CN110362874A - 一种光伏太阳能充电桩收益最优计算方法 - Google Patents

一种光伏太阳能充电桩收益最优计算方法 Download PDF

Info

Publication number
CN110362874A
CN110362874A CN201910532288.XA CN201910532288A CN110362874A CN 110362874 A CN110362874 A CN 110362874A CN 201910532288 A CN201910532288 A CN 201910532288A CN 110362874 A CN110362874 A CN 110362874A
Authority
CN
China
Prior art keywords
charging pile
photovoltaic solar
solar charging
soc
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910532288.XA
Other languages
English (en)
Other versions
CN110362874B (zh
Inventor
郭欣欣
李荣台
宋潇磊
侯丰
葛畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN201910532288.XA priority Critical patent/CN110362874B/zh
Publication of CN110362874A publication Critical patent/CN110362874A/zh
Application granted granted Critical
Publication of CN110362874B publication Critical patent/CN110362874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Marketing (AREA)
  • Geometry (AREA)
  • Public Health (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • General Engineering & Computer Science (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Hardware Design (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明适用于充电站技术领域,提供了一种光伏太阳能充电桩最优收益计算方法,该方法具体包括如下步骤:S1、搭建光伏太阳能充电桩的收益计算模型;S2、计算收益计算模型最大值及对应的条件。本发明提供的光伏太阳能充电桩最优收益计算方法能对光伏太阳能充电桩产生的光伏电能进行合理的管理,使得光伏太阳能充电桩的收益尽可能的大。

Description

一种光伏太阳能充电桩收益最优计算方法
技术领域
本发明属于充电桩技术领域,提供了一种光伏太阳能充电桩收益最优计算 方法。
背景技术
能源是人类社会赖以生存和发展的重要物质基础,人类文明的每一次重大 进步都伴随着能源的重要变革,大力推进新能源的发展是必然趋势。
交通领域消耗了我国一半的石油资源,且造成温室气体,为此全球范围内 推广电动汽车。现有的电动汽车的大多是通过充电桩进行充电,充电桩通过市 电供电,即充电桩向市电购买电能,在将购买的电能卖给电动汽车用户,充电 桩基于买卖的差价来获取利润,但现有的充电桩无法的收益计算方法无法对光 伏太阳能充电桩的收益进行管理。
发明内容
本发明实施例提供了一种光伏太阳能充电桩收益最优计算方法,对光伏太 阳能充电桩产生的光伏电能进行合理的管理,使得光伏太阳能充电桩的收益尽 可能的大。
本发明是这样实现的,一种光伏太阳能充电桩最优收益计算方法,所述方 法具体包括如下步骤:
S1、搭建光伏太阳能充电桩的收益计算模型;
S2、计算收益计算模型最大值及对应的条件。
进一步的,光伏太阳能充电桩的收益计算模型具体如下:
当pi≥zi时,
当pi<zi时,
b表示光伏太阳能充电桩售电给用户的价格,pi为光伏太阳能充电桩在时 段i售给用户的电量,zi为时段i光伏太阳能充电桩获得的光伏电量,si为光伏 太阳能充电桩在i时段向电网购电的购电价格,ai为光伏太阳能充电桩在i时段 售电给电网的售电价格,Δpi为时段i的线损,线损即电能在输送过程的线路内 阻损耗,κ为线损费用折算系数,mi为变压器的数量,ct1,i为铁损耗费用,ct2,i为 铜损耗费用。
进一步的,收益计算模型约束条件包括荷电状态量约束及充电功率约束, 荷电状态量约束表示如下:
1≥Rsoc≥Esoc
Esoc≥Ssoc≥0.2
Esoc是充电结束时电动汽车的期望荷电状态量,Ssoc指充电起始时电动汽车 的实际荷电状态量,Rsoc表示充电结束时电动汽车的实际荷电状态量。
充电功率约束具体如下:
0≤Pi≤β·Pmax
Pi×Δt≥(Rsoc-Ssoc)×D
β是光伏太阳能充电桩的充电效率,Pmax表示光伏太阳能充电桩的最大充电 功率,D为充电电动车的电池容量。
进一步的,若则剩余的光伏电能不向电网出售,收益计算模型最大值对应的条件是舍弃剩余光伏电能,否则收 益计算模型最大值对应的条件是光伏电能全部利用。
本发明提供的光伏太阳能充电桩最优收益计算方法具有如下有益效果:对 光伏太阳能充电桩产生的光伏电能进行合理的管理,使得光伏太阳能充电桩的 收益尽可能的大。
附图说明
图1为本发明实施例提供的光伏太阳能充电桩最优收益计算方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 仅用以解释本发明,并不用于限定本发明。
图1为本发明实施例提供的光伏太阳能充电桩最优收益计算方法流程图, 该方法具体包括如下步骤:
S1、搭建光伏太阳能充电桩的收益计算模型;
在本发明实施例中,以光伏太阳能充电桩的收益作为目标函数W,表示具 体如下:
W=C1-C2+C3 (1)
其中,C1表示光伏太阳能充电桩售电给用户的收益,C2表示光伏太阳能充 电桩向电网购电的支出,C3表示光伏太阳能充电桩售电给电网的收益;
其中,b表示光伏太阳能充电桩售电给用户的价格,b一般取值为1.5元/Kwh, pi为光伏太阳能充电桩在时段i售给用户的电量。
zi为时段i光伏太阳能充电桩获得的光伏电量,zi优先用于给电动车充电, 剩余部分考虑出售给电网,当pi≥zi时,因此C3=0,
其中,si为光伏太阳能充电桩在i时段向电网购电的购电价格;
当pi<zi时,zi足够用于电动车的供电,因此C2=0,
ai为光伏太阳能充电桩在i时段售电给电网的售电价格,Δpi为时段i的线损, 线损即电能在输送过程的线路内阻损耗,为了简化线损的计算,不考虑温度和 负载电流对电阻的影响κ为线损费用折算系数;mi·(ct1,i+ct2,i)为配电变压器损 耗,简称变损,配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分,mi为 变压器的数量,ct1,i为铁损耗费用,ct2,i为铜损耗费用,在本发明实施例中,κ取 交易电价的10%,即0.15元/kwh,铁损耗费用、铜损耗费用在不同时段下取 值相同。
当pi<zi时,光伏产生的电能足够用于电动车充电需求,并且出现剩余, 剩余的部分可能考虑出售给电网,但存在线损及配电变压器损耗支出,因此, 只有在售给电网产生的收益大于损耗支出时,即 光伏太阳能充电桩才会将剩余的光伏 电能出售给电网,否则,光伏太阳能充电桩选择舍弃剩余的光伏电能,本发明 中的光伏电能是指由太阳能转化而成的电能,剩余的光伏电能是指满足电动车 充电需求之外的光伏电能。
其中,ρ为电线的电阻率,L为电线路的长度,S为电线的截面积。
pi=Pi×Δt (6)
Pi表示i时段的充电功率,Δt为i时段内的充电时长;
基于公式(1)~(4)可得:光伏太阳能充电桩的收益函数为:
当pi≥zi时,
当pi<zi时,
约束条件包括荷电状态量(SOC)约束及光伏太阳能充电桩充电功率约束, 荷电状态量(SOC)约束表示如下:
1≥Rsoc≥Esoc (9)
Esoc≥Ssoc≥0.2 (10)
式中:Esoc是充电结束时电动汽车的期望荷电状态量,Ssoc指充电起始时电 动汽车的实际荷电状态量,Rsoc表示充电结束时电动汽车的实际荷电状态量。
光伏太阳能充电桩充电功率约束具体如下:
0≤Pi≤β·Pmax (11)
Pi×Δt≥(Rsoc-Ssoc)×D (12)
式中:β是光伏太阳能充电桩的充电效率;Pmax表示光伏太阳能充电桩的最 大充电功率,D为充电电动车的电池容量。
S2、计算收益计算模型的最大收益值,获取最大收益值对应的条件。
在本发明实施例中,计算24小时内光伏太阳能充电桩的收益,将24小时 分成μ个时段,Pi在满足充电功率约束条件下,按照设定步长进行取值,求解 不同Pi值对应的光伏太阳能充电桩的收益,即为所有时段收益的累加值,所有 时段的Pi赋值是相同的,获取收益计算模型最大收益值及对应的条件,收益的 计算需满足荷电状态量约束,若则最 大收益对应的条件是舍弃剩余的光伏电能,否则,最大收益对应的条件是光伏 电能全部利用。
本发明提供的光伏太阳能充电桩最优收益计算方法具有如下有益效果:对 光伏太阳能充电桩产生的光伏电能进行合理的管理,使得光伏太阳能充电桩的 收益尽可能的大。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发 明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明 的保护范围之内。

Claims (4)

1.一种光伏太阳能充电桩最优收益计算方法,其特征在于,所述方法具体包括如下步骤:
S1、搭建光伏太阳能充电桩的收益计算模型;
S2、计算收益计算模型最大值及对应的条件。
2.如权利要求1所述光伏太阳能充电桩最优收益计算方法,其特征在于,光伏太阳能充电桩的收益计算模型具体如下:
当pi≥zi时,
当pi<zi时,
b表示光伏太阳能充电桩售电给用户的价格,pi为光伏太阳能充电桩在时段i售给用户的电量,zi为时段i光伏太阳能充电桩获得的光伏电量,si为光伏太阳能充电桩在i时段向电网购电的购电价格,ai为光伏太阳能充电桩在i时段售电给电网的售电价格,Δpi为时段i的线损,线损即电能在输送过程的线路内阻损耗,κ为线损费用折算系数,mi为变压器的数量,ct1,i为铁损耗费用,ct2,i为铜损耗费用。
3.如权利要求2所述光伏太阳能充电桩最优收益计算方法,其特征在于,收益计算模型约束条件包括荷电状态量约束及充电功率约束,荷电状态量约束表示如下:
1≥Rsoc≥Esoc
Esoc≥Ssoc≥0.2
Esoc是充电结束时电动汽车的期望荷电状态量,Ssoc指充电起始时电动汽车的实际荷电状态量,Rsoc表示充电结束时电动汽车的实际荷电状态量。
充电功率约束具体如下:
0≤Pi≤β·Pmax
Pi×Δt≥(Rsoc-Ssoc)×D
β是光伏太阳能充电桩的充电效率,Pmax表示光伏太阳能充电桩的最大充电功率,D为充电电动车的电池容量。
4.如权利要求1所述光伏太阳能充电桩最优收益计算方法,其特征在于,若则剩余的光伏电能不向电网出售,收益计算模型最大值对应的条件是舍弃剩余光伏电能,否则收益计算模型最大值对应的条件是光伏电能全部利用。
CN201910532288.XA 2019-06-19 2019-06-19 一种光伏太阳能充电桩收益最优计算方法 Active CN110362874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910532288.XA CN110362874B (zh) 2019-06-19 2019-06-19 一种光伏太阳能充电桩收益最优计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910532288.XA CN110362874B (zh) 2019-06-19 2019-06-19 一种光伏太阳能充电桩收益最优计算方法

Publications (2)

Publication Number Publication Date
CN110362874A true CN110362874A (zh) 2019-10-22
CN110362874B CN110362874B (zh) 2022-06-07

Family

ID=68216418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910532288.XA Active CN110362874B (zh) 2019-06-19 2019-06-19 一种光伏太阳能充电桩收益最优计算方法

Country Status (1)

Country Link
CN (1) CN110362874B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116436077A (zh) * 2023-04-04 2023-07-14 重庆跃达新能源有限公司 一种基于光伏储能的柔性供电系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104794533A (zh) * 2015-04-10 2015-07-22 国家电网公司 计入可入网电动汽车的配电网用户光伏电站的容量最优配置方法
CN105868499A (zh) * 2016-04-20 2016-08-17 电子科技大学 一种含风光储的电动汽车充电站容量配比方法
KR20180043649A (ko) * 2016-10-20 2018-04-30 (주)이시너지 에너지 자립형 전기버스 인프라 구축을 위한 지역 기반의 신재생에너지 관광 사업모델 시스템
CN108832654A (zh) * 2018-06-07 2018-11-16 中国电力科学研究院有限公司 一种用于光伏发电系统经济效益优化调度的方法及系统
CN109217364A (zh) * 2018-09-10 2019-01-15 国网冀北电力有限公司张家口供电公司 大规模分布式电源消纳的光伏-储能容量优化配置策略
CN109472394A (zh) * 2018-09-30 2019-03-15 中国电力科学研究院有限公司 一种储能成本和收益的经济优化方法及系统
CN109787304A (zh) * 2017-11-14 2019-05-21 中国电力科学研究院有限公司 一种太阳能充电站分布式能量管理方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104794533A (zh) * 2015-04-10 2015-07-22 国家电网公司 计入可入网电动汽车的配电网用户光伏电站的容量最优配置方法
CN105868499A (zh) * 2016-04-20 2016-08-17 电子科技大学 一种含风光储的电动汽车充电站容量配比方法
KR20180043649A (ko) * 2016-10-20 2018-04-30 (주)이시너지 에너지 자립형 전기버스 인프라 구축을 위한 지역 기반의 신재생에너지 관광 사업모델 시스템
CN109787304A (zh) * 2017-11-14 2019-05-21 中国电力科学研究院有限公司 一种太阳能充电站分布式能量管理方法及系统
CN108832654A (zh) * 2018-06-07 2018-11-16 中国电力科学研究院有限公司 一种用于光伏发电系统经济效益优化调度的方法及系统
CN109217364A (zh) * 2018-09-10 2019-01-15 国网冀北电力有限公司张家口供电公司 大规模分布式电源消纳的光伏-储能容量优化配置策略
CN109472394A (zh) * 2018-09-30 2019-03-15 中国电力科学研究院有限公司 一种储能成本和收益的经济优化方法及系统

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JISHENG TAO,DEBAO HUANG,DELING LI,XIAN YANG,CHANHUI LING: "Pricing Strategy and Charging Management for PVassisted", 《2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS》 *
JISHENG TAO,DEBAO HUANG,DELING LI,XIAN YANG,CHANHUI LING: "Pricing Strategy and Charging Management for PVassisted", 《2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS》, 2 June 2018 (2018-06-02) *
余晓玲,靳文涛,韩晓娟,房凯: "基于退役动力电池梯次利用的光伏充电站容量配置", 《电器与能效管理技术》 *
余晓玲,靳文涛,韩晓娟,房凯: "基于退役动力电池梯次利用的光伏充电站容量配置", 《电器与能效管理技术》, vol. 2017, no. 13, 1 January 2017 (2017-01-01), pages 39 - 45 *
梁耀升,刘卜瑞,吴朔,刘子琦: "新能源充电站能量优化管理", 《设备管理与改造》 *
梁耀升,刘卜瑞,吴朔,刘子琦: "新能源充电站能量优化管理", 《设备管理与改造》, vol. 2019, no. 11, 24 May 2019 (2019-05-24), pages 1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116436077A (zh) * 2023-04-04 2023-07-14 重庆跃达新能源有限公司 一种基于光伏储能的柔性供电系统及方法

Also Published As

Publication number Publication date
CN110362874B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
Wi et al. Electric vehicle charging method for smart homes/buildings with a photovoltaic system
Haidar et al. Technical challenges for electric power industries due to grid-integrated electric vehicles in low voltage distributions: A review
CN109713696A (zh) 考虑用户行为的电动汽车光伏充电站优化调度方法
Osório et al. Rooftop photovoltaic parking lots to support electric vehicles charging: A comprehensive survey
Faria et al. Primary and secondary use of electric mobility batteries from a life cycle perspective
Rotering et al. Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets
CN105205552B (zh) 一种独立新能源混合发电系统优化规划方法
Bayram et al. Plug-in electric vehicle grid integration
Nair et al. India's charging infrastructure—biggest single point impediment in EV adaptation in India
CN109217290A (zh) 计及电动汽车充放电的微网能量优化管理方法
CN107732937B (zh) 含风-光-储-电动汽车的并网型微网的削峰填谷方法
Zheng et al. Smart charging algorithm of electric vehicles considering dynamic charging priority
O'Connell et al. Electric vehicle (EV) charging management with dynamic distribution system tariff
CN105958498A (zh) 一种考虑电动汽车的机组组合与分时电价联合优化方法
Mahmud et al. Global challenges of electric vehicle charging systems and its future prospects: A review
Zheng et al. Optimal dispatch for reversible solid oxide cell-based hydrogen/electric vehicle aggregator via stimuli-responsive charging decision estimation
Wynne Impact of plug-in hybrid electric vehicles on California's electricity grid
Gadh et al. Smart electric vehicle (ev) charging and grid integration apparatus and methods
CN110362874A (zh) 一种光伏太阳能充电桩收益最优计算方法
Rashid et al. An RES-based grid connected electric vehicle charging station for Bangladesh
Wang et al. Optimal sizing of photovoltaic and battery energy storage of electric vehicle charging station based on two-part electricity pricing
Vignesh et al. Investigation on Reliability and Cost in the Presence of Electric Vehicle Charging Station
CN108879653A (zh) 一种基于储能电站的盈利方法和系统
MĂNESCU et al. Smart storage and grid services based on removable modular batteries for EV
Divya et al. V2G Transfer of Energy to Various Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant