行选择,在此不作限定。在本发明实施方式中,金刚石粉的悬浊液中金刚石粉的质量浓度为0.003%-0.01%。进一步可选的,金刚石粉的悬浊液中金刚石粉的质量浓度为0.005%-0.01%。在本发明实施方式中,植晶操作包括在功率2kW-8kW下超声处理15min-45min。进一步可选的,植晶操作包括在功率3kW-7kW下超声处理20min-45min。更进一步可选的,植晶操作包括在功率4kW下超声处理30min。具体的,将沉积有含镓化合物层11和类金刚石层12的衬底10置于金刚石粉的悬浊液中进行超声处理,即为植晶操作。在本发明实施方式中,化学气相沉积包括常压化学气相沉积、低压化学气相沉积、超高真空化学气相沉积和热丝化学气相沉积中的至少一种。具体的,可以但不限于为为热丝化学气相沉积。在本发明实施方式中,化学气相沉积的工艺参数包括:抽腔室真空至0.1Pa以下,采用钽丝作为热丝,热丝的数量为7根-13根,热丝的直径为0.3mm-1mm,通入氢气的流量为800sccm-1000sccm,甲烷的流量为12sccm-32sccm,沉积温度为750℃-950℃,沉积功率为6500W-7500W,气压为3500Pa-4500Pa。在本发明实施方式中,化学气相沉积的沉积速率为300nm/h-500nm/h。第一金刚石层13的不厚不作限定,根据实际需要进行选择。在最终沉积第一金刚石层13后,含镓化合物层11上为金刚石层15,而没有类金刚石层12,含镓化合物层11与第二金刚石层14直接接触,金刚石层15包括第一金刚石层13和第二金刚石层14。In step S103, referring to FIG. 4 , the first diamond layer 13 is deposited on the diamond-like layer 12 by chemical vapor deposition. During the chemical vapor deposition process, the sp2 hybridized carbon in the diamond-like layer 12 The atoms become sp3 hybridized carbon atoms, and the diamond-like carbon layer 12 becomes the second diamond layer 14 . In an embodiment of the present invention, depositing the first diamond layer 13 on the diamond-like carbon layer 12 by chemical vapor deposition includes: pre-treating the substrate 10 deposited with the gallium-containing compound layer 11 and the diamond-like carbon layer 12, and placing the The crystal planting operation is carried out in the suspension of diamond powder, and then the first diamond layer 13 is prepared on the diamond-like layer 12 by chemical vapor deposition. In an embodiment of the present invention, the pretreatment includes washing and drying. Specifically, the cleaning and drying treatment may be, but not limited to, ultrasonically cleaning the substrate 10 deposited with the gallium-containing compound layer 11 and the diamond-like carbon layer 12 in deionized water, then ultrasonically cleaning in acetone, and then statically drying. In an embodiment of the present invention, the particle size of the diamond powder is 3nm-10nm. Further optionally, the particle size of the diamond powder is 4nm-9nm. Specifically, the particle size of the diamond powder may be 5nm, 5.8nm, 6.3nm, 7.5nm or 8nm, etc. The diamond powder can be nano-diamond powder, detonation nano-diamond powder, etc., which can be selected according to actual needs, and is not limited here. In the embodiment of the present invention, the mass concentration of the diamond powder in the diamond powder suspension is 0.003%-0.01%. Further optionally, the mass concentration of the diamond powder in the diamond powder suspension is 0.005%-0.01%. In the embodiment of the present invention, the crystal planting operation includes ultrasonic treatment at a power of 2kW-8kW for 15min-45min. Further optionally, the crystal planting operation includes ultrasonic treatment at a power of 3kW-7kW for 20min-45min. Further optionally, the crystal planting operation includes ultrasonic treatment for 30 min at a power of 4 kW. Specifically, placing the substrate 10 deposited with the gallium-containing compound layer 11 and the diamond-like carbon layer 12 in a suspension of diamond powder for ultrasonic treatment is a crystal planting operation. In an embodiment of the present invention, chemical vapor deposition includes at least one of atmospheric pressure chemical vapor deposition, low pressure chemical vapor deposition, ultra-high vacuum chemical vapor deposition and hot wire chemical vapor deposition. Specifically, it can be, but not limited to, hot wire chemical vapor deposition. In the embodiment of the present invention, the process parameters of chemical vapor deposition include: evacuate the chamber to below 0.1Pa, use tantalum wire as the hot wire, the number of hot wire is 7-13, and the diameter of the hot wire is 0.3mm- 1mm, the flow rate of hydrogen gas is 800sccm-1000sccm, the flow rate of methane is 12sccm-32sccm, the deposition temperature is 750°C-950°C, the deposition power is 6500W-7500W, and the air pressure is 3500Pa-4500Pa. In an embodiment of the present invention, the deposition rate of chemical vapor deposition is 300 nm/h-500 nm/h. The thickness of the first diamond layer 13 is not limited, and is selected according to actual needs. After finally depositing the first diamond layer 13, on the gallium-containing compound layer 11 is a diamond layer 15 without a diamond-like layer 12, the gallium-containing compound layer 11 is in direct contact with the second diamond layer 14, and the diamond layer 15 comprises the first diamond layer 13 and the second diamond layer 14.
步骤S104:去除所述衬底,得到高导热材料。Step S104: removing the substrate to obtain a high thermal conductivity material.
在步骤S104中,请参阅图5,去除所述衬底10,得到高导热材料。可选的,去除衬底10包括采用激光剥离技术、化学剥离技术或外延层剥离技术去除衬底10。进一步可选的,采用激光剥离技术去除衬底10。最终制得的高导热材料包括含镓化合物层11以及设置在所述含镓化合物层11上的金刚石层15,所述金刚石层15包括所述第一金刚石层13和第二金刚石层14。在本发明实施方式中,利用洛氏压痕法测定含镓化合物层11与金刚石层15的结合力为400N-1000N。利用扫描电镜测定金刚石层15中金刚石的形核密度为(5-10)×1010个/cm2。In step S104 , referring to FIG. 5 , the substrate 10 is removed to obtain a high thermal conductivity material. Optionally, removing the substrate 10 includes removing the substrate 10 using laser lift-off technology, chemical lift-off technology or epitaxial layer lift-off technology. Further optionally, the substrate 10 is removed using a laser lift-off technique. The resulting highly thermally conductive material includes a gallium-containing compound layer 11 and a diamond layer 15 disposed on the gallium-containing compound layer 11 , and the diamond layer 15 includes the first diamond layer 13 and the second diamond layer 14 . In the embodiment of the present invention, the binding force between the gallium-containing compound layer 11 and the diamond layer 15 is determined to be 400N-1000N by Rockwell indentation method. The nucleation density of diamonds in the diamond layer 15 was determined by scanning electron microscope to be (5-10)×10 10 diamonds/cm 2 .
本发明还提供了一种半导体器件,包括上述制得的高导热材料,所述高导热材料作为所述半导体器件的外延层。其中,半导体器件包括晶体二极管、双极型晶体管和场效应晶体管中的至少一种。具体的,可以但不限于当所述半导体器件为发光二极管时,所述高导热材料作为所述发光二极管的外延层。当高导热材料作为发光二极管的外延层时,高导热材料的热导效率提高,散热性能好,进而增加了发光二极管的散热效果,提高发光二极管的工作效率,延长使用寿命。The present invention also provides a semiconductor device, comprising the high thermal conductivity material prepared above, and the high thermal conductivity material is used as an epitaxial layer of the semiconductor device. Wherein, the semiconductor device includes at least one of a crystal diode, a bipolar transistor and a field effect transistor. Specifically, when the semiconductor device is a light emitting diode, the high thermal conductivity material may be used as an epitaxial layer of the light emitting diode. When the high thermal conductivity material is used as the epitaxial layer of the light-emitting diode, the heat conduction efficiency of the high thermal conductivity material is improved, and the heat dissipation performance is good, thereby increasing the heat dissipation effect of the light-emitting diode, improving the working efficiency of the light-emitting diode, and prolonging the service life.
下面将以多个具体实施例对本发明进行进一步的说明。The present invention will be further described with multiple specific embodiments below.
实施例1Example 1
一种高导热材料的制备方法,包括如下步骤:A method for preparing a high thermal conductivity material, comprising the steps of:
(1)提供蓝宝石(Al2O3)作为衬底,采用丙酮对蓝宝石进行清洗,再置于稀硫酸和磷酸混合液中进行刻蚀,最后置于超高真空腔中,将衬底表面的挥发性物质去除,利用金属有机化学气相沉积在蓝宝石上制备氮化镓层。(1) Provide sapphire (Al 2 O 3 ) as a substrate, clean the sapphire with acetone, etch it in a mixture of dilute sulfuric acid and phosphoric acid, and finally place it in an ultra-high vacuum chamber to remove the surface of the substrate Volatile substances were removed, and a gallium nitride layer was prepared on sapphire by metal-organic chemical vapor deposition.
(2)将沉积有氮化镓层的蓝宝石依次用乙醇、去离子水超声清洗5min,除去表面的油污和灰尘,用氮气吹干;将吹干后的衬底置于溅射室内进行磁控溅射。溅射环境为氢气氩气混合气体,氢气流量为10sccm,氩气流量为20sccm,氢气与氩气体积比为1:2,腔室压强为28mtorr,工作电压为500V,磁控溅射功率为4kW,溅射时间为7min,制得类金刚石的厚度为250nm。(2) The sapphire deposited with the gallium nitride layer was ultrasonically cleaned with ethanol and deionized water for 5 minutes to remove the oil and dust on the surface, and dried with nitrogen; the dried substrate was placed in the sputtering chamber for magnetron sputtering. The sputtering environment is a mixed gas of hydrogen and argon, the flow rate of hydrogen is 10 sccm, the flow rate of argon is 20 sccm, the volume ratio of hydrogen to argon is 1:2, the chamber pressure is 28mtorr, the working voltage is 500V, and the magnetron sputtering power is 4kW , the sputtering time is 7min, and the thickness of the obtained diamond-like carbon is 250nm.
(3)将沉积有类金刚石层的蓝宝石置于乙醇溶液中清洗5min,置于Zeta电位约±50mV、粒径为5nm的纳米金刚石粉悬浮液中在超声功率2kW下超声处理30min进行植晶,氮气吹干置于热丝化学气相沉积腔室中沉积第一金刚石层。使用钽丝作为热丝,直径为0.5mm,总数量为9,抽腔室真空至0.1Pa以下,通入混合气体,其中H2流量为800sccm,CH4流量24sccm,腔室压强3500Pa,生长功率6500W,沉积温度为800℃,沉积速率为300nm/h,沉积1h。(3) The sapphire deposited with the diamond-like layer is placed in an ethanol solution and cleaned for 5 minutes, placed in a suspension of nano-diamond powder with a Zeta potential of about ±50 mV and a particle size of 5 nm, and ultrasonically treated for 30 minutes at an ultrasonic power of 2 kW to carry out crystal implantation. Blow dry with nitrogen and place in a hot wire chemical vapor deposition chamber to deposit the first diamond layer. Use tantalum wire as the hot wire, the diameter is 0.5mm, the total number is 9, the chamber is vacuumed to below 0.1Pa, and the mixed gas is introduced, wherein the flow rate of H2 is 800sccm, the flow rate of CH4 is 24sccm, the chamber pressure is 3500Pa, and the growth power 6500W, the deposition temperature is 800°C, the deposition rate is 300nm/h, and the deposition is 1h.
(4)采用激光剥离技术去除蓝宝石,得到高导热材料,包括氮化镓层和金刚石层。利用洛氏压痕法测定氮化镓层与金刚石层的结合力为800N,利用扫描电镜测定金刚石层中金刚石的形核密度为7×1010个/cm2。(4) Laser lift-off technology is used to remove sapphire to obtain high thermal conductivity materials, including gallium nitride layer and diamond layer. The bonding force between the gallium nitride layer and the diamond layer was determined to be 800N by Rockwell indentation method, and the nucleation density of diamond in the diamond layer was determined to be 7×10 10 pieces/cm 2 by scanning electron microscopy.
实施例2Example 2
一种高导热材料的制备方法,包括如下步骤:A method for preparing a high thermal conductivity material, comprising the steps of:
(1)提供碳化硅作为衬底,采用乙醇对碳化硅进行清洗,再置于稀硫酸和磷酸混合液中进行刻蚀,最后置于超高真空腔中,将衬底表面的挥发性物质去除,利用分子束外延在碳化硅上制备磷化镓层。(1) Provide silicon carbide as the substrate, clean the silicon carbide with ethanol, place it in a mixture of dilute sulfuric acid and phosphoric acid for etching, and finally place it in an ultra-high vacuum chamber to remove volatile substances on the surface of the substrate , using molecular beam epitaxy to prepare gallium phosphide layers on silicon carbide.
(2)将沉积有磷化镓层的碳化硅依次用乙醇、去离子水超声清洗10min,除去杂质,用氮气吹干;将吹干后的衬底进行离子镀膜,制得类金刚石的厚度为450nm。(2) The silicon carbide deposited with the gallium phosphide layer is ultrasonically cleaned with ethanol and deionized water for 10 min successively to remove impurities and blow dry with nitrogen; the dried substrate is ion-coated to obtain a diamond-like carbon with a thickness of 450nm.
(3)将沉积有类金刚石层的碳化硅置于乙醇溶液中清洗5min,置于Zeta电位约±50mV、粒径为7nm的纳米金刚石粉悬浮液中在超声功率3kW下超声处理40min进行植晶,氮气吹干置于常压化学气相沉积腔室中沉积制备第一金刚石层。(3) Clean the silicon carbide deposited with a diamond-like layer in an ethanol solution for 5 minutes, place it in a suspension of nano-diamond powder with a Zeta potential of about ±50 mV and a particle size of 7 nm, and perform ultrasonic treatment for 40 minutes at an ultrasonic power of 3 kW for crystal planting , dried with nitrogen gas and placed in an atmospheric pressure chemical vapor deposition chamber to deposit and prepare the first diamond layer.
(4)采用化学剥离技术去除碳化硅,得到磷化镓器件,包括磷化镓层和金刚石层。利用洛氏压痕法测定磷化镓层与金刚石层的结合力为600N,利用扫描电镜测定金刚石层中金刚石的形核密度为5×1010个/cm2。(4) The silicon carbide is removed by a chemical lift-off technique to obtain a gallium phosphide device, including a gallium phosphide layer and a diamond layer. The bonding force between the gallium phosphide layer and the diamond layer was determined to be 600N by Rockwell indentation method, and the nucleation density of diamond in the diamond layer was determined to be 5×10 10 /cm 2 by scanning electron microscopy.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810474067.7A CN110504229A (en) | 2018-05-17 | 2018-05-17 | A kind of high thermal conductivity material and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810474067.7A CN110504229A (en) | 2018-05-17 | 2018-05-17 | A kind of high thermal conductivity material and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110504229A true CN110504229A (en) | 2019-11-26 |
Family
ID=68585079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810474067.7A Pending CN110504229A (en) | 2018-05-17 | 2018-05-17 | A kind of high thermal conductivity material and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110504229A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113224200A (en) * | 2021-05-08 | 2021-08-06 | 西北核技术研究所 | Gallium nitride semiconductor radiation detector, preparation method thereof and detection device |
CN114196927A (en) * | 2021-11-25 | 2022-03-18 | 深圳先进技术研究院 | Ultraviolet anti-reflection glass based on sapphire substrate and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100155901A1 (en) * | 2008-12-22 | 2010-06-24 | Ralph Korenstein | Fabricating a gallium nitride layer with diamond layers |
CN102593294A (en) * | 2012-03-15 | 2012-07-18 | 安徽三安光电有限公司 | Compound gallium nitride based semiconductor growing substrate and producing method thereof |
CN106757333A (en) * | 2017-02-08 | 2017-05-31 | 河南工业大学 | A kind of preparation method of the direct Synthesis pure phase polycrystalline diamond of DLC |
CN107204282A (en) * | 2017-06-26 | 2017-09-26 | 北京科技大学 | A kind of method based on non-self-supporting GaN to being sticked with standby Buddha's warrior attendant ground mass GaN |
-
2018
- 2018-05-17 CN CN201810474067.7A patent/CN110504229A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100155901A1 (en) * | 2008-12-22 | 2010-06-24 | Ralph Korenstein | Fabricating a gallium nitride layer with diamond layers |
CN102593294A (en) * | 2012-03-15 | 2012-07-18 | 安徽三安光电有限公司 | Compound gallium nitride based semiconductor growing substrate and producing method thereof |
CN105633234A (en) * | 2012-03-15 | 2016-06-01 | 安徽三安光电有限公司 | Gallium nitride-based semiconductor growth substrate and fabrication method thereof |
CN106757333A (en) * | 2017-02-08 | 2017-05-31 | 河南工业大学 | A kind of preparation method of the direct Synthesis pure phase polycrystalline diamond of DLC |
CN107204282A (en) * | 2017-06-26 | 2017-09-26 | 北京科技大学 | A kind of method based on non-self-supporting GaN to being sticked with standby Buddha's warrior attendant ground mass GaN |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113224200A (en) * | 2021-05-08 | 2021-08-06 | 西北核技术研究所 | Gallium nitride semiconductor radiation detector, preparation method thereof and detection device |
CN113224200B (en) * | 2021-05-08 | 2022-11-04 | 西北核技术研究所 | Gallium nitride semiconductor radiation detector, preparation method thereof and detection equipment |
CN114196927A (en) * | 2021-11-25 | 2022-03-18 | 深圳先进技术研究院 | Ultraviolet anti-reflection glass based on sapphire substrate and preparation method and application thereof |
CN114196927B (en) * | 2021-11-25 | 2024-02-27 | 深圳先进技术研究院 | Ultraviolet anti-reflection glass based on sapphire substrate and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104009130B (en) | Growth substrates, nitride compound semiconductor device and its manufacture method | |
US11139176B2 (en) | Direct growth methods for preparing diamond-assisted heat-dissipation silicon carbide substrates of GaN-HEMTs | |
JP5651467B2 (en) | Manufacturing method of large area SiC substrate | |
CN108010995A (en) | A kind of high light efficiency LED chip based on graphene Sapphire Substrate | |
CN108206130B (en) | Indium nitride nanocolumn epitaxial wafer grown on aluminum foil substrate and preparation method thereof | |
CN110690105A (en) | Method for growing gallium nitride on diamond substrate based on hexagonal boron nitride and aluminum nitride | |
CN106011778B (en) | Method for growing Ni-containing film by monoatomic layer deposition technology | |
CN110828291A (en) | GaN/AlGaN heterojunction material based on single crystal diamond substrate and preparation method thereof | |
US20150035123A1 (en) | Curvature compensated substrate and method of forming same | |
CN105731825A (en) | Method for preparing aluminum nitride thin film by utilizing graphene glass at low cost and large area | |
CN109103314A (en) | graphene ultraviolet LED and preparation method thereof | |
CN110504229A (en) | A kind of high thermal conductivity material and its preparation method and application | |
CN109119327A (en) | The method of epitaxial growth aluminium nitride on nano-patterned sapphire substrate | |
CN102181924B (en) | A kind of growth method of graphene and graphene | |
CN104328390B (en) | A kind of preparation method of GaN/ diamond film composite sheet | |
CN108231545B (en) | InN nano-pillar epitaxial wafer grown on copper foil substrate and preparation method thereof | |
CN111676450A (en) | Hexagonal boron nitride thick film based on ion beam sputtering deposition and preparation method and application | |
CN105836733B (en) | A kind of method of the graphene quality of direct growth on improvement nonmetallic substrate | |
WO2022019799A1 (en) | Heteroepitaxial structure with a diamond heat sink | |
CN113871473B (en) | A method for controlling van der Waals epitaxy and remote epitaxy growth modes | |
CN208608190U (en) | A kind of high thermal conductivity structure | |
CN111733456B (en) | Composite seed crystal for AlN single crystal growth and preparation method thereof | |
CN113594110B (en) | Semiconductor device and method for manufacturing the same | |
CN110670138A (en) | Composite seed crystal for aluminum nitride single crystal growth and preparation method thereof | |
CN118461125A (en) | A method for controlling the number of layers of a graphene single crystal wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |