CN110436478A - A kind of lamelliform CHA type SSZ-13 zeolite molecular sieve material and preparation method thereof - Google Patents

A kind of lamelliform CHA type SSZ-13 zeolite molecular sieve material and preparation method thereof Download PDF

Info

Publication number
CN110436478A
CN110436478A CN201910662366.8A CN201910662366A CN110436478A CN 110436478 A CN110436478 A CN 110436478A CN 201910662366 A CN201910662366 A CN 201910662366A CN 110436478 A CN110436478 A CN 110436478A
Authority
CN
China
Prior art keywords
molecular sieve
source
zeolite molecular
thin
sieve material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910662366.8A
Other languages
Chinese (zh)
Other versions
CN110436478B (en
Inventor
王卓鹏
曾亮钢
于志超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910662366.8A priority Critical patent/CN110436478B/en
Publication of CN110436478A publication Critical patent/CN110436478A/en
Application granted granted Critical
Publication of CN110436478B publication Critical patent/CN110436478B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention provides a kind of preparation methods of lamelliform CHA type SSZ-13 zeolite molecular sieve material, its step includes: that trivalent silicon source, hydroxyl ion source and inorganic cation source are added to N, clear solution is stirred to get in N, N- trimethyl -1- adamantyl Ammonia;Tetravalence silicon source is added in the clear solution and is stirred, deionized water then is added and alcohol source obtains mixed solution;The mixed solution is subjected to crystallization by hydro-thermal reaction in hydrothermal reaction kettle;After crystallization by reaction kettle mixture quenching, be filtered, washed, be dried to obtain crystallization product;The crystallization product is calcined to obtain CHA type SSZ-13 zeolite molecular sieve material.The present invention also provides a kind of lamelliform CHA type SSZ-13 zeolite molecular sieve materials.A kind of lamelliform CHA type SSZ-13 zeolite molecular sieve material provided by the invention and preparation method thereof, production cost is low, suitable for mass production.

Description

一种薄层状CHA型SSZ-13沸石分子筛材料及其制备方法A kind of thin layer CHA type SSZ-13 zeolite molecular sieve material and preparation method thereof

技术领域technical field

本发明涉及沸石分子筛合成技术领域,特别涉及一种薄层状CHA型SSZ-13沸石分子筛材料及其制备方法。The invention relates to the technical field of zeolite molecular sieve synthesis, in particular to a thin-layer CHA type SSZ-13 zeolite molecular sieve material and a preparation method thereof.

背景技术Background technique

在最近的研究中,合成沸石纳米片来缩短催化剂内扩散途径受到了极大的关注。从3D(微米尺寸晶体)到2D(层状沸石)的尺寸降低可以消除不可接近的内部区域,同时保持原始沸石的催化活性。所以,2D(层状沸石)分子筛孔隙是更加开放的,比表面积大,有更多的接触酸性位点,有利于反应物、反应的扩散以及产物的扩散,为实现提高催化性能的效果开发了新途径,因此,沸石纳米片和纳米线在工业上是非常有用的。In recent studies, the synthesis of zeolite nanosheets to shorten intracatalyst diffusion pathways has received great attention. The size reduction from 3D (micron-sized crystals) to 2D (layered zeolites) can eliminate inaccessible internal regions while maintaining the catalytic activity of pristine zeolites. Therefore, the pores of 2D (layered zeolite) molecular sieves are more open, the specific surface area is larger, and there are more contact acid sites, which is conducive to the diffusion of reactants, reactions and products. New ways, therefore, of zeolite nanosheets and nanowires are very useful industrially.

发明专利(CN201610915336.X)通过改变原料的添加顺序及硅铝比等方式,获得了具有薄层片状的SAPO-34分子筛。Ryoo等人开发了一类双季铵化合物作为二合一模板,并进一步合成了具有MFI和BEA拓扑结构的纳米片状沸石(Choi,M.et al.Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts.Nature 461,246–249(2009).)。Wang等人通过将TPOAC引入常规合成系统,合成了层状SAPO-34沸石分子筛(Wang,C.et al.Dual template-directed synthesis of SAPO-34nanosheetassemblies with improved stability in the methanol to olefinsreaction.J.Mater.Chem.A 3,5608–5616(2015))。上述参考文献合成的分子筛在提高的催化活性和减少扩散限制方面都取得了突破。然而,他们在合成分子筛使用的关键材料要么结构复杂,要么采购过于昂贵,合成成本较高,经济效益较差,从而限制了其批量生产,难以拓宽到大规模工业应用。Invention patent (CN201610915336.X) obtained SAPO-34 molecular sieve with thin-layer flakes by changing the order of adding raw materials and the ratio of silicon to aluminum. Ryoo et al. developed a class of diquaternary ammonium compounds as two-in-one templates, and further synthesized nanosheet zeolites with MFI and BEA topologies (Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249(2009).). Wang et al. synthesized layered SAPO-34 zeolite molecular sieves by introducing TPOAC into a conventional synthesis system (Wang, C. et al. Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J. Mater. Chem. A 3, 5608–5616(2015)). The molecular sieves synthesized by the above references have achieved breakthroughs in both enhanced catalytic activity and reduced diffusion limitations. However, the key materials they use in the synthesis of molecular sieves are either complex in structure or too expensive to purchase, with high synthesis costs and poor economic benefits, which limits their mass production and is difficult to expand to large-scale industrial applications.

发明内容Contents of the invention

本发明所要解决的技术问题是提供一种生产成本低的薄层状CHA型SSZ-13沸石分子筛材料及其制备方法。The technical problem to be solved by the present invention is to provide a thin-layer CHA type SSZ-13 zeolite molecular sieve material with low production cost and its preparation method.

为解决上述技术问题,本发明提供了一种薄层状CHA型SSZ-13沸石分子筛材料的制备方法,包括如下步骤:In order to solve the above-mentioned technical problems, the invention provides a kind of preparation method of thin-layer CHA type SSZ-13 zeolite molecular sieve material, comprising the following steps:

将三价铝源、氢氧根离子源及无机阳离子源加到N,N,N-三甲基-1-金刚烷基氢氧化铵溶液中搅拌得到澄清溶液;adding trivalent aluminum source, hydroxide ion source and inorganic cation source to N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution and stirring to obtain a clear solution;

将四价硅源加到所述澄清溶液中搅拌,然后加入去离子水和醇源得到混合溶液;adding a tetravalent silicon source to the clarified solution and stirring, then adding deionized water and an alcohol source to obtain a mixed solution;

将所述混合溶液在水热反应釜中通过水热反应进行晶化;The mixed solution is crystallized by hydrothermal reaction in a hydrothermal reaction kettle;

晶化结束后将反应釜中的混合物淬冷、过滤、洗涤、干燥得到晶化产物;After the crystallization is completed, the mixture in the reactor is quenched, filtered, washed, and dried to obtain a crystallized product;

将所述晶化产物煅烧得到CHA型SSZ-13沸石分子筛材料;Calcining the crystallized product to obtain a CHA type SSZ-13 zeolite molecular sieve material;

其中,所述四价硅源中硅元素与三价铝源中的铝元素的摩尔比为134-50:1;Wherein, the molar ratio of the silicon element in the tetravalent silicon source to the aluminum element in the trivalent aluminum source is 134-50:1;

所述无机阳离子源中的无机阳离子与四价硅源中的硅元素的摩尔比为0.05-0.2:1;The molar ratio of the inorganic cation in the inorganic cation source to the silicon element in the tetravalent silicon source is 0.05-0.2:1;

所述醇源与四价硅源中硅元素的摩尔比为0.1-0.4:1;The molar ratio of the alcohol source to the silicon element in the tetravalent silicon source is 0.1-0.4:1;

所述N,N,N-三甲基-1-金刚烷基氢氧化铵溶液中N,N,N-三甲基-1-金刚烷基氢氧化铵与四价硅源中硅元素的摩尔比为0.25-0.2:1;The mole of silicon element in the N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution and the tetravalent silicon source in the N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution The ratio is 0.25-0.2:1;

所述三价铝源中的铝元素以Al2O3含量计,所述四价硅源中的硅元素以SiO2含量计。The aluminum element in the trivalent aluminum source is calculated by Al 2 O 3 content, and the silicon element in the tetravalent silicon source is calculated by SiO 2 content.

进一步地,所述四价硅源为白炭黑、硅溶胶或正硅酸四乙酯中的一种或几种,所述三价铝源为异丙醇铝、氢氧化铝、硝酸铝或硫酸铝中的一种或几种,所述氢氧根离子源为氢氧化钠或/和氢氧化钾,所述无机阳离子源为硝酸铵、氯化铵、氢氧化钾、氢氧化钠、氯化钾或氯化钠中的一种或几种,所述醇源为异丙醇、环己醇、丙三醇或正丙醇中的一种或几种。Further, the tetravalent silicon source is one or more of white carbon black, silica sol or tetraethyl orthosilicate, and the trivalent aluminum source is aluminum isopropoxide, aluminum hydroxide, aluminum nitrate or One or more of aluminum sulfate, the hydroxide ion source is sodium hydroxide or/and potassium hydroxide, and the inorganic cation source is ammonium nitrate, ammonium chloride, potassium hydroxide, sodium hydroxide, chlorine One or more in potassium chloride or sodium chloride, and the alcohol source is one or more in isopropanol, cyclohexanol, glycerol or n-propanol.

进一步地,所述四价硅源为白炭黑,所述三价铝源为硝酸铝和氢氧化铝,所述无机阳离子源为氢氧化钠或氢氧化钾,所述醇源为异丙醇或环己醇。Further, the tetravalent silicon source is white carbon black, the trivalent aluminum source is aluminum nitrate and aluminum hydroxide, the inorganic cation source is sodium hydroxide or potassium hydroxide, and the alcohol source is isopropanol or cyclohexanol.

进一步地,所述N,N,N-三甲基-1-金刚烷基氢氧化铵溶液的质量分数为25%。Further, the mass fraction of the N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution is 25%.

进一步地,所述水热反应的反应温度为135℃~200℃,水热反应时间为5~7d。Further, the reaction temperature of the hydrothermal reaction is 135°C-200°C, and the hydrothermal reaction time is 5-7d.

进一步地,所述水热反应的反应温度为150℃~180℃,水热反应时间为5d。Further, the reaction temperature of the hydrothermal reaction is 150° C. to 180° C., and the hydrothermal reaction time is 5 days.

进一步地,所述晶化产物的干燥是在鼓风干燥箱中以50℃~100℃的干燥温度干燥10~48h。Further, the drying of the crystallized product is carried out in a blast drying oven at a drying temperature of 50° C. to 100° C. for 10 to 48 hours.

进一步地,所述干燥温度为60℃~90℃,干燥时间为12~40h。Further, the drying temperature is 60°C-90°C, and the drying time is 12-40h.

进一步地,所述晶化产物的煅烧,是将晶化产物在流动空气中从常温升温至150℃并保温1h,然后以1℃/min的速率升温至580℃并在空气中保温12h。Further, the calcination of the crystallized product is to raise the temperature of the crystallized product from normal temperature to 150°C in flowing air and keep it warm for 1h, then raise the temperature to 580°C at a rate of 1°C/min and keep it warm in air for 12h.

本发明还提供了一种薄层状CHA型SSZ-13沸石分子筛材料,所述薄层状CHA型SSZ-13沸石分子筛材料为薄层片状CHA型SSZ-13沸石分子筛材料,所述分子筛是由最小尺寸为1-3nm的片层结构组成,所述薄层状CHA型SSZ-13沸石分子筛材料的扫描电镜的形貌成花瓣状的片层结构。The present invention also provides a thin-layer CHA type SSZ-13 zeolite molecular sieve material, the thin-layer CHA type SSZ-13 zeolite molecular sieve material is a thin-layer sheet CHA type SSZ-13 zeolite molecular sieve material, and the molecular sieve is Composed of a sheet structure with a minimum size of 1-3nm, the thin-layered CHA type SSZ-13 zeolite molecular sieve material has a petal-shaped sheet structure in the form of a scanning electron microscope.

本发明提供的一种薄层状CHA型SSZ-13沸石分子筛材料的制备方法,使用简单、价格便宜且容易购买的醇类物质作为沸石生长调节剂,并且无需表面活性剂或硬模板等二级模板,就可以合成得到薄层片状的CHA型SSZ-13沸石分子筛材料,生产工艺简单、原料廉价易得,且耗能低、产物结晶度高,生产成本低,经济效益好,适合批量生产,能够拓宽到大规模工业应用中。同时,本发明提供的薄层状CHA型SSZ-13沸石分子筛材料的制备方法制得的CHA型SSZ-13沸石分子筛材料,是通过添加醇类物质来控制沸石形貌而得到的,故本发明提供的一种薄层状CHA型SSZ-13沸石分子筛材料是一种薄层片状的CHA型SSZ-13沸石分子筛,其是由最小尺寸为几纳米(1-3nm)的片层结构组成,其扫描电镜的SEM照片显示为形貌成花瓣状的片层结构,这种薄层片状结构的CHA型SSZ-13沸石分子筛材料能够缩短扩散路径,提高催化效果。The preparation method of a thin-layered CHA type SSZ-13 zeolite molecular sieve material provided by the present invention uses simple, cheap and easy-to-purchase alcohols as zeolite growth regulators, and does not require secondary surfactants or hard templates. Template, can synthesize thin-layer flake CHA type SSZ-13 zeolite molecular sieve material, the production process is simple, the raw material is cheap and easy to obtain, and the energy consumption is low, the product crystallinity is high, the production cost is low, the economic benefit is good, and it is suitable for mass production , can be extended to large-scale industrial applications. Simultaneously, the CHA type SSZ-13 zeolite molecular sieve material prepared by the preparation method of the thin-layered CHA type SSZ-13 zeolite molecular sieve material provided by the present invention is obtained by adding alcohols to control the morphology of the zeolite, so the present invention A thin-layered CHA-type SSZ-13 zeolite molecular sieve material provided is a thin-layered CHA-type SSZ-13 zeolite molecular sieve, which is composed of a sheet structure with a minimum size of several nanometers (1-3nm). The SEM photo of the scanning electron microscope shows a petal-shaped sheet structure. This thin-layer sheet-like CHA type SSZ-13 zeolite molecular sieve material can shorten the diffusion path and improve the catalytic effect.

附图说明Description of drawings

图1为本发明实施例提供的一种薄层状CHA型SSZ-13沸石分子筛材料的制备方法的流程图;Fig. 1 is the flow chart of the preparation method of a kind of thin layer CHA type SSZ-13 zeolite molecular sieve material that the embodiment of the present invention provides;

图2为本发明实施例1提供的薄层状CHA型SSZ-13沸石分子筛材料的制备方法制得的薄层状CHA型SSZ-13沸石分子筛材料的XRD谱图;Fig. 2 is the XRD spectrogram of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material obtained by the preparation method of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material provided in Example 1 of the present invention;

图3为本发明实施例1提供的薄层状CHA型SSZ-13沸石分子筛材料的制备方法制得的薄层状CHA型SSZ-13沸石分子筛材料的SEM照片;Fig. 3 is the SEM photo of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material prepared by the preparation method of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material provided in Example 1 of the present invention;

图4为本发明实施例2提供的CHA型SSZ-13沸石分子筛材料的制备方法制得的薄层状CHA型SSZ-13沸石分子筛材料的XRD谱图;Fig. 4 is the XRD spectrogram of the thin layered CHA type SSZ-13 zeolite molecular sieve material prepared by the preparation method of the CHA type SSZ-13 zeolite molecular sieve material provided in Example 2 of the present invention;

图5为本发明实施例2提供的薄层状CHA型SSZ-13沸石分子筛材料的制备方法制得的薄层状CHA型SSZ-13沸石分子筛材料的SEM照片;Fig. 5 is the SEM photo of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material prepared by the preparation method of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material provided by Example 2 of the present invention;

图6为本发明实施例3提供的薄层状CHA型SSZ-13沸石分子筛材料的制备方法制得的薄层状CHA型SSZ-13沸石分子筛材料的XRD谱图;6 is the XRD spectrum of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material prepared by the preparation method of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material provided in Example 3 of the present invention;

图7为本发明实施例3提供的薄层状CHA型SSZ-13沸石分子筛材料的制备方法制得的薄层状CHA型SSZ-13沸石分子筛材料的SEM照片。Fig. 7 is a SEM photo of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material prepared by the preparation method of the thin-layered CHA-type SSZ-13 zeolite molecular sieve material provided in Example 3 of the present invention.

具体实施方式Detailed ways

参见图1,本发明实施例提供的一种薄层状CHA型SSZ-13沸石分子筛材料的制备方法,包括如下步骤:Referring to Fig. 1, a method for preparing a thin-layered CHA type SSZ-13 zeolite molecular sieve material provided by an embodiment of the present invention includes the following steps:

步骤1)将三价铝源、氢氧根离子源及无机阳离子源加到N,N,N-三甲基-1-金刚烷基氢氧化铵溶液中搅拌得到澄清溶液;Step 1) adding trivalent aluminum source, hydroxide ion source and inorganic cation source to N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution and stirring to obtain a clear solution;

步骤2)将四价硅源加到所述澄清溶液中搅拌,然后加入去离子水和醇源得到混合溶液;Step 2) adding a tetravalent silicon source to the clarified solution and stirring, then adding deionized water and an alcohol source to obtain a mixed solution;

步骤3)将所述混合溶液在水热反应釜中通过水热反应进行晶化;Step 3) crystallizing the mixed solution through a hydrothermal reaction in a hydrothermal reaction kettle;

步骤4)晶化结束后将反应釜中的混合物淬冷、过滤、洗涤、干燥得到晶化产物;Step 4) After the crystallization is completed, the mixture in the reactor is quenched, filtered, washed, and dried to obtain a crystallized product;

步骤5)将所述晶化产物煅烧得到CHA型SSZ-13沸石分子筛材料。Step 5) Calcining the crystallized product to obtain a CHA type SSZ-13 zeolite molecular sieve material.

其中,所述四价硅源中硅元素与三价铝源中的铝元素的摩尔比为134-50:1;Wherein, the molar ratio of the silicon element in the tetravalent silicon source to the aluminum element in the trivalent aluminum source is 134-50:1;

所述无机阳离子源中的无机阳离子与四价硅源中的硅元素的摩尔比为0.05-0.2:1;The molar ratio of the inorganic cation in the inorganic cation source to the silicon element in the tetravalent silicon source is 0.05-0.2:1;

所述醇源与四价硅源中硅元素的摩尔比为0.1-0.4:1;The molar ratio of the alcohol source to the silicon element in the tetravalent silicon source is 0.1-0.4:1;

所述N,N,N-三甲基-1-金刚烷基氢氧化铵溶液中N,N,N-三甲基-1-金刚烷基氢氧化铵与四价硅源中硅元素的摩尔比为0.25-0.2:1;The mole of silicon element in the N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution and the tetravalent silicon source in the N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution The ratio is 0.25-0.2:1;

所述三价铝源中的铝元素以Al2O3含量计,所述四价硅源中的硅元素以SiO2含量计。The aluminum element in the trivalent aluminum source is calculated by Al 2 O 3 content, and the silicon element in the tetravalent silicon source is calculated by SiO 2 content.

其中,所述四价硅源为白炭黑、硅溶胶或正硅酸四乙酯中的一种或几种,所述三价铝源为异丙醇铝、氢氧化铝、硝酸铝或硫酸铝中的一种或几种,所述氢氧根离子源为氢氧化钠或氢氧化钾,所述无机阳离子源为硝酸铵、氯化铵、氢氧化钾、氢氧化钠、氯化钾或氯化钠中的一种或几种,所述醇源为异丙醇、环己醇、丙三醇或正丙醇中的一种或几种。Wherein, the tetravalent silicon source is one or more of white carbon black, silica sol or tetraethyl orthosilicate, and the trivalent aluminum source is aluminum isopropoxide, aluminum hydroxide, aluminum nitrate or sulfuric acid One or more of aluminum, the hydroxide ion source is sodium hydroxide or potassium hydroxide, and the inorganic cation source is ammonium nitrate, ammonium chloride, potassium hydroxide, sodium hydroxide, potassium chloride or One or more of sodium chloride, and the alcohol source is one or more of isopropanol, cyclohexanol, glycerol or n-propanol.

其中,所述四价硅源为白炭黑,所述三价铝源为硝酸铝或氢氧化铝,所述无机阳离子源为氢氧化钠或氢氧化钾,所述醇源为异丙醇或环己醇。Wherein, the tetravalent silicon source is white carbon black, the trivalent aluminum source is aluminum nitrate or aluminum hydroxide, the inorganic cation source is sodium hydroxide or potassium hydroxide, and the alcohol source is isopropanol or Cyclohexanol.

其中,所述N,N,N-三甲基-1-金刚烷基氢氧化铵溶液的质量分数为25%。Wherein, the mass fraction of the N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution is 25%.

其中,所述水热反应的反应温度为135℃~200℃,水热反应时间为5~7d。Wherein, the reaction temperature of the hydrothermal reaction is 135°C-200°C, and the hydrothermal reaction time is 5-7d.

其中,所述水热反应的反应温度为150℃~180℃,水热反应时间为5d。Wherein, the reaction temperature of the hydrothermal reaction is 150° C. to 180° C., and the hydrothermal reaction time is 5 days.

其中,所述晶化产物的干燥是在鼓风干燥箱中以50℃~100℃的干燥温度干燥10~48h。Wherein, the drying of the crystallized product is carried out in a blast drying oven at a drying temperature of 50° C. to 100° C. for 10 to 48 hours.

其中,所述干燥温度为60℃~90℃,干燥时间为12~40h。Wherein, the drying temperature is 60°C-90°C, and the drying time is 12-40h.

其中,所述晶化产物的煅烧,是将晶化产物在流动空气中从常温升温至150℃并保温1h,然后以1℃/min的速率升温至580℃并在空气中保温12h。Wherein, the calcination of the crystallization product is to raise the temperature of the crystallization product from normal temperature to 150° C. in flowing air and keep it warm for 1 hour, then raise the temperature to 580° C. at a rate of 1° C./min and hold it in air for 12 hours.

本发明通过上述制备方法制得的薄层状CHA型SSZ-13沸石分子筛材料,为薄层片状CHA型SSZ-13沸石分子筛材料,所述分子筛是由最小尺寸为1-3nm的片层结构组成,所述薄层状CHA型SSZ-13沸石分子筛材料的扫描电镜SEM照片显示为形貌成花瓣状的片层结构。The thin-layer CHA type SSZ-13 zeolite molecular sieve material prepared by the above preparation method in the present invention is a thin-layer sheet CHA type SSZ-13 zeolite molecular sieve material, and the molecular sieve is composed of a sheet structure with a minimum size of 1-3nm Composition, the SEM photo of the thin-layered CHA type SSZ-13 zeolite molecular sieve material shows a petal-shaped sheet structure.

下面通过具体实例对本发明提供的一种薄层状CHA型SSZ-13沸石分子筛材料的制备方法做具体说明。The preparation method of a thin-layered CHA type SSZ-13 zeolite molecular sieve material provided by the present invention will be specifically described below through specific examples.

实施例1Example 1

一种薄层状CHA型SSZ-13沸石分子筛材料的制备方法,包括以下步骤:A preparation method of thin-layer CHA type SSZ-13 zeolite molecular sieve material, comprising the following steps:

(1)将0.1683g KOH固体和0.1683g Al(NO3)3·9H2O加入3.165g TMAdOH溶液(25wt%)中,并开动磁力搅拌器,设置转速为300转每分钟直至得到澄清溶液。(1) Add 0.1683g KOH solid and 0.1683g Al(NO 3 ) 3 ·9H 2 O into 3.165g TMAdOH solution (25wt%), and start the magnetic stirrer at 300 rpm until a clear solution is obtained.

(2)再将0.9g白炭黑,将作为硅源的白炭黑加入上一步所得的澄清溶液中,开始滴加硅源后可观察到烧杯内清液逐渐变浑浊,同时伴有体系粘度的明显提升。(2) Then add 0.9g of white carbon black, and add the white carbon black as the silicon source to the clear solution obtained in the previous step. After adding the silicon source dropwise, it can be observed that the clear liquid in the beaker gradually becomes turbid, accompanied by system viscosity. obvious improvement.

(3)加完白炭黑后,石蜡膜将塑料烧杯密封,并将磁力搅拌转速调为500转每分钟,并在该转速下于室温搅拌1小时。将磁力搅拌器转速降低至300转每分钟,以移液枪缓慢滴加5.73ml去离子水和0.541ml环己醇于已经含有有机结构导向剂、铝源及硅源的体系中。(3) After adding the white carbon black, the plastic beaker was sealed with paraffin film, and the magnetic stirring speed was adjusted to 500 rpm, and stirred at room temperature for 1 hour at this speed. Reduce the rotation speed of the magnetic stirrer to 300 rpm, and slowly add 5.73ml of deionized water and 0.541ml of cyclohexanol dropwise into the system already containing the organic structure directing agent, aluminum source and silicon source with a pipette.

(4)将上述混合溶液转入水热反应釜中在160℃水热反应温度下,水热反应4d;(4) Transfer the above-mentioned mixed solution into a hydrothermal reaction kettle at a hydrothermal reaction temperature of 160° C., and perform a hydrothermal reaction for 4 days;

(5)晶化结束后取出反应釜以流动水迅速淬冷,经过过滤分离出沉淀,用蒸馏水洗涤至滤液PH值为6~7,最后用无水乙醇洗涤3次;(5) After the crystallization is completed, take out the reaction kettle and quench it quickly with flowing water, separate the precipitate through filtration, wash with distilled water until the pH value of the filtrate is 6-7, and finally wash with absolute ethanol for 3 times;

(6)在70℃干燥温度下于鼓风干燥箱中干燥24h后得到产物,将晶化后产物进行煅烧,于流动空气中从常温迅速升温至150℃并保温1h,随后以1℃/min的速率升温至580℃并继续于空气中保温12h,获得薄层状CHA型SSZ-13沸石分子筛。(6) Dry the product in a blast drying oven at a drying temperature of 70°C for 24 hours to obtain the product. Calcinate the crystallized product, rapidly raise the temperature from room temperature to 150°C in flowing air and keep it warm for 1 hour, and then heat it at 1°C/min The temperature was raised to 580°C at a certain rate and kept in air for 12 hours to obtain a thin-layered CHA type SSZ-13 zeolite molecular sieve.

所得的薄层状CHA型SSZ-13沸石分子筛的XRD谱图如图2所示,从图2可以看出,本发明实施例制得的薄层状CHA型SSZ-13沸石分子筛的XRD谱图和标准CHA谱图完全对应,含有特征峰,说明本发明实施例合成的沸石是薄层状CHA型SSZ-13沸石分子筛;所得的薄层状CHA型SSZ-13沸石分子筛的SEM照片如图3所示,从其SEM照片可以看出,本发明实施例制得的薄层状CHA型SSZ-13沸石分子筛的结构的确是薄层状的。The XRD spectrum of the thin-layer CHA type SSZ-13 zeolite molecular sieve of gained is as shown in Figure 2, as can be seen from Figure 2, the XRD spectrum of the thin-layer CHA type SSZ-13 zeolite molecular sieve that the embodiment of the present invention makes It completely corresponds to the standard CHA spectrogram and contains characteristic peaks, indicating that the zeolite synthesized by the embodiment of the present invention is a thin-layer CHA type SSZ-13 zeolite molecular sieve; the SEM photo of the thin-layer CHA type SSZ-13 zeolite molecular sieve as shown in Figure 3 As shown, it can be seen from its SEM photo that the structure of the thin-layered CHA type SSZ-13 zeolite molecular sieve prepared in the embodiment of the present invention is indeed thin-layered.

实施例2Example 2

一种薄层状CHA型SSZ-13沸石分子筛材料的制备方法,包括以下步骤:A preparation method of thin-layer CHA type SSZ-13 zeolite molecular sieve material, comprising the following steps:

(1)将0.1067g NaOH固体和0.15g Al(NO3)3·9H2O加入2.813g TMAdOH溶液(25wt%)中,并开动磁力搅拌器,设置转速为300转每分钟直至得到澄清溶液。(1) Add 0.1067g NaOH solid and 0.15g Al(NO 3 ) 3 ·9H 2 O to 2.813g TMAdOH solution (25wt%), and start a magnetic stirrer at 300 rpm until a clear solution is obtained.

(2)再将0.8g白炭黑,将作为硅源的白炭黑加入上一步所得的澄清溶液中,开始滴加硅源后可观察到烧杯内清液逐渐变浑浊,同时伴有体系粘度的明显提升。(2) Then add 0.8g of white carbon black, and add the white carbon black as the silicon source to the clear solution obtained in the previous step. After adding the silicon source dropwise, it can be observed that the clear liquid in the beaker gradually becomes turbid, accompanied by the viscosity of the system. obvious improvement.

(3)加完白炭黑后,石蜡膜将塑料烧杯密封,并将磁力搅拌转速调为500转每分钟,并在该转速下于室温搅拌1小时。将磁力搅拌器转速降低至300转每分钟,以移液枪缓慢滴加5.73ml去离子水和0.3961ml异丙醇于已经含有有机结构导向剂、铝源及硅源的体系中。(3) After adding the white carbon black, the plastic beaker was sealed with paraffin film, and the magnetic stirring speed was adjusted to 500 rpm, and stirred at room temperature for 1 hour at this speed. Reduce the rotation speed of the magnetic stirrer to 300 rpm, and slowly add 5.73 ml of deionized water and 0.3961 ml of isopropanol dropwise into the system containing the organic structure directing agent, aluminum source and silicon source with a pipette.

(4)将上述混合溶液转入水热反应釜中在160℃水热反应温度下,水热反应6天;(4) Transfer the above mixed solution into a hydrothermal reaction kettle for 6 days at a hydrothermal reaction temperature of 160°C;

(5)晶化结束后取出反应釜以流动水迅速淬冷,经过过滤分离出沉淀,用蒸馏水洗涤至滤液PH值为6~7,最后用无水乙醇洗涤3次;(5) After the crystallization is completed, take out the reaction kettle and quench it quickly with flowing water, separate the precipitate through filtration, wash with distilled water until the pH value of the filtrate is 6-7, and finally wash with absolute ethanol for 3 times;

(6)在70℃干燥温度下于鼓风干燥箱中干燥24h后得到产物,将晶化后产物进行煅烧,于流动空气中从常温迅速升温至150℃并保温1h,随后以1℃/min的速率升温至580℃并继续于空气中保温12h,获得薄层状CHA型SSZ-13沸石分子筛。(6) Dry the product in a blast drying oven at a drying temperature of 70°C for 24 hours to obtain the product. Calcinate the crystallized product, rapidly raise the temperature from room temperature to 150°C in flowing air and keep it warm for 1 hour, and then heat it at 1°C/min The temperature was raised to 580°C at a certain rate and kept in air for 12 hours to obtain a thin-layered CHA type SSZ-13 zeolite molecular sieve.

所得的薄层状CHA型SSZ-13沸石分子筛的XRD谱图如图4所示,从图4可以看出,本发明实施例制得的薄层状CHA型SSZ-13沸石分子筛的XRD谱图和标准CHA谱图完全对应,含有特征峰,说明本发明实施例合成的沸石是薄层状CHA型SSZ-13沸石分子筛;所得的薄层状CHA型SSZ-13沸石分子筛的SEM照片如图5所示,从其SEM照片可以看出,本发明实施例制得的薄层状CHA型SSZ-13沸石分子筛的结构的确是薄层状的。The XRD spectrum of the thin-layer CHA type SSZ-13 zeolite molecular sieve of gained is as shown in Figure 4, as can be seen from Figure 4, the XRD spectrum of the thin-layer CHA type SSZ-13 zeolite molecular sieve that the embodiment of the present invention makes It completely corresponds to the standard CHA spectrogram and contains characteristic peaks, indicating that the zeolite synthesized by the embodiment of the present invention is a thin-layer CHA type SSZ-13 zeolite molecular sieve; the SEM photo of the thin-layer CHA type SSZ-13 zeolite molecular sieve as shown in Figure 5 As shown, it can be seen from the SEM photos that the structure of the thin-layered CHA type SSZ-13 zeolite molecular sieve prepared in the embodiment of the present invention is indeed thin-layered.

实施例3Example 3

一种薄层状CHA型SSZ-13沸石分子筛材料的制备方法,包括以下步骤:A preparation method of thin-layer CHA type SSZ-13 zeolite molecular sieve material, comprising the following steps:

(1)将0.08g NaOH固体和0.0636g Al(OH)3加入1.688g TMAdOH溶液(25wt%)中,并开动磁力搅拌器,设置转速为300转每分钟直至得到澄清溶液。(1) Add 0.08g NaOH solid and 0.0636g Al(OH) 3 into 1.688g TMAdOH solution (25wt%), and start the magnetic stirrer, set the rotation speed to 300 rpm until a clear solution is obtained.

(2)再将0.6g白炭黑,将作为硅源的白炭黑加入上一步所得的澄清溶液中,开始滴加硅源后可观察到烧杯内清液逐渐变浑浊,同时伴有体系粘度的明显提升。(2) Then add 0.6g of white carbon black, and add the white carbon black as the silicon source to the clear solution obtained in the previous step. After adding the silicon source dropwise, it can be observed that the clear liquid in the beaker gradually becomes turbid, accompanied by the viscosity of the system. obvious improvement.

(3)加完白炭黑后,石蜡膜将塑料烧杯密封,并将磁力搅拌转速调为500转每分钟,并在该转速下于室温搅拌1小时。将磁力搅拌器转速降低至300转每分钟,以移液枪缓慢滴加5.934ml去离子水和0.495ml环己醇于已经含有有机结构导向剂、铝源及硅源的体系中。(3) After adding the white carbon black, the plastic beaker was sealed with paraffin film, and the magnetic stirring speed was adjusted to 500 rpm, and stirred at room temperature for 1 hour at this speed. Reduce the rotational speed of the magnetic stirrer to 300 rpm, and slowly add 5.934 ml of deionized water and 0.495 ml of cyclohexanol dropwise into the system containing the organic structure directing agent, aluminum source and silicon source with a pipette.

(4)将上述混合溶液转入水热反应釜中在160℃水热反应温度下,水热反应5天;(4) Transfer the above-mentioned mixed solution into a hydrothermal reaction kettle at a hydrothermal reaction temperature of 160° C., and perform a hydrothermal reaction for 5 days;

(5)晶化结束后取出反应釜以流动水迅速淬冷,经过过滤分离出沉淀,用蒸馏水洗涤至滤液PH值为6~7,最后用无水乙醇洗涤3次;(5) After the crystallization is completed, take out the reaction kettle and quench it quickly with flowing water, separate the precipitate through filtration, wash with distilled water until the pH value of the filtrate is 6-7, and finally wash with absolute ethanol for 3 times;

(6)在70℃干燥温度下于鼓风干燥箱中干燥24h后得到产物,将晶化后产物进行煅烧,于流动空气中从常温迅速升温至150℃并保温1h,随后以1℃/min的速率升温至580℃并继续于空气中保温12h,获得薄层状CHA型SSZ-13沸石分子筛。(6) Dry the product in a blast drying oven at a drying temperature of 70°C for 24 hours to obtain the product. Calcinate the crystallized product, rapidly raise the temperature from room temperature to 150°C in flowing air and keep it warm for 1 hour, and then heat it at 1°C/min The temperature was raised to 580°C at a certain rate and kept in air for 12 hours to obtain a thin-layered CHA type SSZ-13 zeolite molecular sieve.

所得的薄层状CHA型SSZ-13沸石分子筛的XRD谱图如图6所示,从图6可以看出,本发明实施例制得的薄层状CHA型SSZ-13沸石分子筛的XRD谱图和标准CHA谱图完全对应,含有特征峰,说明本发明实施例合成的沸石是薄层状CHA型SSZ-13沸石分子筛;所得的薄层状CHA型SSZ-13沸石分子筛的SEM照片如图7所示,从其SEM照片可以看出,本发明实施例制得的薄层状CHA型SSZ-13沸石分子筛的结构的确是薄层状的。The XRD spectrum of the thin-layered CHA type SSZ-13 zeolite molecular sieve obtained is shown in Figure 6, as can be seen from Figure 6, the XRD spectrum of the thin-layered CHA type SSZ-13 zeolite molecular sieve prepared by the embodiment of the present invention It completely corresponds to the standard CHA spectrogram and contains characteristic peaks, indicating that the zeolite synthesized by the embodiment of the present invention is a thin-layer CHA type SSZ-13 zeolite molecular sieve; the SEM photo of the obtained thin-layer CHA type SSZ-13 zeolite molecular sieve is shown in Figure 7 As shown, it can be seen from the SEM photos that the structure of the thin-layered CHA type SSZ-13 zeolite molecular sieve prepared in the embodiment of the present invention is indeed thin-layered.

最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above specific embodiments are only used to illustrate the technical solutions of the present invention without limitation, although the present invention has been described in detail with reference to examples, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements without departing from the spirit and scope of the technical solution of the present invention shall be covered by the claims of the present invention.

Claims (10)

1.一种薄层状CHA型SSZ-13沸石分子筛材料的制备方法,其特征在于,包括如下步骤:1. a preparation method of thin-layered CHA type SSZ-13 zeolite molecular sieve material, is characterized in that, comprises the steps: 将三价铝源、氢氧根离子源及无机阳离子源加到N,N,N-三甲基-1-金刚烷基氢氧化铵溶液中搅拌得到澄清溶液;adding trivalent aluminum source, hydroxide ion source and inorganic cation source to N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution and stirring to obtain a clear solution; 将四价硅源加到所述澄清溶液中搅拌,然后加入去离子水和醇源得到混合溶液;adding a tetravalent silicon source to the clarified solution and stirring, then adding deionized water and an alcohol source to obtain a mixed solution; 将所述混合溶液在水热反应釜中通过水热反应进行晶化;The mixed solution is crystallized by hydrothermal reaction in a hydrothermal reaction kettle; 晶化结束后将反应釜中的混合物淬冷、过滤、洗涤、干燥得到晶化产物;After the crystallization is completed, the mixture in the reactor is quenched, filtered, washed, and dried to obtain a crystallized product; 将所述晶化产物煅烧得到薄层状CHA型SSZ-13沸石分子筛材料;Calcining the crystallized product to obtain a thin-layered CHA type SSZ-13 zeolite molecular sieve material; 其中,所述四价硅源中硅元素与三价铝源中的铝元素的摩尔比为134-50:1;Wherein, the molar ratio of the silicon element in the tetravalent silicon source to the aluminum element in the trivalent aluminum source is 134-50:1; 所述无机阳离子源中的无机阳离子与四价硅源中的硅元素的摩尔比为0.05-0.2:1;The molar ratio of the inorganic cation in the inorganic cation source to the silicon element in the tetravalent silicon source is 0.05-0.2:1; 所述醇源与四价硅源中硅元素的摩尔比为0.1-0.4:1;The molar ratio of the alcohol source to the silicon element in the tetravalent silicon source is 0.1-0.4:1; 所述N,N,N-三甲基-1-金刚烷基氢氧化铵溶液中N,N,N-三甲基-1-金刚烷基氢氧化铵与四价硅源中硅元素的摩尔比为0.25-0.2:1;The mole of silicon element in the N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution and the tetravalent silicon source in the N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution The ratio is 0.25-0.2:1; 所述三价铝源中的铝元素以Al2O3含量计,所述四价硅源中的硅元素以SiO2含量计。The aluminum element in the trivalent aluminum source is calculated by Al 2 O 3 content, and the silicon element in the tetravalent silicon source is calculated by SiO 2 content. 2.根据权利要求1所述的薄层状CHA型SSZ-13沸石分子筛材料的制备方法,其特征在于:所述四价硅源为白炭黑、硅溶胶或正硅酸四乙酯中的一种或几种,所述三价铝源为异丙醇铝、氢氧化铝、硝酸铝或硫酸铝中的一种或几种,所述氢氧根离子源为氢氧化钠或氢氧化钾,所述无机阳离子源为硝酸铵、氯化铵、氢氧化钾、氢氧化钠、氯化钾或氯化钠中的一种或几种,所述醇源为异丙醇、环己醇、丙三醇或正丙醇中的一种或几种。2. the preparation method of thin-layered CHA type SSZ-13 zeolite molecular sieve material according to claim 1 is characterized in that: described tetravalent silicon source is white carbon black, silica sol or tetraethyl orthosilicate One or more, the trivalent aluminum source is one or more of aluminum isopropoxide, aluminum hydroxide, aluminum nitrate or aluminum sulfate, and the hydroxide ion source is sodium hydroxide or potassium hydroxide , the inorganic cation source is one or more of ammonium nitrate, ammonium chloride, potassium hydroxide, sodium hydroxide, potassium chloride or sodium chloride, and the alcohol source is isopropanol, cyclohexanol, One or more of glycerol or n-propanol. 3.根据权利要求2所述的薄层状CHA型SSZ-13沸石分子筛材料的制备方法,其特征在于:所述四价硅源为白炭黑,所述三价铝源为硝酸铝和氢氧化铝,所述无机阳离子源为氢氧化钠或氢氧化钾,所述醇源为异丙醇或环己醇。3. the preparation method of thin layer CHA type SSZ-13 zeolite molecular sieve material according to claim 2 is characterized in that: described tetravalent silicon source is white carbon black, and described trivalent aluminum source is aluminum nitrate and hydrogen Aluminum oxide, the inorganic cation source is sodium hydroxide or potassium hydroxide, and the alcohol source is isopropanol or cyclohexanol. 4.根据权利要求1所述的薄层状CHA型SSZ-13沸石分子筛材料的制备方法,其特征在于:所述N,N,N-三甲基-1-金刚烷基氢氧化铵溶液的质量分数为25%。4. the preparation method of thin-layered CHA type SSZ-13 zeolite molecular sieve material according to claim 1 is characterized in that: described N,N,N-trimethyl-1-adamantyl ammonium hydroxide solution The mass fraction is 25%. 5.根据权利要求1所述的薄层状CHA型SSZ-13沸石分子筛材料的制备方法,其特征在于:所述水热反应的反应温度为135℃~200℃,水热反应时间为5~7d。5. The preparation method of the thin-layered CHA type SSZ-13 zeolite molecular sieve material according to claim 1, characterized in that: the reaction temperature of the hydrothermal reaction is 135°C-200°C, and the hydrothermal reaction time is 5-200°C. 7d. 6.根据权利要求1所述的薄层状CHA型SSZ-13沸石分子筛材料的制备方法,其特征在于:所述水热反应的反应温度为150℃~180℃,水热反应时间为5d。6 . The preparation method of thin-layered CHA type SSZ-13 zeolite molecular sieve material according to claim 1 , characterized in that: the reaction temperature of the hydrothermal reaction is 150° C. to 180° C., and the hydrothermal reaction time is 5 days. 7.根据权利要求1所述的薄层状CHA型SSZ-13沸石分子筛材料的制备方法,其特征在于:所述晶化产物的干燥是在鼓风干燥箱中以50℃~100℃的干燥温度干燥10~48h。7. The preparation method of thin-layered CHA type SSZ-13 zeolite molecular sieve material according to claim 1, characterized in that: the drying of the crystallized product is drying at 50°C to 100°C in a blast drying oven. Temperature drying 10 ~ 48h. 8.根据权利要求1所述的薄层状CHA型SSZ-13沸石分子筛材料的制备方法,其特征在于:所述干燥温度为60℃~90℃,干燥时间为12~40h。8 . The preparation method of the thin-layered CHA type SSZ-13 zeolite molecular sieve material according to claim 1 , characterized in that: the drying temperature is 60° C. to 90° C. and the drying time is 12 to 40 hours. 9.根据权利要求1所述的薄层状CHA型SSZ-13沸石分子筛材料的制备方法,其特征在于:所述晶化产物的煅烧,是将晶化产物在流动空气中从常温升温至150℃并保温1h,然后以1℃/min的速率升温至580℃并在空气中保温12h。9. The preparation method of the thin-layered CHA type SSZ-13 zeolite molecular sieve material according to claim 1, characterized in that: the calcination of the crystallized product is to heat up the crystallized product from normal temperature to 150 °C in flowing air. °C and keep it warm for 1h, then raise the temperature to 580°C at a rate of 1°C/min and keep it warm in air for 12h. 10.一种权利要求1-9任一项所述的薄层状CHA型SSZ-13沸石分子筛材料,其特征在于:所述薄层状CHA型SSZ-13沸石分子筛材料为薄层片状CHA型SSZ-13沸石分子筛材料,所述薄层的最小尺寸为1nm。10. A thin-layered CHA-type SSZ-13 zeolite molecular sieve material according to any one of claims 1-9, characterized in that: the thin-layered CHA-type SSZ-13 zeolite molecular sieve material is a thin-layered flaky CHA Type SSZ-13 zeolite molecular sieve material, the minimum dimension of the thin layer is 1 nm.
CN201910662366.8A 2019-07-22 2019-07-22 Lamellar CHA type SSZ-13 zeolite molecular sieve material and preparation method thereof Active CN110436478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910662366.8A CN110436478B (en) 2019-07-22 2019-07-22 Lamellar CHA type SSZ-13 zeolite molecular sieve material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910662366.8A CN110436478B (en) 2019-07-22 2019-07-22 Lamellar CHA type SSZ-13 zeolite molecular sieve material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN110436478A true CN110436478A (en) 2019-11-12
CN110436478B CN110436478B (en) 2021-06-11

Family

ID=68431027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910662366.8A Active CN110436478B (en) 2019-07-22 2019-07-22 Lamellar CHA type SSZ-13 zeolite molecular sieve material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110436478B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192860A (en) * 2014-09-03 2014-12-10 太原大成环能化工技术有限公司 Synthetic method of SAPO-34 molecular sieve with thin stratified shape
CN106315611A (en) * 2016-08-24 2017-01-11 山东齐鲁华信高科有限公司 SSZ -13 molecular sieve preparing method
CN109110782A (en) * 2018-10-09 2019-01-01 山东国瓷功能材料股份有限公司 A kind of preparation method of SSZ-13 molecular sieve
CN110028081A (en) * 2019-04-19 2019-07-19 大连理工大学 A kind of method of synthesis nano multi-stage porous SSZ-13 molecular sieve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192860A (en) * 2014-09-03 2014-12-10 太原大成环能化工技术有限公司 Synthetic method of SAPO-34 molecular sieve with thin stratified shape
CN106315611A (en) * 2016-08-24 2017-01-11 山东齐鲁华信高科有限公司 SSZ -13 molecular sieve preparing method
CN109110782A (en) * 2018-10-09 2019-01-01 山东国瓷功能材料股份有限公司 A kind of preparation method of SSZ-13 molecular sieve
CN110028081A (en) * 2019-04-19 2019-07-19 大连理工大学 A kind of method of synthesis nano multi-stage porous SSZ-13 molecular sieve

Also Published As

Publication number Publication date
CN110436478B (en) 2021-06-11

Similar Documents

Publication Publication Date Title
CN103848439B (en) Synthetic method of ZSM-5 type molecular sieve
CN104030314B (en) A kind of ZSM-5 based hierarchical porous molecular sieve material and preparation method thereof
CN107640775B (en) Method for preparing ZSM-5 molecular sieve by using solid waste
WO2015081648A1 (en) Method for synthesizing molecular sieve ssz-13
TW201114685A (en) Method of preparing ZSM-5 zeolite using nanocrystalline ZSM-5 seeds
CN110104684A (en) A kind of BiOX photocatalyst and preparation method thereof having hierarchical structure
CN104211082A (en) Synthetic method of 4A molecular sieve
CN101177282A (en) Method for synthesizing high crystallinity ZSM-5 molecular sieve without organic template
CN102659133A (en) Preparation method for P type zeolite molecular sieve with core-shell structure
CN105129813B (en) A kind of method for preparing nano-sheet ferrierite molecular sieve
CN101983921A (en) Method for synthesizing ZSM-5 zeolite orderly accumulated by nanometer crystallite
CN104445255A (en) Preparation method of heteroatom MCM-49 zeolite molecular sieve
CN100488621C (en) Method for synthesizing soluble titanium dioxide nano crystal in low temperature
CN103420431A (en) Preparation method ofzinc cobaltatenanometer material doped with zinc oxide
CN106914271A (en) A kind of method that neutrallty condition next step method prepares the mesopore molecular sieves of SBA 15 of Fe2O3 doping
CN113181954A (en) ZSM-5 molecular sieve nanosheet/LDHs composite catalytic material and preparation method thereof
CN115321556B (en) MFI type flaky molecular sieve and preparation method thereof
CN102730712A (en) Preparation method of nano GaZSM-5 molecular sieve
CN105197955A (en) Method for low-temperature solvent-free synthesis of high-silicon small-size Cu-SSZ-13 zeolite molecular sieve
CN105347310B (en) A kind of method for preparing high-purity calcium based hydrotalcite
CN104098108B (en) ZSM-5 molecular sieve with rectangular morphology and preparation method thereof
CN102634842B (en) A Method for Preparing Anatase TiO2 Nano-Crystals with {001} and {100} Surfaces Exposed
CN113603110A (en) Template-free preparation method of porous LSX zeolite molecular sieve
CN110436478A (en) A kind of lamelliform CHA type SSZ-13 zeolite molecular sieve material and preparation method thereof
CN104418354B (en) A kind of titanium silicon poromerics and synthetic method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant