CN110497419A - Construction waste sorting robot - Google Patents
Construction waste sorting robot Download PDFInfo
- Publication number
- CN110497419A CN110497419A CN201910635398.9A CN201910635398A CN110497419A CN 110497419 A CN110497419 A CN 110497419A CN 201910635398 A CN201910635398 A CN 201910635398A CN 110497419 A CN110497419 A CN 110497419A
- Authority
- CN
- China
- Prior art keywords
- waste
- data
- module
- sorting robot
- category
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 294
- 238000010276 construction Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 claims description 39
- 238000012545 processing Methods 0.000 claims description 28
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000011176 pooling Methods 0.000 claims description 9
- 238000012549 training Methods 0.000 claims description 7
- 238000012360 testing method Methods 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 5
- 238000013527 convolutional neural network Methods 0.000 description 11
- 230000007613 environmental effect Effects 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1661—Programme controls characterised by programming, planning systems for manipulators characterised by task planning, object-oriented languages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Image Analysis (AREA)
Abstract
本发明涉及移动机器人及路径规划的技术领域,尤其是涉及一种建筑废弃物分拣机器人,其包括分拣机器人本体,分拣机器人本体包括以下模块:机械手:用于拾拣建筑工地的废弃物;移动模块:用于驱动分拣机器人本体移动;图像获取装置:用于移动模块驱动分拣机器人本体实时获取建筑工地的图像数据;收集模块:用于存放机械手拾拣的废弃物;控制模块:在图像数据中自动识别出废弃物以及废弃物的类别数据,并控制移动模块驱动分拣机器人本体移动至废弃物处,控制机械手拾拣废弃物,并根据类别数据,将废弃物存储至收集模块中预设的位置。本发明具有能够在建筑工地,对建筑工地的废物进行分拣的效果。
The present invention relates to the technical field of mobile robots and path planning, in particular to a construction waste sorting robot, which includes a sorting robot body, and the sorting robot body includes the following modules: manipulator: used to pick up waste on construction sites ;Movement module: used to drive the body of the sorting robot to move; image acquisition device: used to drive the body of the sorting robot to obtain image data of the construction site in real time; collection module: used to store waste picked up by the manipulator; control module: Automatically identify waste and waste category data in the image data, and control the mobile module to drive the sorting robot body to move to the waste, control the manipulator to pick up waste, and store the waste to the collection module according to the category data preset position in . The invention has the effect of being able to sort wastes at the construction site.
Description
技术领域technical field
本发明涉及移动机器人及路径规划的技术领域,尤其是涉及一种建筑废弃物分拣机器人。The invention relates to the technical field of mobile robots and path planning, in particular to a construction waste sorting robot.
背景技术Background technique
目前,建筑废物是指在建设或者拆除建筑物时,产生的废弃的或者是有害的材料。在如今人们的日常生活中,建筑业对自然环境造成了很多负面影响,其中就包括建筑废弃物。Currently, construction waste refers to waste or hazardous materials generated during the construction or demolition of buildings. In today's daily life, the construction industry has caused many negative impacts on the natural environment, including construction waste.
现有的对建筑物进行建设或拆除时产生的建筑物废弃物时,若不能够及时将建筑废弃物清除,除了建筑废弃物会对周围环境造成影响,在建筑工地的施工人员也会误踩至该建筑废弃物上,造成不必要的损伤。因此需要及时对建筑废弃物进行清理,然而由于在建筑工地,建筑废弃物的数量很多,人工对建筑废弃物进行清理时,会耗费大量的时间精力,不利于工程的进展,也有可能会存在清理不完全等情况,因此存在改进空间。When the existing building waste is generated during the construction or demolition of buildings, if the construction waste cannot be removed in time, in addition to the impact of the construction waste on the surrounding environment, the construction workers on the construction site will also step on it by mistake. onto the construction waste, causing unnecessary damage. Therefore, it is necessary to clean up the construction waste in time. However, due to the large amount of construction waste on the construction site, it will take a lot of time and energy to clean up the construction waste manually, which is not conducive to the progress of the project, and there may be cleaning Not quite, so there is room for improvement.
发明内容Contents of the invention
本发明的目的是提供一种能够在建筑工地,对建筑工地的废物进行分拣的建筑废弃物分拣机器人。The object of the present invention is to provide a construction waste sorting robot capable of sorting the waste at the construction site.
本发明的上述发明目的一是通过以下技术方案得以实现的:Above-mentioned invention purpose of the present invention one is achieved by the following technical solutions:
一种建筑废弃物分拣机器人,所述建筑废弃物分拣机器人包括分拣机器人本体,所述分拣机器人本体包括以下模块:A construction waste sorting robot, the construction waste sorting robot includes a sorting robot body, and the sorting robot body includes the following modules:
机械手:用于拾拣建筑工地的废弃物;Manipulator: used to pick up waste on construction sites;
移动模块:用于驱动所述分拣机器人本体移动;Mobile module: used to drive the movement of the sorting robot body;
图像获取装置:用于所述移动模块驱动所述分拣机器人本体实时获取所述建筑工地的图像数据;Image acquisition device: used for the mobile module to drive the sorting robot body to acquire image data of the construction site in real time;
收集模块:用于存放所述机械手拾拣的所述废弃物;A collection module: used to store the waste picked up by the manipulator;
控制模块:在所述图像数据中自动识别出所述废弃物以及所述废弃物的类别数据,并控制所述移动模块驱动所述分拣机器人本体移动至所述废弃物处,控制所述机械手拾拣所述废弃物,并根据所述类别数据,将所述废弃物存储至所述收集模块中预设的位置。Control module: automatically identify the waste and the category data of the waste in the image data, and control the moving module to drive the sorting robot body to move to the waste, and control the manipulator picking up the waste, and storing the waste to a preset location in the collection module according to the category data.
通过采用上述技术方案,在分拣机器人本体上的控制模块能够根据图像获取装置获取到建筑工地的图像数据进行分析处理,从而获取该建筑工地的图像数据中废弃物的位置,从而控制移动模块和机械手,将分拣机器人本体移动至废弃物处,并使用机械手将废弃物拾起,并根据图像识别的结果,识别出拾拣起的废弃物的类别数据,将废弃物根据该类别数据进行分类存储,一来能够自动将建筑工地的废弃物拾起,起到了环保的效果;同时,在从图像数据中识别出废弃物时,根据废弃物的类别数据分类存储,能够使得存储的废弃物能够更合理,有助于后续对废弃物的回收和利用,进一步地有助于环保。By adopting the above technical solution, the control module on the sorting robot body can analyze and process the image data of the construction site acquired by the image acquisition device, so as to obtain the position of the waste in the image data of the construction site, thereby controlling the mobile module and Manipulator, move the sorting robot body to the waste, and use the manipulator to pick up the waste, and according to the result of image recognition, identify the category data of the picked up waste, and classify the waste according to the category data Storage, on the one hand, it can automatically pick up the waste on the construction site, which has the effect of environmental protection; at the same time, when the waste is identified from the image data, it can be classified and stored according to the type of waste, so that the stored waste can be It is more reasonable, helps the subsequent recycling and utilization of waste, and further contributes to environmental protection.
本发明进一步设置为:所述控制模块采用以下方法步骤识别所述废弃物以及所述类别数据:The present invention is further set as: the control module adopts the following method steps to identify the waste and the category data:
S10:若获取到所述图像数据,则从所述图像数据中识别出所述废弃物和所述类别数据;S10: If the image data is acquired, identifying the waste and the category data from the image data;
S20:根据所述图像数据中的所述废弃物,使用全覆盖路径规划算法进行计算,得到对应的移动路径数据;S20: According to the waste in the image data, use a full-coverage path planning algorithm to calculate, and obtain corresponding moving path data;
S30:根据所述移动路径数据,生成并向所述移动模块发送移动消息,使所述移动模块根据所述移动消息驱动所述分拣机器人移动;S30: Generate and send a moving message to the moving module according to the moving path data, so that the moving module drives the sorting robot to move according to the moving message;
S40:当所述分拣机器人本体移动至所述废弃物时,向所述机械手发送拾拣消息,使所述机械手拾拣所述废弃物,并将所述废弃物根据存放至所述收集模块处对应的位置。S40: When the sorting robot body moves to the waste, send a picking message to the manipulator, so that the manipulator picks up the waste, and stores the waste into the collection module according to at the corresponding position.
通过采用上述技术方案,控制模块在获取到图像数据后,使用预设的模型,在图像数据中识别出建筑工地的废弃物和对应的类别数据,能够使分拣机器人能够根据该废弃物和类别数据,对废弃物进行拾拣和分类存储;同时,采用全覆盖路径规划算法,基于废弃物的位置,规划出移动路径数据,能够使该分拣机器人本体移动的路线更合理,减少重复的路线,提升了效率。By adopting the above technical solution, after the control module acquires the image data, it uses the preset model to identify the waste and the corresponding category data on the construction site in the image data, so that the sorting robot can Data, pick up and classify waste; at the same time, use full-coverage path planning algorithm to plan movement path data based on the location of waste, which can make the moving route of the sorting robot body more reasonable and reduce repeated routes , which improves the efficiency.
本发明进一步设置为:步骤S10包括:The present invention is further set to: Step S10 includes:
S11:使用预设的废弃物识别模型,对所述图像数据进行处理,得到对应的处理结果;S11: Using a preset waste recognition model, process the image data to obtain a corresponding processing result;
S12:从所述处理结果中,获取所述废弃物的图像以及对应的所述类别数据。S12: Obtain the image of the waste and the corresponding category data from the processing result.
通过采用上述技术方案,预先训练好该废弃物识别模型,能够在控制模块获取到图像数据后,从图像数据中识别出废弃物的位置和废弃物对应的类别数据,从而可以使控制模块能够根据该位置和类别数据,控制移动模块和机械手动作。By adopting the above technical solution, the waste identification model is pre-trained, and after the control module acquires the image data, it can recognize the position of the waste and the category data corresponding to the waste from the image data, so that the control module can be based on The position and category data control the motion of the mobile module and the manipulator.
本发明进一步设置为:在步骤S10之前,通过以下方法步骤训练获取所述废弃物识别模型:The present invention is further set to: before step S10, the waste recognition model is obtained through training through the following method steps:
S101:根据所述类别数据,逐类获取若干张对应的废弃物待测图片;S101: According to the category data, obtain several corresponding pictures of waste to be tested category by category;
S102:逐类将所述废弃物待测图片输入CNN网络中,得到对应的废弃物特征值;S102: Input the waste to-be-tested pictures into the CNN network one by one to obtain corresponding waste feature values;
S103:根据所述废弃物特征值,使用RPN网络对每张是使废弃物待测图片进行处理,得到对应的建议窗口;S103: According to the characteristic value of the waste, use the RPN network to process each picture of the waste to be tested, and obtain the corresponding suggestion window;
S104:将所述建议窗口映射至所述CNN网络中,并使用RoI pooling层对每一所述建议窗口进行处理,得到以每一所述建议窗口对应的固定尺寸的特征图;S104: Map the suggestion window to the CNN network, and use the RoI pooling layer to process each suggestion window to obtain a fixed-size feature map corresponding to each suggestion window;
S105:根据所述类别数据,对特征图进行训练,得到能够识别所述类别数据对应的废弃物的废弃物识别模型。S105: According to the category data, perform training on the feature map to obtain a waste recognition model capable of identifying waste corresponding to the category data.
通过采用上述技术方案,通过采用Faster R-CNN算法,按照废弃物的类别数据对每一废弃物进行特征值提取、生成建议窗口以及经过池化层进行处理,进而得到能够训练得到能够获取到建筑工地每一废弃物以及对应的类别数据的废弃物识别模型。By adopting the above-mentioned technical scheme, by adopting the Faster R-CNN algorithm, extracting the feature value of each waste according to the waste category data, generating a suggestion window and processing it through the pooling layer, and then obtaining the building that can be trained and obtained. A waste identification model for each waste on site and the corresponding category data.
本发明进一步设置为:步骤S20包括:The present invention is further set to: step S20 includes:
S21:对所述图像数据采取栅格化处理,得到栅格图像数据;S21: Perform rasterization processing on the image data to obtain raster image data;
S22:获取每一所述废弃物在所述栅格图像数据的位置数据,并将根据所述位置数据,调用A*算法进行计算,得到对应的移动路径数据。S22: Obtain the position data of each waste in the raster image data, and call the A* algorithm to calculate according to the position data, so as to obtain corresponding movement path data.
通过采用上述技术方案,使用栅格化处理和A*算法,能够在获取得到废弃物的位置后,计算得到分拣机器人本体拾拣施工现场的废弃物时,最优化的路线,从而减少分拣机器人本体的重复运动,提升拾拣的效率。By adopting the above technical solution, using rasterization processing and A* algorithm, after obtaining the position of the waste, it is possible to calculate the optimal route when the sorting robot body picks up the waste on the construction site, thereby reducing the number of sorting The repetitive movement of the robot body improves the efficiency of picking.
本发明进一步设置为:步骤S40包括:The present invention is further set to: step S40 includes:
S41:预先在所述类别数据中获取类别数量,根据所述类别数量在所述收集模块中划分对应的废弃物存储区域,并根据所述类别数据对每一所述废弃物存储区域进行标记;S41: Acquire category numbers in the category data in advance, divide corresponding waste storage areas in the collection module according to the category numbers, and mark each of the waste storage areas according to the category data;
S42:当所述机械手拾拣起所述废弃物时,将所述废弃物根据所述废弃物对应的类别数据存储至收集模块对应的所述废弃物存储区域中。S42: When the manipulator picks up the waste, store the waste in the waste storage area corresponding to the collection module according to the category data corresponding to the waste.
通过采用上述技术方案,预先在收集模块中设置好与每一类别数据对应的存储区域,能够对建筑工地的废弃物进行分拣时,将拾拣到的废弃物放置于收集模块对应的区域,有助于后续的循环利用。By adopting the above technical solution, the storage area corresponding to each type of data is set in the collection module in advance, and when the waste on the construction site is sorted, the picked waste can be placed in the corresponding area of the collection module. Contribute to subsequent recycling.
优选地,所述控制模块还包括以下模块组成的控制系统:Preferably, the control module also includes a control system composed of the following modules:
图像识别模块,用于若获取到所述图像数据,则从所述图像数据中识别出所述废弃物和所述类别数据;An image recognition module, configured to recognize the waste and the category data from the image data if the image data is acquired;
移动路径计算模块,用于根据所述图像数据中的所述废弃物,使用全覆盖路径规划算法进行计算,得到对应的移动路径数据;A movement path calculation module, configured to use a full-coverage path planning algorithm to perform calculations based on the waste in the image data to obtain corresponding movement path data;
移动控制模块,用于根据所述移动路径数据,生成并向所述移动模块发送移动消息,使所述移动模块根据所述移动消息驱动所述分拣机器人移动;A movement control module, configured to generate and send a movement message to the movement module according to the movement path data, so that the movement module drives the sorting robot to move according to the movement message;
分拣收集模块,用于当所述分拣机器人本体移动至所述废弃物时,向所述机械手发送拾拣消息,使所述机械手拾拣所述废弃物,并将所述废弃物根据存放至所述收集模块处对应的位置。a sorting and collecting module, configured to send a picking message to the manipulator when the sorting robot body moves to the waste, so that the manipulator picks up the waste, and stores the waste according to the to the corresponding position at the collection module.
通过采用上述技术方案,控制模块在获取到图像数据后,使用预设的模型,在图像数据中识别出建筑工地的废弃物和对应的类别数据,能够使分拣机器人能够根据该废弃物和类别数据,对废弃物进行拾拣和分类存储;同时,采用全覆盖路径规划算法,基于废弃物的位置,规划出移动路径数据,能够使该分拣机器人本体移动的路线更合理,减少重复的路线,提升了效率。By adopting the above technical solution, after the control module acquires the image data, it uses the preset model to identify the waste and the corresponding category data on the construction site in the image data, so that the sorting robot can Data, pick up and classify waste; at the same time, use full-coverage path planning algorithm to plan movement path data based on the location of waste, which can make the moving route of the sorting robot body more reasonable and reduce repeated routes , which improves the efficiency.
综上所述,本发明的有益技术效果为:In summary, the beneficial technical effects of the present invention are:
1.在分拣机器人本体上的控制模块能够根据图像获取装置获取到建筑工地的图像数据进行分析处理,从而获取该建筑工地的图像数据中废弃物的位置,从而控制移动模块和机械手,将分拣机器人本体移动至废弃物处,并使用机械手将废弃物拾起,并根据图像识别的结果,识别出拾拣起的废弃物的类别数据,将废弃物根据该类别数据进行分类存储,一来能够自动将建筑工地的废弃物拾起,起到了环保的效果;1. The control module on the sorting robot body can analyze and process the image data of the construction site obtained by the image acquisition device, so as to obtain the position of the waste in the image data of the construction site, thereby controlling the mobile module and manipulator, and sorting The body of the picking robot moves to the waste, and uses the manipulator to pick up the waste, and according to the result of image recognition, recognizes the category data of the picked waste, and classifies and stores the waste according to the category data. It can automatically pick up the waste on the construction site, which has the effect of environmental protection;
2.在从图像数据中识别出废弃物时,根据废弃物的类别数据分类存储,能够使得存储的废弃物能够更合理,有助于后续对废弃物的回收和利用,进一步地有助于环保。2. When identifying waste from image data, classify and store waste according to the type of data, which can make the stored waste more reasonable, help the subsequent recycling and utilization of waste, and further contribute to environmental protection .
附图说明Description of drawings
图1是本发明一实施例中控制模块进行识别废弃物以及类别数据的方法的一流程图;Fig. 1 is a flowchart of a method for a control module to identify waste and category data in an embodiment of the present invention;
图2是本发明一实施例中控制模块进行识别废弃物以及类别数据的方法中步骤S10的实现流程图;Fig. 2 is an implementation flow chart of step S10 in the method for the control module to identify waste and category data in an embodiment of the present invention;
图3是本发明一实施例中控制模块进行识别废弃物以及类别数据的方法的另一流程图;Fig. 3 is another flow chart of the method for the control module to identify waste and category data in an embodiment of the present invention;
图4是本发明一实施例中控制模块进行识别废弃物以及类别数据的方法中步骤S20的实现流程图;Fig. 4 is an implementation flow chart of step S20 in the method for the control module to identify waste and category data in an embodiment of the present invention;
图5是本发明一实施例中控制模块进行识别废弃物以及类别数据的方法中步骤S40的实现流程图;Fig. 5 is an implementation flow chart of step S40 in the method for the control module to identify waste and category data in an embodiment of the present invention;
图6是本发明一实施例中控制系统的一原理框图。Fig. 6 is a functional block diagram of the control system in an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
实施例一:Embodiment one:
本发明公开了一种建筑废弃物分拣机器人,包括:分拣机器人本体,该分拣机器人本体包括控制模块,以及藕接于该控制模块的机械手、移动模块、图像获取模块以及收集模块。The invention discloses a construction waste sorting robot, comprising: a sorting robot body, the sorting robot body includes a control module, and a manipulator coupled to the control module, a moving module, an image acquisition module and a collection module.
机械手受控于控制模块,能够根据控制模块发出的指令,拾拣对应的物品,在本实施例中,具体拾拣的物品是施工场地的废弃物。The manipulator is controlled by the control module, and can pick up the corresponding items according to the instructions sent by the control module. In this embodiment, the specific items picked up are wastes from the construction site.
图像获取装置向控制模块发送图像数据,在本实施例中,图像获取装置具体可以是摄像头。图像获取装置实时获取建筑工地现场的图像数据,并将该图像数据发送至控制模块进行处理。The image acquisition device sends image data to the control module. In this embodiment, the image acquisition device may specifically be a camera. The image acquisition device acquires the image data of the construction site in real time, and sends the image data to the control module for processing.
移动模块受控于控制模块,能根据控制模块发出的指令,移动分拣机器人本体,使分拣机器人本体能够移动至废弃物旁。The mobile module is controlled by the control module, and can move the sorting robot body according to the instructions sent by the control module, so that the sorting robot body can move to the side of the waste.
收集模块用于存放机械手拾拣的废弃物,其中,收集模块可以是固定于分拣机器人本体上,也可以是设置于建筑工地的其中一个区域,分拣机器人本体能够知道该区域在建筑工地的位置。The collection module is used to store the waste picked up by the manipulator. The collection module can be fixed on the sorting robot body, or it can be set in one of the areas of the construction site. The sorting robot body can know that the area is in the construction site. Location.
实施例二:Embodiment two:
在一实施例中,如图1所示,控制模块采用以下方法步骤识别废弃物以及类别数据,并对废弃物进行拾拣以及收集:In one embodiment, as shown in Figure 1, the control module uses the following method steps to identify waste and category data, and pick up and collect waste:
S10:若获取到图像数据,则从图像数据中识别出废弃物和类别数据。S10: If the image data is acquired, identify waste and category data from the image data.
在本实施例中,图像数据是指建筑工地中,实际情况的图像的数据。废弃物是指在建筑工地中,对建筑物进行建造或者拆除时产生的废料,其中,该废弃物包括但不限于螺钉、石头、木板以及其他垃圾等。其中,类别数据是指对应每一种废弃物的种类的数据。In this embodiment, image data refers to image data of actual conditions in a construction site. Waste refers to the waste generated during the construction or demolition of buildings on construction sites, where the waste includes but not limited to screws, stones, boards and other garbage. Here, the category data refers to data corresponding to each type of waste.
具体地,预先在控制模块中设置有能够从图像中识别出废弃物和该废弃物对应的类别数据的模型,在获取到图像获取装置拍摄的建筑工地的图像数据后,使用该模型,在图形数据中获取到在建筑工地的废弃物的位置和每一种识别到的废弃物对饮的类别数据。Specifically, a model capable of identifying waste and the corresponding category data of the waste from the image is set in the control module in advance. The data captures the location of waste on construction sites and the type of waste identified for each type of waste.
S20:根据图像数据中的废弃物,使用全覆盖路径规划算法进行计算,得到对应的移动路径数据。S20: According to the waste in the image data, use a full-coverage path planning algorithm to calculate, and obtain corresponding moving path data.
在本实施例中,全覆盖路径规划算法是指在一定区域或空间范围内获取一条走遍除障碍物外所有地方的最短路径的算法。移动路径数据是指分拣机器人本体根据建筑工地的废弃物的位置,通过全覆盖路径算法进行计算后,得到的移动以及分拣废弃物的路线。In this embodiment, the full-coverage path planning algorithm refers to an algorithm that obtains a shortest path that traverses all places except obstacles within a certain area or spatial range. The moving path data refers to the movement and sorting route of the sorting robot body obtained by calculating through the full coverage path algorithm according to the location of the waste on the construction site.
具体地,在控制模块从图像数据中识别出废弃物以及废弃物在建筑工地的位置后,采用全覆盖路径算法,计算出分拣机器人本体移动并拾拣建筑工地的废弃物的最短路线,并将该最短路线作为该移动路径数据。Specifically, after the control module recognizes the waste and the position of the waste on the construction site from the image data, the full-coverage path algorithm is used to calculate the shortest route for the sorting robot to move and pick up the waste on the construction site, and The shortest route is used as the movement route data.
S30:根据移动路径数据,生成并向移动模块发送移动消息,使移动模块根据移动消息驱动分拣机器人移动。S30: Generate and send a moving message to the moving module according to the moving path data, so that the moving module drives the sorting robot to move according to the moving message.
在本实施例中,移动消息是指控制移动模块进行移动的消息。In this embodiment, the moving message refers to a message for controlling the movement of the mobile module.
具体地,将该移动路径数据中具体包括的路径,以及该分拣机器人本体当前的位置生成该移动消息,从而驱动移动模块动作,驱动分拣机器人根据步骤S20计算得到的移动路径数据移动。Specifically, the path specifically included in the movement path data and the current position of the sorting robot body generate the movement message, thereby driving the movement module to move, and driving the sorting robot to move according to the movement path data calculated in step S20.
S40:当分拣机器人本体移动至废弃物时,向机械手发送拾拣消息,使机械手拾拣废弃物,并将废弃物根据存放至收集模块处对应的位置。S40: When the sorting robot body moves to the waste, send a picking message to the manipulator, so that the manipulator picks up the waste, and stores the waste to the corresponding position of the collection module.
在本实施例中,拾拣消息是指控制机械手执行转动、夹持、拾拣等操作的消息。In this embodiment, the picking message refers to a message that controls the manipulator to perform operations such as rotation, clamping, and picking.
具体地,当移动模块驱动分拣机器人本体根据移动消息移动至对应的废弃物旁时,控制模块向机械手发送该拾拣消息,将废弃物拾起,并存储至收集模块处对应的位置。Specifically, when the moving module drives the sorting robot body to move to the corresponding waste according to the moving message, the control module sends the picking message to the manipulator to pick up the waste and store it in the corresponding location of the collecting module.
在本实施例中,在分拣机器人本体上的控制模块能够根据图像获取装置获取到建筑工地的图像数据进行分析处理,从而获取该建筑工地的图像数据中废弃物的位置,从而控制移动模块和机械手,将分拣机器人本体移动至废弃物处,并使用机械手将废弃物拾起,并根据图像识别的结果,识别出拾拣起的废弃物的类别数据,将废弃物根据该类别数据进行分类存储,一来能够自动将建筑工地的废弃物拾起,起到了环保的效果;同时,在从图像数据中识别出废弃物时,根据废弃物的类别数据分类存储,能够使得存储的废弃物能够更合理,有助于后续对废弃物的回收和利用,进一步地有助于环保。In this embodiment, the control module on the sorting robot body can analyze and process the image data of the construction site acquired by the image acquisition device, so as to obtain the position of the waste in the image data of the construction site, thereby controlling the mobile module and Manipulator, move the sorting robot body to the waste, and use the manipulator to pick up the waste, and according to the result of image recognition, identify the category data of the picked up waste, and classify the waste according to the category data Storage, on the one hand, it can automatically pick up the waste on the construction site, which has the effect of environmental protection; at the same time, when the waste is identified from the image data, it can be classified and stored according to the type of waste, so that the stored waste can be It is more reasonable, helps the subsequent recycling and utilization of waste, and further contributes to environmental protection.
在一实施例中,如图2所示,在步骤S10中,即若获取到图像数据,则从图像数据中识别出废弃物和类别数据,具体包括如下步骤:In one embodiment, as shown in FIG. 2 , in step S10, if the image data is acquired, the waste and category data are identified from the image data, which specifically includes the following steps:
S11:使用预设的废弃物识别模型,对图像数据进行处理,得到对应的处理结果。S11: Process the image data using a preset waste recognition model to obtain a corresponding processing result.
在本实施例中,废弃物识别模型是指预先训练好,能够从建筑工地的图像数据中识别出废弃物的模型。In this embodiment, the waste recognition model refers to a pre-trained model capable of recognizing waste from image data of a construction site.
具体地,将该废弃物识别模型训练好后,将该废弃物识别模型存储并设置于控制模块中,在控制模块获取到建筑工地的图像数据后,调用该废弃物识别模型对该图像数据进行处理,得到对应的处理结果。Specifically, after the waste recognition model is trained, the waste recognition model is stored and set in the control module, and after the control module obtains the image data of the construction site, it invokes the waste recognition model to process the image data processing to obtain the corresponding processing results.
S12:从处理结果中,获取废弃物的图像以及对应的类别数据。S12: Obtain images of waste and corresponding category data from the processing results.
具体地,该处理结果包括目标为废弃物或目标不为废弃物。进一步地,从处理结果中将目标为废弃物的结果筛选出来,并获取废弃物对应的类别数据。Specifically, the processing result includes whether the target is waste or the target is not waste. Further, from the processing results, the results whose target is waste are screened out, and the category data corresponding to the waste is obtained.
在一实施例中,如图3所示,在步骤S10之前,通过以下方法步骤训练获取所述废弃物识别模型:In one embodiment, as shown in FIG. 3, before step S10, the waste recognition model is obtained through training through the following method steps:
S101:根据类别数据,逐类获取若干张对应的废弃物待测图片。S101: According to the category data, obtain a plurality of corresponding waste to-be-tested pictures category by category.
在本实施例中,废弃物待测图片是指需要进行训练的废弃物的图片。In this embodiment, the pictures of waste to be tested refer to pictures of waste that need to be trained.
具体地,按照废弃物的类别数据,获取每一类别的废弃物的图片,作为该废弃物待测图片。其中,为了保证训练得到的废弃物识别模型识别出废弃物的效果,获取每一类废弃物待图片的数量不做限制。Specifically, according to the category data of the waste, a picture of each category of waste is obtained as the picture of the waste to be tested. Among them, in order to ensure the effectiveness of the trained waste recognition model in recognizing waste, there is no limit to the number of images to be obtained for each type of waste.
S102:逐类将废弃物待测图片输入CNN网络中,得到对应的废弃物特征值。S102: Input the images of the waste to be tested into the CNN network one by one to obtain the corresponding characteristic value of the waste.
在本实施例中,CNN网络是指一类包含卷积计算且具有深度结构的前馈神经网络(Feed-forward Neural Networks),是深度学习(deep learning)的代表算法之一。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类。废弃物特征值是指每一类别数据对应的废弃物的特征的图片。In this embodiment, the CNN network refers to a type of feed-forward neural network (Feed-forward Neural Networks) that includes convolution calculation and has a deep structure, and is one of the representative algorithms of deep learning. The convolutional neural network has the ability of representation learning, which can classify the input information invariant to translation according to its hierarchical structure. The waste feature value refers to a picture of the characteristics of the waste corresponding to each category of data.
具体地,根据类别数据,逐类将每一废弃物待测图片输入至CNN网络中,经过CNN网络对每一废弃物待测图片进行下采样、卷积和池化等操作,得到与对饮的废弃物对应的废弃物特征值。Specifically, according to the category data, each waste to-be-tested picture is input into the CNN network one by one, and each waste to-be-tested picture is down-sampled, convoluted and pooled through the CNN network, and the corresponding drinking water is obtained. The corresponding waste characteristic value of the waste.
S103:根据废弃物特征值,使用RPN网络对每张是使废弃物待测图片进行处理,得到对应的建议窗口。S103: According to the characteristic value of the waste, use the RPN network to process each picture of the waste to be tested to obtain a corresponding suggestion window.
在本实施例中,RPN网络,即Region Proposal Network,区域生成网络,是指用于在特征图中寻找可能包含objects的预定义数量的区域的网络。In this embodiment, the RPN network, namely Region Proposal Network, refers to a network used to find a predefined number of regions that may contain objects in a feature map.
具体地,根据每张废弃物待测图片对应的废弃物特征值,使用RPN网络在每一张废弃物待测图片对应的废弃物特征值中生成至少300张建议窗口。Specifically, according to the waste feature value corresponding to each waste test picture, use the RPN network to generate at least 300 suggestion windows in the waste feature value corresponding to each waste test picture.
S104:将建议窗口映射至CNN网络中,并使用ROI pooling层对每一建议窗口进行处理,得到以每一建议窗口对应的固定尺寸的特征图。S104: Map the suggestion window to the CNN network, and use the ROI pooling layer to process each suggestion window to obtain a fixed-size feature map corresponding to each suggestion window.
在本实施例中,ROI pooling层是指将大小不同的建议窗口,生成固定尺寸的特征图的算法。In this embodiment, the ROI pooling layer refers to an algorithm that generates a fixed-size feature map from proposal windows of different sizes.
具体地,将废弃物特征值输入至ROI pooling层,根据建议窗口获取对应的位置区域,在该位置区域划分若干sections,最后对每个section做max pooling,最终得到与每一建议窗口对饮的固定尺寸的特征图。Specifically, input the waste feature value into the ROI pooling layer, obtain the corresponding location area according to the suggestion window, divide several sections in the location area, and finally perform max pooling on each section, and finally get the corresponding location area for each suggestion window Feature maps of fixed size.
S105:根据类别数据,对特征图进行训练,得到能够识别类别数据对应的废弃物的废弃物识别模型。S105: According to the category data, the feature map is trained to obtain a waste recognition model capable of identifying waste corresponding to the category data.
具体地,在根据类别数据,得到在该类别数据中,每一类别的废弃物的特征图后,对该特征图采用现有的深度学习的方式进行训练,最终得到能够识别该类别数据对应的废弃物的废弃物识别模型。Specifically, after the feature map of each category of waste in the category data is obtained according to the category data, the feature map is trained using the existing deep learning method, and finally the corresponding image that can identify the category data is obtained. Waste identification model for waste.
其中,该废弃物识别模型包括以下算法识别废弃物:Among them, the waste identification model includes the following algorithm to identify waste:
其中,A、B以及D代表非负常数,i和j分别表示深度学习时神经元的标号,Ii代表外部输入ωij代表神经元i和j的权重系数,通过公式是用于识别出障碍物,使控制模块控制移动模块移动时,能够绕开识别出的障碍物。其中,该障碍物是指重量较大,通过该机械手无法拾取,且会阻挡该分拣机器人移动的废弃物。是用于保证分拣机器人趋向于目标,即废弃物。为正系数,δit代表分拣机器人本体至神经元i的向量与分拣机器人本体至神经元t的向量的角度。Among them, A, B and D represent non-negative constants, i and j respectively represent the labels of neurons in deep learning, I i represents the external input ω ij represents the weight coefficient of neurons i and j, through the formula It is used to identify obstacles, so that when the control module controls the mobile module to move, it can avoid the identified obstacles. Wherein, the obstacle refers to the waste that is heavy, cannot be picked up by the manipulator, and will block the movement of the sorting robot. It is used to ensure that the sorting robot tends to the target, that is, waste. is a positive coefficient, and δ it represents the angle between the vector from the sorting robot body to neuron i and the vector from the sorting robot body to neuron t.
在一实施例中,如图4所示,在步骤S20中,即根据图像数据中的废弃物,使用全覆盖路径规划算法进行计算,得到对应的移动路径数据,具体包括如下步骤:In one embodiment, as shown in FIG. 4, in step S20, according to the waste in the image data, a full-coverage path planning algorithm is used for calculation to obtain corresponding moving path data, which specifically includes the following steps:
S21:对图像数据采取栅格化处理,得到栅格图像数据。S21: Perform rasterization processing on the image data to obtain raster image data.
在本实施例中,栅格图像数据是指将空间分割成有规律的网格,每一个网格称为一个单元,并在各单元上赋予相应的属性值来表示实体的一种数据形式。In this embodiment, raster image data refers to a data form in which space is divided into regular grids, each grid is called a unit, and corresponding attribute values are assigned to each unit to represent entities.
具体地,对图像数据进行栅格化处理,得到该图像数据的栅格图像数据。Specifically, rasterization processing is performed on the image data to obtain raster image data of the image data.
S22:获取每一废弃物在栅格图像数据的位置数据,并将根据位置数据,调用A*算法进行计算,得到对应的移动路径数据。S22: Obtain the position data of each waste in the raster image data, and call the A* algorithm to calculate according to the position data, and obtain the corresponding movement path data.
在本实施例中,A*算法是指一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题的有效算法。算法中的距离估算值与实际值越接近,最终搜索速度越快。In this embodiment, the A* algorithm refers to the most effective direct search method for finding the shortest path in a static road network, and is also an effective algorithm for solving many search problems. The closer the distance estimate in the algorithm is to the actual value, the faster the final search.
具体地,在栅格图像数据中,将每一废弃物映射至栅格图像数据中,并使用该A*算法进行计算,从而得到该移动路径数据。Specifically, in the raster image data, each waste is mapped to the raster image data, and the A* algorithm is used for calculation, so as to obtain the moving path data.
使用步骤S101至步骤S105的方法识别出废弃物和障碍物后,将该废弃物作为分拣机器人本体移动的目标点,控制模块控制移动模块绕开障碍物,并计算该分拣机器人移动至识别出的目标点的最短路线,具体可采用以下A*算法的函数进行计算:After using the method from step S101 to step S105 to identify the waste and obstacles, the waste is used as the target point for the movement of the sorting robot body, the control module controls the moving module to avoid obstacles, and calculates the moving position of the sorting robot The shortest route of the target point can be calculated by using the following A* algorithm function:
f(x)=g(x)+h(x)f(x)=g(x)+h(x)
其中,g(x)代表在栅格图像中,从初始节点到任意节点x的代价,h(x)代表从节点x到目标节点,在本实施例中,具体为从分拣机器人本体移动至识别出的废弃物的距离。当分拣机器人本体从当前位置,即初始位置移动至识别出的废弃物时,通过A*算法分别调整g(x)和h(x)的大小,使得f(x)的节点数最小,即寻找出分拣机器人本体移动至废弃物的最小距离。Among them, g(x) represents the cost from the initial node to any node x in the grid image, and h(x) represents the cost from node x to the target node. In this embodiment, it is specifically moving from the sorting robot body to The distance of the identified litter. When the sorting robot body moves from the current position, that is, the initial position to the identified waste, the size of g(x) and h(x) are adjusted respectively by the A* algorithm, so that the number of nodes of f(x) is the smallest, that is Find out the minimum distance from the body of the sorting robot to the waste.
优选地,可以在控制模块中加入识别障碍物的对应的模型,该障碍物的判定标准可以是以移动模块无法越过为准,即例如,该障碍物为一块凸起来的木板或石头等,而移动模块在移动时,由于该木板或石头凸起来的高度过高,导致移动模块无法越过该凸起,因此该凸起判定为障碍物。进一步地,若判定为废弃物,可控制移动模块移动至该废弃物处停留数秒,直至该废弃物被拾取,若判定为障碍物,则在移动路径数据中的路线可为绕过该障碍物。Preferably, a corresponding model for identifying obstacles can be added to the control module, and the criterion for judging the obstacle can be based on the inability of the mobile module to cross, that is, for example, the obstacle is a raised wooden board or stone, etc., and When the mobile module is moving, because the height of the wooden plank or stone is too high, the mobile module cannot go over the protrusion, so the protrusion is judged as an obstacle. Further, if it is determined to be a waste, the mobile module can be controlled to move to the waste for a few seconds until the waste is picked up; if it is determined to be an obstacle, the route in the moving path data can be to bypass the obstacle .
在一实施例中,如图5所示,在步骤S40中,当分拣机器人本体移动至废弃物时,向机械手发送拾拣消息,使机械手拾拣废弃物,并将废弃物根据存放至收集模块处对应的位置,具体包括入如下步骤:In one embodiment, as shown in FIG. 5, in step S40, when the sorting robot body moves to the waste, it sends a picking message to the manipulator, so that the manipulator picks up the waste, and stores the waste according to the collection method. The corresponding position of the module includes the following steps:
S41:预先在类别数据中获取类别数量,根据类别数量在收集模块中划分对应的废弃物存储区域,并根据类别数据对每一废弃物存储区域进行标记。S41: Obtain the number of categories in the category data in advance, divide the corresponding waste storage areas in the collection module according to the number of categories, and mark each waste storage area according to the category data.
在本实施例中,废弃物存储区域是指用于存储拾拣起来的废弃物的区域。In this embodiment, the waste storage area refers to an area for storing picked up waste.
具体地,根据类别数据中的类别数量,即总共有多少种废弃物,根据该类别数量,在收集模块中划分对应数量的区域,作为废弃物存储区域,并根据类别数据对每一废弃物存储区域进行标记。Specifically, according to the number of categories in the category data, that is, how many kinds of wastes there are in total, according to the number of categories, divide the corresponding number of areas in the collection module as waste storage areas, and store each waste according to the category data The area is marked.
S42:当机械手拾拣起废弃物时,将废弃物根据废弃物对应的类别数据存储至收集模块对应的废弃物存储区域中。S42: When the manipulator picks up the waste, store the waste in the waste storage area corresponding to the collection module according to the category data corresponding to the waste.
具体地,当机械手拾拣起废弃物时,将废弃物根据废弃物对应的类别数据存储至收集模块对应的废弃物存储区域中。Specifically, when the manipulator picks up the waste, the waste is stored in the waste storage area corresponding to the collection module according to the category data corresponding to the waste.
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。It should be understood that the sequence numbers of the steps in the above embodiments do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation to the implementation process of the embodiment of the present invention.
实施例三:Embodiment three:
在一实施例中,提供一种建筑废弃物分拣机器人的控制系统,该控制系统与上述实施例二中控制模块识别废弃物以及类别数据,并对废弃物进行拾拣以及收集的方法一一对应。如图6所示,该控制系统包括图像识别模块10、移动路径计算模块20、移动控制模块30和分拣收集模块40。各功能模块详细说明如下:In one embodiment, a control system of a construction waste sorting robot is provided, which is the same as the method of identifying waste and category data by the control module in the second embodiment above, and picking and collecting waste correspond. As shown in FIG. 6 , the control system includes an image recognition module 10 , a movement path calculation module 20 , a movement control module 30 and a sorting and collection module 40 . The detailed description of each functional module is as follows:
图像识别模块10,用于若获取到图像数据,则从图像数据中识别出废弃物和类别数据;An image recognition module 10, configured to identify waste and category data from the image data if the image data is acquired;
移动路径计算模块20,用于根据图像数据中的废弃物,使用全覆盖路径规划算法进行计算,得到对应的移动路径数据;The moving path calculation module 20 is used to calculate using the full coverage path planning algorithm according to the waste in the image data to obtain corresponding moving path data;
移动控制模块30,用于根据移动路径数据,生成并向移动模块发送移动消息,使移动模块根据移动消息驱动分拣机器人移动;The mobile control module 30 is used to generate and send a mobile message to the mobile module according to the mobile path data, so that the mobile module can drive the sorting robot to move according to the mobile message;
分拣收集模块40,用于当分拣机器人本体移动至废弃物时,向机械手发送拾拣消息,使机械手拾拣废弃物,并将废弃物根据存放至收集模块处对应的位置。The sorting and collecting module 40 is used to send a picking message to the manipulator when the body of the sorting robot moves to the waste, so that the manipulator picks up the waste and stores the waste to the corresponding position of the collection module.
优选地,图像识别模块10包括:Preferably, the image recognition module 10 includes:
图像处理子模块11,使用预设的废弃物识别模型,对图像数据进行处理,得到对应的处理结果;The image processing sub-module 11 uses a preset waste recognition model to process the image data to obtain corresponding processing results;
图像识别子模块12,从处理结果中,获取废弃物的图像以及对应的类别数据。The image recognition sub-module 12 acquires images of wastes and corresponding category data from the processing results.
优选地,控制系统还包括以下模块:Preferably, the control system also includes the following modules:
待测图片获取模块101,用于根据类别数据,逐类获取若干张对应的废弃物待测图片;The picture-to-be-test acquisition module 101 is used to acquire a plurality of corresponding waste to-be-test pictures by category according to the category data;
特征提取模块102,用于逐类将废弃物待测图片输入CNN网络中,得到对应的废弃物特征值;RPN网络模块103,用于根据废弃物特征值,使用RPN网络对每张是使废弃物待测图片进行处理,得到对应的建议窗口;The feature extraction module 102 is used to input the pictures of waste to be tested into the CNN network one by one to obtain the corresponding waste feature value; the RPN network module 103 is used to use the RPN network to make each piece of waste according to the waste feature value. Process the image of the object to be tested to obtain the corresponding suggestion window;
池化处理模块104,用于将建议窗口映射至CNN网络中,并使用RoI pooling层对每一建议窗口进行处理,得到以每一建议窗口对应的固定尺寸的特征图;The pooling processing module 104 is used to map the suggestion window into the CNN network, and use the RoI pooling layer to process each suggestion window to obtain a fixed-size feature map corresponding to each suggestion window;
训练模块105,用于根据类别数据,对特征图进行训练,得到能够识别类别数据对应的废弃物的废弃物识别模型。The training module 105 is configured to train the feature map according to the category data to obtain a waste recognition model capable of identifying waste corresponding to the category data.
优选地,移动路径计算模块20包括:Preferably, the moving path calculation module 20 includes:
栅格处理子模块21,用于对图像数据采取栅格化处理,得到栅格图像数据;The raster processing sub-module 21 is used for rasterizing the image data to obtain raster image data;
计算子模块22,用于获取每一废弃物在栅格图像数据的位置数据,并将根据位置数据,调用A*算法进行计算,得到对应的移动路径数据。The calculation sub-module 22 is used to obtain the position data of each waste in the raster image data, and call the A* algorithm to calculate according to the position data to obtain the corresponding moving path data.
优选地,分拣收集模块40还包括:Preferably, the sorting and collecting module 40 also includes:
分类子模块41,用于预先在类别数据中获取类别数量,根据类别数量在收集模块中划分对应的废弃物存储区域,并根据类别数据对每一废弃物存储区域进行标记;The classification sub-module 41 is used to obtain the number of categories in the category data in advance, divide the corresponding waste storage area in the collection module according to the number of categories, and mark each waste storage area according to the category data;
分类存储子模块42,用于当机械手拾拣起废弃物时,将废弃物根据废弃物对应的类别数据存储至收集模块对应的废弃物存储区域中。The classified storage sub-module 42 is configured to store the waste in the waste storage area corresponding to the collection module according to the type data corresponding to the waste when the manipulator picks up the waste.
关于控制系统的具体限定可以参见上文中实施例二对于识别废弃物以及类别数据,并对废弃物进行拾拣以及收集方法的限定,在此不再赘述。上述控制系统中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitation of the control system, please refer to the limitation of the method for identifying waste and category data, and picking and collecting waste in the second embodiment above, and details will not be repeated here. Each module in the above control system can be fully or partially realized by software, hardware and a combination thereof. The above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910635398.9A CN110497419A (en) | 2019-07-15 | 2019-07-15 | Construction waste sorting robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910635398.9A CN110497419A (en) | 2019-07-15 | 2019-07-15 | Construction waste sorting robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110497419A true CN110497419A (en) | 2019-11-26 |
Family
ID=68586126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910635398.9A Pending CN110497419A (en) | 2019-07-15 | 2019-07-15 | Construction waste sorting robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110497419A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110963209A (en) * | 2019-12-27 | 2020-04-07 | 中电海康集团有限公司 | Garbage sorting device and method based on deep reinforcement learning |
CN111203877A (en) * | 2020-01-13 | 2020-05-29 | 广州大学 | Climbing construction waste sorting robot system and control method, device and medium |
CN111360042A (en) * | 2020-04-20 | 2020-07-03 | 上海环境工程设计研究院有限公司 | Building decoration garbage recycling treatment system and process |
CN113538845A (en) * | 2021-07-12 | 2021-10-22 | 武汉市佳梦科技有限公司 | Building construction site safety production real-time monitoring and early warning method based on remote video monitoring and analyzing technology |
CN114523486A (en) * | 2022-04-24 | 2022-05-24 | 东南大学 | Cleaning robot suitable for attachments on underwater damaged surface of tunnel and use method |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101315731A (en) * | 2008-07-17 | 2008-12-03 | 上海途锐信息技术有限公司 | System for implementing vehicle monitoring scheduling by GPS intelligent vehicle mounted terminal |
US9233470B1 (en) * | 2013-03-15 | 2016-01-12 | Industrial Perception, Inc. | Determining a virtual representation of an environment by projecting texture patterns |
CN105320133A (en) * | 2015-10-26 | 2016-02-10 | 广东雷洋智能科技股份有限公司 | An Improved Potential Field Grid Method Applied to Sweeping Robot |
CN106347919A (en) * | 2016-11-10 | 2017-01-25 | 杭州南江机器人股份有限公司 | Automatic warehousing system |
CN106527448A (en) * | 2016-12-16 | 2017-03-22 | 浙江工业大学 | Improved A* robot optimal path planning method suitable for warehouse environment |
CN106843216A (en) * | 2017-02-15 | 2017-06-13 | 北京大学深圳研究生院 | A kind of complete traverse path planing method of biological excitation robot based on backtracking search |
CN107194501A (en) * | 2017-05-04 | 2017-09-22 | 湖州三基色信息科技有限公司 | Method based on mess generation path |
CN108508893A (en) * | 2018-03-23 | 2018-09-07 | 西安电子科技大学 | A kind of robot efficiency optimum path planning method based on improvement A algorithm |
WO2018191555A1 (en) * | 2017-04-14 | 2018-10-18 | Drishti Technologies. Inc | Deep learning system for real time analysis of manufacturing operations |
CN208092786U (en) * | 2018-02-02 | 2018-11-13 | 上海建桥学院 | A kind of the System of Sorting Components based on convolutional neural networks by depth |
CN108972494A (en) * | 2018-06-22 | 2018-12-11 | 华南理工大学 | A kind of Apery manipulator crawl control system and its data processing method |
CN108994855A (en) * | 2018-08-15 | 2018-12-14 | 深圳市烽焌信息科技有限公司 | Rubbish periodic cleaning method and robot |
CN109483533A (en) * | 2018-11-05 | 2019-03-19 | 长沙中联重科环境产业有限公司 | Control method, device and the robot of robot for environmental sanitation operation |
CN109533704A (en) * | 2018-11-16 | 2019-03-29 | 合肥景彰科技有限公司 | A kind of intelligent garbage reclaimer for smart home |
CN109584227A (en) * | 2018-11-27 | 2019-04-05 | 山东大学 | A kind of quality of welding spot detection method and its realization system based on deep learning algorithm of target detection |
-
2019
- 2019-07-15 CN CN201910635398.9A patent/CN110497419A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101315731A (en) * | 2008-07-17 | 2008-12-03 | 上海途锐信息技术有限公司 | System for implementing vehicle monitoring scheduling by GPS intelligent vehicle mounted terminal |
US9233470B1 (en) * | 2013-03-15 | 2016-01-12 | Industrial Perception, Inc. | Determining a virtual representation of an environment by projecting texture patterns |
CN105320133A (en) * | 2015-10-26 | 2016-02-10 | 广东雷洋智能科技股份有限公司 | An Improved Potential Field Grid Method Applied to Sweeping Robot |
CN106347919A (en) * | 2016-11-10 | 2017-01-25 | 杭州南江机器人股份有限公司 | Automatic warehousing system |
CN106527448A (en) * | 2016-12-16 | 2017-03-22 | 浙江工业大学 | Improved A* robot optimal path planning method suitable for warehouse environment |
CN106843216A (en) * | 2017-02-15 | 2017-06-13 | 北京大学深圳研究生院 | A kind of complete traverse path planing method of biological excitation robot based on backtracking search |
WO2018191555A1 (en) * | 2017-04-14 | 2018-10-18 | Drishti Technologies. Inc | Deep learning system for real time analysis of manufacturing operations |
CN107194501A (en) * | 2017-05-04 | 2017-09-22 | 湖州三基色信息科技有限公司 | Method based on mess generation path |
CN208092786U (en) * | 2018-02-02 | 2018-11-13 | 上海建桥学院 | A kind of the System of Sorting Components based on convolutional neural networks by depth |
CN108508893A (en) * | 2018-03-23 | 2018-09-07 | 西安电子科技大学 | A kind of robot efficiency optimum path planning method based on improvement A algorithm |
CN108972494A (en) * | 2018-06-22 | 2018-12-11 | 华南理工大学 | A kind of Apery manipulator crawl control system and its data processing method |
CN108994855A (en) * | 2018-08-15 | 2018-12-14 | 深圳市烽焌信息科技有限公司 | Rubbish periodic cleaning method and robot |
CN109483533A (en) * | 2018-11-05 | 2019-03-19 | 长沙中联重科环境产业有限公司 | Control method, device and the robot of robot for environmental sanitation operation |
CN109533704A (en) * | 2018-11-16 | 2019-03-29 | 合肥景彰科技有限公司 | A kind of intelligent garbage reclaimer for smart home |
CN109584227A (en) * | 2018-11-27 | 2019-04-05 | 山东大学 | A kind of quality of welding spot detection method and its realization system based on deep learning algorithm of target detection |
Non-Patent Citations (3)
Title |
---|
唐洪: "基于深度学习和双目视觉的工业机器人抓取方法研究", 《中国博士学位论文全文数据库 信息科技辑》 * |
彭雅丽等: "BDD数据建模的路径规划算法 ", 《昆明理工大学学报(自然科学版)》 * |
杨友良等: "快件分拣机器人群的路径规划及智能调度", 《华北理工大学学报(自然科学版)》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110963209A (en) * | 2019-12-27 | 2020-04-07 | 中电海康集团有限公司 | Garbage sorting device and method based on deep reinforcement learning |
CN111203877A (en) * | 2020-01-13 | 2020-05-29 | 广州大学 | Climbing construction waste sorting robot system and control method, device and medium |
CN111360042A (en) * | 2020-04-20 | 2020-07-03 | 上海环境工程设计研究院有限公司 | Building decoration garbage recycling treatment system and process |
CN113538845A (en) * | 2021-07-12 | 2021-10-22 | 武汉市佳梦科技有限公司 | Building construction site safety production real-time monitoring and early warning method based on remote video monitoring and analyzing technology |
CN113538845B (en) * | 2021-07-12 | 2022-07-12 | 中铁建网络信息科技有限公司 | A real-time monitoring and early warning method for safety production on construction sites based on remote video monitoring and analysis technology |
CN114523486A (en) * | 2022-04-24 | 2022-05-24 | 东南大学 | Cleaning robot suitable for attachments on underwater damaged surface of tunnel and use method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110497419A (en) | Construction waste sorting robot | |
CN111445368B (en) | Garbage classification method, device and equipment based on machine vision and deep learning | |
Proença et al. | Taco: Trash annotations in context for litter detection | |
Liu et al. | Garbage collection and sorting with a mobile manipulator using deep learning and whole-body control | |
CN111582123B (en) | AGV positioning method based on beacon identification and visual SLAM | |
CN108415419A (en) | Rubbish pick-up method, robot, electronic equipment and computer program product | |
CN113110513A (en) | ROS-based household arrangement mobile robot | |
CN111015662B (en) | Method, system and equipment for dynamically grabbing object and method, system and equipment for dynamically grabbing garbage | |
CN111844101B (en) | A multi-fingered dexterous hand sorting planning method | |
CN108196453A (en) | A kind of manipulator motion planning Swarm Intelligent Computation method | |
CN112149573A (en) | Garbage classification and picking robot based on deep learning | |
CN114029243B (en) | Soft object grabbing and identifying method for sorting robot | |
CN110610130A (en) | A transmission line robot navigation method and system based on multi-sensor information fusion | |
US20230394973A1 (en) | Method, internet of things system and storage medium for street cleaning in smart city | |
CN114211490B (en) | Method for predicting pose of manipulator gripper based on transducer model | |
CN112183460A (en) | Method and device for intelligently identifying environmental sanitation | |
CN112287833A (en) | Inspection cleaning method and device for robot, robot and storage medium | |
CN116984269A (en) | Gangue grabbing method and system based on image recognition | |
Middya et al. | Garbage detection and classification using faster-RCNN with inception-V2 | |
Chandra et al. | Garbage detection and path-planning in autonomous robots | |
Fang et al. | A pick-and-throw method for enhancing robotic sorting ability via deep reinforcement learning | |
CN113971746A (en) | Garbage sorting method, device and sorting intelligent system based on single manual teaching | |
Naik et al. | AI Based Robot for Beach Cleaning | |
CN115730236B (en) | A drug identification and acquisition method, equipment and storage medium based on human-computer interaction | |
CN116679716A (en) | Control method, device, storage medium of pool robot and pool robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191126 |
|
RJ01 | Rejection of invention patent application after publication |