CN110332267A - 一种密度可调的多层周期结构 - Google Patents

一种密度可调的多层周期结构 Download PDF

Info

Publication number
CN110332267A
CN110332267A CN201910552979.6A CN201910552979A CN110332267A CN 110332267 A CN110332267 A CN 110332267A CN 201910552979 A CN201910552979 A CN 201910552979A CN 110332267 A CN110332267 A CN 110332267A
Authority
CN
China
Prior art keywords
base layer
plate base
cylindrical shell
multilayered cylindrical
adjustable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910552979.6A
Other languages
English (en)
Inventor
万水
周鹏
王潇
年玉泽
李夏元
宋爱明
苏强
朱营博
徐皓甜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910552979.6A priority Critical patent/CN110332267A/zh
Publication of CN110332267A publication Critical patent/CN110332267A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/165Particles in a matrix
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/40Multi-layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)

Abstract

本发明涉及一种密度可调的多层周期结构,该周期结构包括中心薄膜或者板基体层(1)、嵌入的块体(2)、外侧薄膜或者板基体层(3);其中,中心薄膜或者板基体层(1)位于中间层,在中心薄膜或者板基体层(1)的两面设有外侧薄膜或者板基体层(3),在外侧薄膜或者板基体层(3)中均匀设有整体周期布置的嵌入的块体(2),由此堆叠成多层周期结构。将该多层周期结构固定在刚度较大的框架上施加预拉伸,可以调整该周期结构的密度,从而改变周期结构的物理参数,实现对周期结构带隙的主动控制。可应用于减振隔振领域。与传统的主动、被动隔振相比,这种周期结构具有质量轻、隔振频率宽、可靠性高等优点,同时能够对带隙范围进行主动控制。

Description

一种密度可调的多层周期结构
技术领域
本发明涉及一种周期结构,特别是涉及一种密度可调的多层周期结构。
背景技术
周期结构又称声子晶体,声子晶体中禁带形成的机制主要有两种,即布拉格散射机制和局域共振机制。基于这两种机制的声子晶体又分别称为布拉格散射型声子晶体和局域共振型声子晶体。当弹性波在周期结构中传播时,在周期界面上弹性波会发生散射。当弹性波波长可与结构周期尺寸相比拟时,前行波与反向波发生相消干涉,而这种相消干涉在很大程度上可以使形波衰减,从而使某些频率的弹性波无法传播。这种禁带机制被称为布拉格散射型。布拉格散射型禁带的波长与结构尺寸量级相当。与布拉格散射型声子晶体不同,局域共振性声子晶体在基体中引入局域共振单元。局域共振单元可以布置在基体内部,也可以在基体表面;此外,局域共振单元的分布没有严格的周期性限制。当入射波的频率接近局域共振单元的共振频率时,共振单元的强共振模式与基体的本征模态相互作用,通过发生相互排斥来打开禁带。对于局域共振型禁带,其对应的波长可以远大于结构尺寸,因而能突破布拉格散射型声子晶体在低频应用中对结构尺寸的限制。
周期结构的带隙特性可以实现减振降噪。可以从抑制振源强度、隔振、消振三个方面达到减振降噪的目的。通过借鉴声子晶体的周期性改进振动源的设计,可以得到一种具有带隙特性的振源。在隔振方面,可以利用声子晶体结构的隔振器进行主动隔振或被动隔振,以此实现振动的有效抑制甚至隔离。采用局域共振型声子晶体的物理机制,通过在梁板类结构上附加周期性振子结构,吸收振动系统的动能。减振降噪对于高精密机械加工有重要意义,可以为高精密机械加工系统提供无振动加工环境,保证较高的加工精度;也可以为仪器设备提供没有振动的工作环境,从而提高工作时的精度,延长它们的使用寿命。
早先设计的周期结构一经制造后,其工作性能就固定了。若要改变其功能,比如改变工作频率或切换工作状态等,则需要重新设计与制造。因此,为了随时动态地调控周且结构的性能,人们开始研究主动可调周期结构。可调周期结构通过施加外加场(比如电、磁、声、光、热以及机械场等)来改变周期结构的性质,进而动态地调控其性能,比如改变或拓宽工作频段等。可调周期结构因其展现出的美妙应用前景,是目前声子晶体与超材料领域最活跃的研究课题之一,相应的研究成果能为众多工程技术的发展起到引领的作用。
发明内容
技术问题:本发明的目的是提供一种密度可调的多层周期结构。通过将多层内部局部均匀整体周期布置有硬质块体的薄膜或者板基体层堆叠起来,并夹在中心基体层的两侧,组成一种多层周期结构。通过固定在刚度较大的框架上施加预拉伸,可以调整该周期结构的密度,从而改变周期结构的物理参数,实现对周期结构带隙的主动控制。在带隙频率范围内的振动形式不能通过该周期结构板,因此可应用于减振隔振领域。
技术方案:本发明是一种密度可调的多层周期结构,该周期结构包括中心薄膜或者板基体层、嵌入的块体、外侧薄膜或者板基体层;其中,中心薄膜或者板基体层位于中间层,在中心薄膜或者板基体层的两面设有外侧薄膜或者板基体层,在外侧薄膜或者板基体层中均匀设有整体周期布置的嵌入的块体,由此堆叠成多层周期结构。
所述嵌入的块体是立体的几何形状。
所述立体的立体的几何形状是球体,圆柱体或长方体。
所述嵌入的块体在外侧薄膜或者板基体上局部均匀整体周期性结构布置,局部均匀布置的形状是圆形,长方形,三角形,星形,圆环形,梯形;而组成周期性结构的最小的重复单元称为单胞,各单胞之间的排列形状可以是正方形、三角形或其他多边形。
所述嵌入的块体,其同层的形状、材料、大小和排列布置形式相同;而不同层的嵌入的块体的形状、材料、大小和排列布置方式相同或不相同。
所述中心薄膜或者板基体层、外侧薄膜或者板基体层层与层之间的厚度相同或不同;
所述嵌入的块体,其材料是金属、混凝土、陶瓷或纤维增强复合材料,中心薄膜或者板基体层以及外侧薄膜或者板基体层的材料是橡胶或者环氧树脂。
所述中心薄膜或者板基体层和外侧薄膜或者板基体层之间以及外侧薄膜或者板基体层相互之间采用粘贴的连接方式形成多层周期结构。
有益效果:与现有技术相比,本发明具有以下优势:
1)该周期结构可以用于减振降噪,利用声子晶体的带隙特性可以阻止特定频率范围内弹性波或声波的传播,达到减振降噪的目的。低频布拉格散射要求声子晶体结构很大、质量很重,而该局域共振禁带由于能打破质量密度定律,因此可突破低频布拉格散射禁带对结构尺寸的约束。
2)传统的弹性波或声波校准元件尺寸大且造价高,与传统的隔音材料相比,该多层周期结构具有频率可设计、针对性强、尺寸小、效果好等优点。同时制作方便,便于标准化生产。
3)传统的周期结构基于被动调控设计,在生产制备完成后就不能改变,不能对外界环境的改变而产生变化,难以灵活适应不同的工作环境。而该多层周期结构可以通过施加预拉伸实现主动调控,改变周期结构的密度,实时、主动地改变周期结构的工作性能,从而使其能灵活地应对工作环境的改变,改变工作状态(工作频率),或切换工作模式。
附图说明
图1为本发明密度可调的多层周期结构整体图;
图2为本发明密度可调的多层周期结构爆炸图;
图3为本发明上下层嵌入的块体均为小球的周期结构的单胞爆炸图;
图4为本发明上下层嵌入的块体均为长方体的周期结构的单胞爆炸图;
图5为本发明嵌入的块体上层为小球而下层为长方体的周期结构的单胞爆炸图;
图6为本发明各单胞之间按照正三角形排列的周期结构的俯视透视图;
图7为本发明施加预拉伸前后单胞结构变化示意图;
图中有:中心薄膜或者板基体层1、嵌入的块体2、外侧薄膜或者板基体层3。
具体实施方式
本发明的形成方法如下:
m行n列的局部均匀的硬质小块体团周期性或者拟周期性排列嵌入在外层薄膜或者板基体上;硬质小块体可以是球体,圆柱,长方体或者多边体,局部均匀布置的形状可以是圆形、长方形、梯形等几何形状,周期结构最小的重复单元称为单胞,各单胞之间的排列方式可以是正方形,三角形或其他多边形。其同层的形状、材料、大小和排列布置形式相同。而不同层的硬质块体的形状、材料、大小和排列布置方式可以相同也可以不相同;薄膜或者板基体的材料可以是橡胶或者环氧树脂,硬质小块体的材料可以是金属、混凝土、陶瓷或纤维增强复合材料。多层的周期结构薄膜或者板基体之间通过粘贴的方式进行连接,由此形成一种密度可调的多层周期结构。
下面结合附图,通过实施例对本发明作进一步详细说明:
实施例1:
如图1、2、3、7所示,本实施例为一种密度可调的多层周期结构。硬质小块体采用的是小球体,嵌入在上下两外侧的薄膜或者板基体上,局部按照圆形均匀布置,整体布置m行n列这样的圆形区域,各单胞之间采用正方形排列,晶格常数设置为a1。在中间层布置一块不含块体的薄膜或者板作为基体,多层薄膜或者板基体通过粘贴的方式连接在一起,形成密度可调的多层周期结构。
实施例2:
如图1、4所示,本实施例为一种密度可调的多层周期结构。硬质小块体采用的是小长方体,嵌入在上下两外侧的薄膜或者板基体上,局部按照正方形均匀布置,整体布置m行n列这样的正方形区域,各单胞之间采用正方形排列,晶格常数设置为a1。在中间层布置一块不含块体的薄膜或者板作为基体,多层薄膜或者板基体通过粘贴的方式连接在一起,形成密度可调的多层周期结构。
实施例3:
如图1、5所示,本实施例为一种密度可调的多层周期结构。上层硬质小块体采用的是小球体,局部按照圆形布置,整体布置m行n列这样的圆形区域,各单胞之间采用正方形排列,晶格常数设置为a1,嵌入在上侧的薄膜或者板基体上;下层硬质小块体采用的是小长方体,局部按照正方形布置,整体布置m行n列这样的正方形区域,各单胞之间采用正方形排列,晶格常数设置为a2,嵌入在下侧的薄膜或者板基体上。在中间层布置一块不含块体的薄膜或者板作为基体,多层薄膜或者板基体通过粘贴的方式连接在一起,形成密度可调的多层周期结构。
实施例4:
如图1、6所示,本实施例为一种密度可调的多层周期结构。硬质小块体采用的是小球体,嵌入在上下两外侧的薄膜或者板基体上,局部按照圆形均匀布置,整体布置m行n列这样的圆形区域,各单胞之间采用正三角形排列,晶格常数设置为a1。在中间层布置一块不含块体的薄膜或者板作为基体,多层薄膜或者板基体通过粘贴的方式连接在一起,形成密度可调的多层周期结构。
实施例5:
如图7所示,为施加双向预拉伸前后单胞结构的变化示意图,其中F1>F2。预拉伸后,原来嵌有小球体的圆形区域被拉伸成为椭圆形区域。嵌入球体的区域密度发生了变化,对于周期结构而言,其带隙范围也会发生相应的变化。因此可以通过预拉伸而主动调控该多层周期结构的带隙范围。
一旦制造完成,传统的周期结构—般只有一个固定的工作频率区间。该密度可调的多层周期结构可以适应不同的工作需求或灵活应对环境的变化。且与传统的周期结构相比,这种密度可调的多层周期结构具有高可延展性和可重构性的特点,并且易于制造。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种密度可调的多层周期结构,其特征在于,该周期结构包括中心薄膜或者板基体层(1)、嵌入的块体(2)、外侧薄膜或者板基体层(3);其中,中心薄膜或者板基体层(1)位于中间层,在中心薄膜或者板基体层(1)的两面设有外侧薄膜或者板基体层(3),在外侧薄膜或者板基体层(3)中均匀设有整体周期布置的嵌入的块体(2),由此堆叠成多层周期结构。
2.根据权利要求1所述的一种密度可调的多层周期结构,其特征在于,所述嵌入的块体(2)是立体的几何形状。
3.根据权利要求2所述的一种密度可调的多层周期结构,其特征在于,所述立体的立体的几何形状是球体,圆柱体或长方体。
4.根据权利要求1所述的一种密度可调的多层周期结构,其特征在于,所述嵌入的块体(2)在外侧薄膜或者板基体(3)上局部均匀整体周期性结构布置,局部均匀布置的形状是圆形,长方形,三角形,星形,圆环形,梯形;而组成周期性结构的最小的重复单元称为单胞,各单胞之间的排列形状可以是正方形、三角形或其他多边形。
5.根据权利要求4所述的一种密度可调的多层周期结构,其特征在于,所述嵌入的块体(2),其同层的形状、材料、大小和排列布置形式相同;而不同层的嵌入的块体(2)的形状、材料、大小和排列布置方式相同或不相同。
6.根据权利要求1所述的一种密度可调的多层周期结构,其特征在于,所述中心薄膜或者板基体层(1)、外侧薄膜或者板基体层(3)层与层之间的厚度相同或不同。
7.根据权利要求1所述的一种密度可调的多层周期结构,其特征在于,所述嵌入的块体(2),其材料是金属、混凝土、陶瓷或纤维增强复合材料,中心薄膜或者板基体层(1)以及外侧薄膜或者板基体层(3)的材料是橡胶或者环氧树脂。
8.根据权利要求1所述的一种密度可调的多层周期结构,其特征在于,所述中心薄膜或者板基体层(1)和外侧薄膜或者板基体层(3)之间以及外侧薄膜或者板基体层(3)相互之间采用粘贴的连接方式形成多层周期结构。
CN201910552979.6A 2019-06-25 2019-06-25 一种密度可调的多层周期结构 Pending CN110332267A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910552979.6A CN110332267A (zh) 2019-06-25 2019-06-25 一种密度可调的多层周期结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910552979.6A CN110332267A (zh) 2019-06-25 2019-06-25 一种密度可调的多层周期结构

Publications (1)

Publication Number Publication Date
CN110332267A true CN110332267A (zh) 2019-10-15

Family

ID=68142360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910552979.6A Pending CN110332267A (zh) 2019-06-25 2019-06-25 一种密度可调的多层周期结构

Country Status (1)

Country Link
CN (1) CN110332267A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111667807A (zh) * 2020-05-27 2020-09-15 武汉大学 复合式声子晶体结构及其制备方法
CN116951052A (zh) * 2023-09-20 2023-10-27 浙江大学 自适应调控的主动软弹性波声子晶体隔振系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996395A (zh) * 2014-05-29 2014-08-20 西安交通大学 一种弹性薄膜型低频隔声超材料结构
CN103996396A (zh) * 2014-05-29 2014-08-20 西安交通大学 一种轻质二组元软性薄层局域共振声学材料结构
CN105350403A (zh) * 2015-09-30 2016-02-24 同济大学 具有周期性结构特征的轨道板及轨道板减振系统
CN105840710A (zh) * 2016-05-27 2016-08-10 西南交通大学 一种声学超材料悬置隔振结构
CN105951541A (zh) * 2016-06-16 2016-09-21 同济大学 一种减振结构、减振垫及其使用方法
CN205845511U (zh) * 2016-05-27 2016-12-28 西南交通大学 一种缺陷态结构声学超材料板
CN108467225A (zh) * 2018-03-14 2018-08-31 东南大学 一种三元复合材料地铁减振道床制作方法
CN211525405U (zh) * 2019-06-25 2020-09-18 东南大学 一种密度可调的多层周期结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996395A (zh) * 2014-05-29 2014-08-20 西安交通大学 一种弹性薄膜型低频隔声超材料结构
CN103996396A (zh) * 2014-05-29 2014-08-20 西安交通大学 一种轻质二组元软性薄层局域共振声学材料结构
CN105350403A (zh) * 2015-09-30 2016-02-24 同济大学 具有周期性结构特征的轨道板及轨道板减振系统
CN105840710A (zh) * 2016-05-27 2016-08-10 西南交通大学 一种声学超材料悬置隔振结构
CN205845511U (zh) * 2016-05-27 2016-12-28 西南交通大学 一种缺陷态结构声学超材料板
CN105951541A (zh) * 2016-06-16 2016-09-21 同济大学 一种减振结构、减振垫及其使用方法
CN108467225A (zh) * 2018-03-14 2018-08-31 东南大学 一种三元复合材料地铁减振道床制作方法
CN211525405U (zh) * 2019-06-25 2020-09-18 东南大学 一种密度可调的多层周期结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111667807A (zh) * 2020-05-27 2020-09-15 武汉大学 复合式声子晶体结构及其制备方法
CN111667807B (zh) * 2020-05-27 2023-06-02 武汉大学 复合式声子晶体结构及其制备方法
CN116951052A (zh) * 2023-09-20 2023-10-27 浙江大学 自适应调控的主动软弹性波声子晶体隔振系统

Similar Documents

Publication Publication Date Title
Cao et al. Disordered elastic metasurfaces
Liu et al. Designing 3D digital metamaterial for elastic waves: from elastic wave polarizer to vibration control
Gao et al. Acoustic metamaterials for noise reduction: a review
Zhou et al. Actively controllable flexural wave band gaps in beam-type acoustic metamaterials with shunted piezoelectric patches
Ge et al. Experimental observation of acoustic Weyl points and topological surface states
Huang et al. Membrane-and plate-type acoustic metamaterials
Tian et al. Elastic wave propagation in the elastic metamaterials containing parallel multi-resonators
Torrent et al. Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials<? format?> for Engineering Acoustic or Electromagnetic Waves
Oh et al. Adjoining of negative stiffness and negative density bands in an elastic metamaterial
Gao et al. Low frequency band gaps below 10 Hz in radial flexible elastic metamaterial plate
CN110332267A (zh) 一种密度可调的多层周期结构
Yao et al. A metaplate for complete 3D vibration isolation
Alam et al. Magnetically tunable longitudinal wave band gaps in hard-magnetic soft laminates
Xue et al. Tunable nonlinear band gaps in a sandwich-like meta-plate
Li et al. Local resonance–Helmholtz lattices with simultaneous solid-borne elastic waves and air-borne sound waves attenuation performance
Ma et al. Ultralight plat-type vibration damper with designable working bandwidth and strong multi-peak suppression performance
Misseroni et al. Omnidirectional flexural invisibility of multiple interacting voids in vibrating elastic plates
Yang et al. Tunable band gap and wave guiding in periodic grid structures with thermal sensitive materials
De Ponti et al. Tailored topological edge waves via chiral hierarchical metamaterials
Wang et al. Manufacturing of membrane acoustical metamaterials for low frequency noise reduction and control: a review
Wang et al. Bandgap properties of two-layered locally resonant phononic crystals
Zhang et al. Ultra-compact metafence to block and channel mechanical waves
Ahmed et al. Wave propagation in metamaterial using multiscale resonators by creating local anisotropy
Xiong et al. A study on low-frequency vibration mitigation by using the metamaterial-tailored composite concrete-filled steel tube column
Zhong et al. Metamaterial I-girder for vibration absorption of composite cable-stayed bridge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination