CN110306522A - 一种爆炸挤淤填石下陷深度预测方法 - Google Patents

一种爆炸挤淤填石下陷深度预测方法 Download PDF

Info

Publication number
CN110306522A
CN110306522A CN201910516124.8A CN201910516124A CN110306522A CN 110306522 A CN110306522 A CN 110306522A CN 201910516124 A CN201910516124 A CN 201910516124A CN 110306522 A CN110306522 A CN 110306522A
Authority
CN
China
Prior art keywords
depth
sagging
explosion
density
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910516124.8A
Other languages
English (en)
Other versions
CN110306522B (zh
Inventor
常方强
梁康康
霍宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201910516124.8A priority Critical patent/CN110306522B/zh
Publication of CN110306522A publication Critical patent/CN110306522A/zh
Application granted granted Critical
Publication of CN110306522B publication Critical patent/CN110306522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/08Improving by compacting by inserting stones or lost bodies, e.g. compaction piles

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明公开了一种爆炸挤淤填石下陷深度预测方法,包括:用于获取块石平均等效粒径d50;用于获取填石密度ρ0;用于获取地基土在不同深度处的密度ρ、粘聚力c和内摩擦角计算爆炸挤淤后地基土的密度ρ'、粘聚力c'和内摩擦角计算填石的下陷压力f;计算地基不同深度处的下陷抗力pu;设深度zi,该深度zi位于埋设的炸药药包以下,若在该深度zi以上的下陷压力f均大于下陷抗力pu,即f>pu,而在该深度zi以下的下陷压力f不大于下陷抗力pu,即f≤pu,则深度zi为填石的最大下陷深度。它具有如下优点:能预测爆炸挤淤处理地基填石下陷深度,且预测简单、流程性强和结果可靠。

Description

一种爆炸挤淤填石下陷深度预测方法
技术领域
本发明涉及基础建设领域,尤其涉及一种用于预测爆炸挤淤处理地基填石下陷深度的方法。
背景技术
爆炸挤淤是处理深厚软土,特别是水下软土地基较为经济和实用的方法。但对于深厚软土,特别是沿海港湾淤泥厚达30m,该项处理技术仍存在一些问题,比如深厚软土底部难以完全置换,即存在泥石混合层,或存在一定深度的未置换软土层,处理效果欠佳。对于泥石混合层,深度越大,填石的置换率越低,下部填石在自重作用下随着时间仍缓慢下陷,使得混合层的地基承载力不断提高。填石的最终下陷深度除了采用钻探和物探等方法确定外,目前尚无方式进行预测。
发明内容
本发明提供了一种爆炸挤淤填石下陷深度预测方法,其克服了背景技术中爆炸挤淤填石下陷深度预测所存在的不足。
本发明解决其技术问题的所采用的技术方案是:
一种爆炸挤淤填石下陷深度预测方法,包括:
步骤(1),获取块石平均等效粒径d50
步骤(2),获取填石密度ρ0
步骤(3),获取地基土在不同深度处的密度ρ、粘聚力c和内摩擦角
步骤(4),计算爆炸挤淤后地基土的密度ρ'、粘聚力c'和内摩擦角其中,ρ'=αρ、c'=βc、α为土体爆炸挤淤密度增大系数,β为挤淤后粘聚力衰减系数,η为挤淤后内摩擦角衰减系数;
步骤(5),计算填石的下陷压力f;
其中,g为重力加速度;
步骤(6),计算地基不同深度处的下陷抗力pu
pu=0.3ρ'gd50Nγ+0.4c'Nc
步骤(7),设深度zi,该深度zi位于埋设的炸药药包以下,若在该深度zi以上的下陷压力f均大于下陷抗力pu,即f>pu,而在该深度zi以下的下陷压力f不大于下陷抗力pu,即f≤pu,则深度zi为填石的最大下陷深度。
一实施例之中:该步骤(2)中,通过称重获得填石质量,通过将填石浸入水中获得体积,通过质量和体积计算填石密度。
一实施例之中:该步骤(3)中,地基在尚未爆炸挤淤施工前,在现场采用钻机取土样,将土样送回实验室进行土工试验,每隔预定深度测试一组土体性质,土体性质包括密度、粘聚力和内摩擦角,其中密度采用环刀法测试,粘聚力和内摩擦角采用直剪试验测试。
一实施例之中:该步骤(3)中只选择获取埋设的炸药药包之下的地基土的密度ρ、粘聚力c和内摩擦角
本技术方案与背景技术相比,它具有如下优点:
本技术方案能预测爆炸挤淤处理地基填石下陷深度,且预测简单、流程性强和结果可靠。
附图说明
下面结合附图和具体实施方式对本发明作进一步说明。
图1是具体实施方式的地基土密度ρ随着深度变化关系图。
图2是具体实施方式的地基土粘聚力c随着深度变化关系图。
图3是具体实施方式的地基土内摩擦角随着深度变化关系图。
图4是具体实施方式的地基土每个深度处的下陷压力和下陷抗力的关系图。
具体实施方式
一种爆炸挤淤泥石混合层填石下陷深度的预测方法,它包括:
步骤(1),获取块石的平均等效粒径d50。利用大型筛分实验仪器,如电动振动筛(型号BZS-500),对不少于预定重量,如20kg的典型块石样品进行筛分实验,根据筛分实验结果,绘制块石的颗粒累积级配曲线(粒径累积曲线),用于表示块石的粒径组成,以及求取平均粒径d50;根据曲线特征,确定块石的平均等效粒径d50,其单位为m。
步骤(2),获取填石的密度ρ0。利用称重和测体积的方法,得到填石密度,其中体积采用将填石浸入水中获得,根据水增大的体积得到密度ρ0,其单位为g/cm3
步骤(3),获取地基土在不同深度处的密度ρ、粘聚力c和内摩擦角其单位分别为g/cm3、kPa和度。根据需要,可只选择获取埋设的炸药药包之下的地基土的密度ρ、粘聚力c和内摩擦角
地基在尚未爆炸挤淤施工前,在现场采用钻机取土样,将土样送回实验室进行土工试验,每隔10cm深度测试一组土体性质,包括密度、粘聚力和内摩擦角,其中密度采用环刀法测试,粘聚力和内摩擦角采用直剪试验测试。
步骤(4),计算爆炸挤淤后地基土的密度ρ'、粘聚力c'和内摩擦角其单位分别为g/cm3、kPa和度。
其中,ρ'=αρ、c'=βc、α为土体爆炸挤淤密度增大系数,取1-1.2,如选择1.1;β为挤淤后粘聚力衰减系数,取0.6-0.8,如取0.7;η为挤淤后内摩擦角衰减系数,取0.8-1,如取0.9。
步骤(5),计算填石的下陷压力f,单位为kPa。
其中,g为重力加速度。
步骤(6),计算地基不同深度处的下陷抗力pu,单位为kPa,由力学平衡原理得到。
pu=0.3ρ'gd50Nγ+0.4c'Nc
步骤(7),设深度zi,该深度zi位于埋设的炸药药包以下,若在该深度zi以上的下陷压力f均大于下陷抗力pu,即f>pu,而在该深度zi以下的下陷压力f不大于下陷抗力pu,即f≤pu,则深度zi为填石的最大下陷深度。
实施案例
福建省福州市连江县境内罗源湾围堤软基处理爆炸挤淤工程,泥面以上围堤高8m,顶宽9.4m,采用斜坡堤的结构型式。该围堤地质条件较差,存在厚达30m的淤泥层,地层状况为(以泥面为深度零点):①0~3m,淤泥混砂,灰黄色;②3~30m,淤泥,深灰色;③30~39m,粉质粘土,黄褐色,上部夹少量砂土;④39m以下,粉质粘土,夹碎石。
在爆炸挤淤过程中,炸药布设在堤头位置,布药宽度为42m,药包平均埋深为15m,药包间距为2m,单药包重量为36kg。
现场取典型块石样品50kg,进行大型筛分试验,得到块石的平均等效粒径d50为0.21m;对块石的密度进行测试,得到其密度ρ0为2.7g/cm3;利用钻机在爆炸挤淤实施前,现场取土样进行室内土工参数测试,由于本工程中药包埋深为15m,所以只统计出15m深度以下土体的密度ρ、粘聚力c和内摩擦角其中,15~17m深度范围内,密度ρ、粘聚力c和内摩擦角随着深度的变化关系分别如图1~图3所示。采用上述方法计算下陷压力及分别计算每个深度处的下陷抗力,结果如图4所示,可以看出,在深度16.8m处以上,下陷压力均大于下陷抗力,而在深度16.8m处以下,下陷压力均小于下陷抗力,块石在此深度处不会发生下陷,故该工程中,爆炸挤淤过后,块石仍会下陷1.8m,即最大下陷深度为16.8m。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (4)

1.一种爆炸挤淤填石下陷深度预测方法,其特征在于:包括:
步骤(1),获取块石平均等效粒径d50
步骤(2),获取填石密度ρ0
步骤(3),获取地基土在不同深度处的密度ρ、粘聚力c和内摩擦角
步骤(4),计算爆炸挤淤后地基土的密度ρ'、粘聚力c'和内摩擦角其中,ρ'=αρ、c'=βc、α为土体爆炸挤淤密度增大系数,β为挤淤后粘聚力衰减系数,η为挤淤后内摩擦角衰减系数;
步骤(5),计算填石的下陷压力f;
其中,g为重力加速度;
步骤(6),计算地基不同深度处的下陷抗力pu
pu=0.3ρ'gd50Nγ+0.4c'Nc
步骤(7),设深度zi,该深度zi位于埋设的炸药药包以下,若在该深度zi以上的下陷压力f均大于下陷抗力pu,即f>pu,而在该深度zi以下的下陷压力f不大于下陷抗力pu,即f≤pu,则深度zi为填石的最大下陷深度。
2.根据权利要求1所述的一种爆炸挤淤填石下陷深度预测方法,其特征在于:该步骤(2)中,通过称重获得填石质量,通过将填石浸入水中获得体积,通过质量和体积计算填石密度。
3.根据权利要求1所述的一种爆炸挤淤填石下陷深度预测方法,其特征在于:该步骤(3)中,地基在尚未爆炸挤淤施工前,在现场采用钻机取土样,将土样送回实验室进行土工试验,每隔预定深度测试一组土体性质,土体性质包括密度、粘聚力和内摩擦角,其中密度采用环刀法测试,粘聚力和内摩擦角采用直剪试验测试。
4.根据权利要求1所述的一种爆炸挤淤填石下陷深度预测方法,其特征在于:该步骤(3)中只选择获取埋设的炸药药包之下的地基土的密度ρ、粘聚力c和内摩擦角
CN201910516124.8A 2019-06-14 2019-06-14 一种爆炸挤淤填石下陷深度预测方法 Active CN110306522B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910516124.8A CN110306522B (zh) 2019-06-14 2019-06-14 一种爆炸挤淤填石下陷深度预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910516124.8A CN110306522B (zh) 2019-06-14 2019-06-14 一种爆炸挤淤填石下陷深度预测方法

Publications (2)

Publication Number Publication Date
CN110306522A true CN110306522A (zh) 2019-10-08
CN110306522B CN110306522B (zh) 2021-03-09

Family

ID=68077135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910516124.8A Active CN110306522B (zh) 2019-06-14 2019-06-14 一种爆炸挤淤填石下陷深度预测方法

Country Status (1)

Country Link
CN (1) CN110306522B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432882A (zh) * 2020-11-18 2021-03-02 华侨大学 一种近海水下高压稀释淤泥孔稳定角预测方法
CN115389079A (zh) * 2022-09-29 2022-11-25 福建工程学院 一种深海锰结核上扬力预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477271A (zh) * 2003-03-13 2004-02-25 江礼茂 控制加载爆炸挤淤置换法
CN203021982U (zh) * 2012-12-25 2013-06-26 上海城建市政工程(集团)有限公司 用于地下深层土体位移的实时监测系统
US20150096368A1 (en) * 2013-10-04 2015-04-09 Matthew O'Brien System, Method, and Apparatus for Determining Soil Density
CN105926569A (zh) * 2016-04-28 2016-09-07 河北地质大学 一种基于沉降监测数据的煤矿老采空区场地稳定性定量评价方法
CN108470225A (zh) * 2018-03-21 2018-08-31 广东省交通规划设计研究院股份有限公司 路基的沉降信息预测方法和预测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477271A (zh) * 2003-03-13 2004-02-25 江礼茂 控制加载爆炸挤淤置换法
CN203021982U (zh) * 2012-12-25 2013-06-26 上海城建市政工程(集团)有限公司 用于地下深层土体位移的实时监测系统
US20150096368A1 (en) * 2013-10-04 2015-04-09 Matthew O'Brien System, Method, and Apparatus for Determining Soil Density
CN105926569A (zh) * 2016-04-28 2016-09-07 河北地质大学 一种基于沉降监测数据的煤矿老采空区场地稳定性定量评价方法
CN108470225A (zh) * 2018-03-21 2018-08-31 广东省交通规划设计研究院股份有限公司 路基的沉降信息预测方法和预测系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432882A (zh) * 2020-11-18 2021-03-02 华侨大学 一种近海水下高压稀释淤泥孔稳定角预测方法
CN115389079A (zh) * 2022-09-29 2022-11-25 福建工程学院 一种深海锰结核上扬力预测方法

Also Published As

Publication number Publication date
CN110306522B (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN107543775B (zh) 基于分形理论确定堆石料填筑指标及现场填筑质量检测的方法
CN110130300B (zh) 采用剪切波速确定夯/压实填土层承载力特征值的方法
Simonini et al. Use of piezocone to predict maximum stiffness of Venetian soils
CN107807520B (zh) 一种确定粗粒料填筑指标与现场质量控制的方法
Zhang et al. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows–‘sub-bottom sediment pump action’
CN110306522A (zh) 一种爆炸挤淤填石下陷深度预测方法
He et al. Model test of the influence of cyclic water level fluctuations on a landslide
Liu et al. Field and laboratory resistivity monitoring of sediment consolidation in China's Yellow River estuary
CN107858536B (zh) 离子型稀土全覆式矿山原地浸矿孔网参数设计方法
CN106970430B (zh) 被断层错动后盖层重新形成封闭能力时间的定量评价方法
CN107858537B (zh) 离子型稀土裸脚式矿山原地浸矿孔网参数设计方法
Åhnberg et al. Strength degradation of clay due to cyclic loadings and enforced deformation
Bo et al. The Changi east reclamation project in Singapore
Zhang et al. Centrifuge modeling test on reactivation of ancient landslide under sudden drop of reservoir water and rainfall
Liu et al. Modelling of landslide runout in sensitive clays
Dipova The engineering properties of tufa in the Antalya area, SW Turkey
CN110130301B (zh) 一种确定夯/压实填土层承载力特征值的方法
CN113378275A (zh) 一种预制桩端部遇孤石时打桩力预测方法
Maulana et al. Liquefaction potential analysis on runway construction based on soil engineering properties
Zimbardo et al. The safety of an industrial archaeological heritage: The underground quarries in Marsala (Sicily)
Murao et al. PROGRESSIVE FAILURE OF UNSATURATED FILL SLOPECAUSED BY CUMULATIVE DAMAGE UNDER SEEPAGE SURFACE
CN109975523B (zh) 一种爆炸挤淤泥石混合层工程性质预测方法
Cubrinovski et al. Effects of liquefaction on seismic response of a storage tank on pile foundations
CN112432882B (zh) 一种近海水下高压稀释淤泥孔稳定角预测方法
Voznesenskii et al. Seismic Fluidification of Soil in the Bed of the Kazanskaya Riviera Tower.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant