CN110302777A - 钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中的应用 - Google Patents

钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中的应用 Download PDF

Info

Publication number
CN110302777A
CN110302777A CN201810229551.3A CN201810229551A CN110302777A CN 110302777 A CN110302777 A CN 110302777A CN 201810229551 A CN201810229551 A CN 201810229551A CN 110302777 A CN110302777 A CN 110302777A
Authority
CN
China
Prior art keywords
palladium
palladium nano
particles
crystal
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810229551.3A
Other languages
English (en)
Inventor
巩金龙
董浩
张雷
赵志坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810229551.3A priority Critical patent/CN110302777A/zh
Publication of CN110302777A publication Critical patent/CN110302777A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中的应用,通过晶种生长法,通过调节前驱体浓度的用量,获得不同的钯纳米颗粒,再与活性炭进行材料复合,最后作为电极材料,在电催化二氧化碳还原中的应用。本发明制备的材料具有二氧化碳催化还原性能优越,具有一定工业价值,有效缓解当今化石燃料短缺,环境污染严重问题。

Description

钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中 的应用
技术领域
本发明涉及二氧化碳电催化阴极产一氧化碳电极领域,更加具体地说,具体为一种高指数晶面钯金属在二氧化碳电催化中的用途。
背景技术
从工业革命到现代社会,随着人类生产力的提高,对于煤、石油等传统化石能源的消耗越来越多,化石燃料的大量使用,不但造成了能源危机,同时在燃烧过程中产生大量二氧化碳。二氧化碳在大气中的含量已经从19世纪的280ppm提高到了目前的385ppm,专家预计到2100年,大气中的二氧化碳含量将达到600ppm,二氧化碳的迅速增加,会导致全球气候变暖,引发海平面上升和土地荒漠化1,2。那么利用风能、水能、太阳能等可再生能源发电来将二氧化碳转化成有价值的能源,是解决这一难题的有效方法3-5。但是由于二氧化碳本身的化学稳定性,很难被活化,导致所用的Au6,7,Ag8,Cu9,目前的转化效率不是很高。因此,寻找价格相对较低,同时活性高的金属催化剂是目前研究的热点。
金属Pd具有一定的二氧化碳电催化活性,收到广泛关注,比如Bao课题组通过制备Pd的金属颗粒10,发现当粒径在3nm左右时,催化活性很高,但是受到粒径影响很大,当粒径大时,活性急剧下降,而小粒径的钯颗粒,在反应过程中,很容易发生团聚现象,稳定性差,很难保持长时间的使用。对于研究二氧化碳的电催化的影响,还是简单停留在粒径和形貌上,没有从更深入的方面进入研究。通过合理设计催化剂,对于钯金属表面的有效调控,将大大提升催化剂CO2电催化活性,参考文献如下:
1.Zhang,L.,Zhao,Z.J.,Gong,J.,Nanostructured Materials forHeterogeneous Electrocatalytic CO2 Reduction and their Related ReactionMechanisms.Angew.Chem.Int.Ed.2017,56,11326-11353
2.Lu,Q.,Jiao,F.,Electrochemical CO2 reduction:Electrocatalyst,reaction mechanism,and process engineering.Nano Energy 2016,29,439-456.
3.Chen,Y.,Li,C.W.,Kanan,M.W.,Aqueous CO2 reduction at very lowoverpotential on oxide-derived Au nanoparticles.J.Am.Chem.Soc.2012,134,19969-19972.
4.Huang,H.,Jia,H.,Liu,Z.,Gao,P.,Zhao,J.,Luo,Z.,Yang,J.,Zeng,J.,Understanding of Strain Effects in the Electrochemical Reduction of CO2:UsingPd Nanostructures as an Ideal Platform.Angew.Chem.Int.Ed.2017,56,3594-3598.
5.Luc,W.,Collins,C.,Wang,S.,Xin,H.,He,K.,Kang,Y.,Jiao,F.,Ag-SnBimetallic Catalyst with a Core-Shell Structure for CO2Reduction.J.Am.Chem.Soc.2017,139,1885-1893.
6.Mistry,H.,Reske,R.,Zeng,Z.,Zhao,Z.J.,Greeley,J.,Strasser,P.,Cuenya,B.R.,Exceptional size-dependent activity enhancement in the electroreductionof CO2 over Au nanoparticles.J.Am.Chem.Soc.2014,136,16473-16476.
7.Zhu,W.,Zhang,Y.J.,Zhang,H.,Lv,H.,Li,Q.,Michalsky,R.,Peterson,A.A.,Sun,S.,Active and selective conversion of CO2 to CO on ultrathin Aunanowires.J.Am.Chem.Soc.2014,136,16132-16135.
8.Kim,C.,Jeon,H.S.,Eom,T.,Jee,M.S.,Kim,H.,Friend,C.M.,Min,B.K.,Hwang,Y.J.,Achieving Selective and Efficient Electrocatalytic Activity for CO2Reduction Using Immobilized Silver Nanoparticles.J.Am.Chem.Soc.2015,137,13844-13850.
9.Reske,R.,Mistry,H.,Behafarid,F.,Roldan Cuenya,B.,Strasser,P.,Particle size effects in the catalytic electroreduction of CO2 on Cunanoparticles.J.Am.Chem.Soc.2014,136,6978-6986.
10.Gao,D.,Zhou,H.,Wang,J.,Miao,S.,Yang,F.,Wang,G.,Wang,J.,Bao,X.,Size-dependent electrocatalytic reduction of CO2 over Pdnanoparticles.J.Am.Chem.Soc.2015,137,4288-4291.
发明内容
本发明的目的在于克服现有技术的不足,提供钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中的应用。
本发明的技术目的通过下述技术方案予以实现:
钯纳米颗粒—活性炭复合材料,由钯纳米颗粒和活性炭组成,采用活性炭加入到分散有钯纳米颗粒的体系中并超声复合。
在上述技术方案中,钯纳米颗粒和活性炭的质量比为1:(1—10),优选1:(4—8)。
在上述技术方案中,钯纳米颗粒为钯立方体纳米晶、内凹钯纳米晶或者八面体钯纳米晶,其中钯立方体纳米晶的边长为20nm—25nm;八面体钯纳米晶的边长为21nm—24nm;内凹钯纳米晶的立方体边长为22nm—26nm,Pd纳米晶在每个面上呈现一个平滑的平面凹陷结构,内凹表面与平面之间的角度为18°,对应的表面是(310)晶面。
在上述技术方案中,活性炭比表面积220—260m2/g,粒径10—30nm。
本发明的钯纳米颗粒—活性炭复合材料,以及钯纳米颗粒(钯立方体纳米晶、内凹钯纳米晶或者八面体钯纳米晶)在电催化二氧化碳还原中的应用,对于内凹钯纳米晶在-0.9V可以达到88-92%,对于钯立方体纳米晶可以达到80.5%-81.5%,对于八面体钯纳米晶可以达到67%-73%。
本发明通过晶种生长法,通过调节前驱体浓度的用量,获得不同配位数表面的催化剂,合成的催化剂颗粒表现出优秀的电催化还原二氧化碳性能。本发明的内凹钯纳米晶的{310}表面具有不饱和配位原子,对于反应过程中的中间步骤有促进作用,促进了吸附态羧基的产生,以及吸附态CO的解析,从而实现了在-0.9V的一氧化碳的法拉第效率达到90.6%。本发明中内凹钯纳米晶可通过晶种生长方法得到,操作简单,制备的材料二氧化碳催化还原性能优越,具有一定工业价值。有效缓解当今化石燃料短缺,环境污染严重问题。
附图说明
图1是本发明实施例1制备的钯立方体纳米晶的TEM照片。
图2是本发明实施例2制备的内凹Pd纳米晶催化剂颗粒的TEM照片。
图3是本发明实施例2制备的内凹Pd纳米晶催化剂颗粒的高倍TEM照片。
图4是本发明实施例3制备的八面体钯纳米晶的TEM照片。
图5是本发明实施例的性能测试曲线图(电压-电流曲线图),其中1为内凹钯纳米晶,2为钯立方体纳米晶,3为八面体钯纳米晶。
图6是本发明实施例的性能测试曲线图(电压-CO法拉第效率曲线图)。
具体实施方式
下面通过具体实施对本发明做进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。聚乙烯吡咯烷酮(数均分子量10000)购买于上海梯希爱药品有限公司;抗坏血酸购买于国药集团,溴化钾、氯化钾、碳酸氢钾购买于天津光复药品有限公司,活性炭购买于美国卡博特公司型号VX-72颗粒状,比表面积254m2/g,粒径30nm,密度256.3g/L,超纯水用实验室超纯水机制备,氯钯酸钠购买于北京百灵威药品平有限公司,甲醛购买于阿尔法艾莎有限公司。
首先,依据参考文献进行钯立方体纳米晶、内凹钯纳米晶和八面体钯纳米晶的制备:
(1)Palladium nanocrystals enclosed by{100}and{111}facets incontrolled proportions and their catalytic activities for formic acidoxidation.Mingshang Jin,Hui Zhang,Zhaoxiong Xi and Younan Xia,EnergyEnviron.Sci.,2012,5,6352.
(2)Synthesis of Pd Nanocrystals Enclosed by{100}Facets and with Sizes<10nm for Application in CO Oxidation.Mingshang Jin1,Hongyang Liu,Hui Zhang,Zhaoxiong Xie,Jingyue Liu and Younan Xia,Nano Res.2011,4(1):83–91.
(3)Palladium Concave Nanocubes with High-Index Facets and TheirEnhanced Catalytic Properties.Mingshang Jin,Hui Zhang,Zhaoxiong Xie andYounan Xia,Angew.Chem.Int.Ed.2011,50,7850–7854.
实施例1钯立方体纳米晶的制备
将105mg聚乙烯吡咯烷酮和60mg抗坏血酸和600mg溴化钾溶解在8ml水中混合均匀,将盛有反应物的玻璃器置于80℃的水浴锅中,再加入含有57mg氯钯酸钠的3ml水溶液,在80℃下搅拌反应3小时,反应结束后,自然冷却至室温20—25摄氏度。将反应后的溶液转移到50mL离心管中,用水清洗三次,每次转速设置为9800r/min,10min。离心清洗后产物备用,如图1所示,制备的立方体钯,可以看到Pd的分散非常均匀,大小相近,立方体的边长在20nm-23nm范围内。
实施例2内凹钯纳米晶的制备
首先按照实施例1步骤进行钯立方体纳米晶的制备,将制备的钯立方体纳米晶(即钯立方体)分散在8ml的水溶液中。取其中0.3ml置于20ml玻璃瓶中,向其中加入8ml水,105mg聚乙烯吡咯烷酮,600mg溴化钾和60mg抗坏血酸,将玻璃瓶放在60度水浴中搅拌并加热,10分钟后向玻璃瓶中加入含有14.5mg的3ml氯钯酸钠水溶液。在60度下持续加热反应3小时,反应结束后,冷却至室温。将反应后的溶液转移到50mL离心管中,用水清洗三次,每次转速设置为9000r/min,10min,最后分散在1ml水中。如附图2所示,看到Pd的分散非常均匀,大小相近,立方体的边长在22nm-26nm范围内,Pd纳米晶在每个面上不是呈现一个平滑的平面凹陷结构。如附图3所示,内凹Pd纳米晶高倍电镜图,内凹的Pd纳米晶的米勒指数可以通过量取内凹表面与平面之间的角度来确定,通过量取,我们获得了这一夹角为18°,根据参考文献,18°对应的表面是(310)晶面。
首先按照实施例1步骤进行钯立方体纳米晶的制备,将制备的立方体分散在8ml的水溶液中。取其中0.3ml置于20ml玻璃瓶中,向其中加入8ml水,105mg聚乙烯吡咯烷酮,1200mg溴化钾和60mg抗坏血酸,将玻璃瓶放在60度水浴中搅拌并加热,10分钟后向玻璃瓶中加入含有14.5mg的3ml氯钯酸钠水溶液。在60度下持续加热反应3小时,反应结束后,冷却至室温。将反应后的溶液转移到50mL离心管中,用水清洗三次,每次转速设置为9000r/min,10min,最后分散在1ml水中,以制备凹陷程度不同Pd纳米晶。
实施例3八面体钯纳米晶的制备
首先按照实施例1步骤进行钯立方体纳米晶的制备,将制备的立方体分散在8ml的水溶液中。取其中0.3ml置于20ml玻璃瓶中,向其中加入8ml水,105mg聚乙烯吡咯烷酮,100ul甲醛,将玻璃瓶放在60度水浴中搅拌并加热,10分钟后向玻璃瓶中加入含有29mg的3ml氯钯酸钠水溶液。在60度下持续加热反应3小时,反应结束后,冷却至室温。将反应后的溶液转移到50mL离心管中,用水清洗三次,每次转速设置为9000r/min,10min,最后分散在1ml水中。如附图4所示,八面体的边长在21nm-24nm范围内。
利用依照依据参考文献进行钯立方体纳米晶、内凹钯纳米晶和八面体钯纳米晶,分别与活性炭共混分散,以形成钯纳米颗粒—活性炭复合材料,制备简述如下:把含金属纳米晶的水溶液和活性炭在超声机中超声3h,以实现共混分散且形成均匀分散状态,获得目标催化剂,其中钯纳米晶和活性炭的质量比为1:4。
针对利用三种不同钯纳米晶制备的复合材料的性能进行表征,用移液枪取50微升的目标催化剂滴涂在直径为8mm的玻碳电极上,静止1h,待电极干后备用,玻碳电极作为工作电极,银/氯化银电极作为参比电极,铂电极作为对电极。将电极插入到带有密封头的H型电解槽中,电解槽的容积是150ml,槽中注入100ml 0.1M碳酸氢钾水溶液,将CO2气瓶中的气体通过进气管通入电解槽中,通气30min中,此时溶液pH为6.8,此时将装置与电化学工作站相连,在一定电压下通电反应,产生的产物通过出气管导入气相色谱,气相色谱检测产物一氧化碳和氢气,参与反应面积为0.5cm2,反应时间为30分钟。评价方法:一氧化碳法拉第效率=(产生的一氧化碳摩尔量*2*96485)/通电产生的库仑量。如附图所示,在线扫过程中,可以看到随着电压的增加三种催化剂的电流密度均有增加,其中对于内凹Pd纳米晶的电流最大;对于CO法拉第效率,可以看到随着电压变负,三种催化剂都体现一个效率先增大,然后减小的过程。对于内凹Pd纳米晶在-0.9V可以达到88-92%,对于立方体Pd可以达到80.5%-81.5%,对于Pd八面体可以达到67%-73%,三者均有很好的电催化二氧化碳还原活性,其中内凹Pd纳米晶的活性最好,可以在90%以上,说明形成的配位不饱和的表面,可以提升二氧化碳电催化性能。
根据本发明内容进行调整,均可实现复合材料的制备且表现出与实施例基本一致的性能。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.钯纳米颗粒—活性炭复合材料,其特征在于,由钯纳米颗粒和活性炭组成,采用活性炭加入到分散有钯纳米颗粒的体系中并超声复合,钯纳米颗粒和活性炭的质量比为1:(1—10)。
2.根据权利要求1所述的钯纳米颗粒—活性炭复合材料,其特征在于,钯纳米颗粒和活性炭的质量比为1:(4—8)。
3.根据权利要求1所述的钯纳米颗粒—活性炭复合材料,其特征在于,活性炭比表面积220—260m2/g,粒径10—30nm。
4.根据权利要求1所述的钯纳米颗粒—活性炭复合材料,其特征在于,钯纳米颗粒为钯立方体纳米晶、内凹钯纳米晶或者八面体钯纳米晶,其中钯立方体纳米晶的边长为20nm—25nm;八面体钯纳米晶的边长为21nm—24nm;内凹钯纳米晶的立方体边长为22nm—26nm,Pd纳米晶在每个面上呈现一个平滑的平面凹陷结构,内凹表面与平面之间的角度为18°,对应的表面是(310)晶面。
5.如权利要求1—5之一所述的钯纳米颗粒—活性炭复合材料在电催化二氧化碳还原中的应用,其特征在于,对于内凹钯纳米晶在-0.9V达到88-92%,对于钯立方体纳米晶达到80.5%-81.5%,对于八面体钯纳米晶达到67%-73%。
6.钯纳米颗粒在电催化二氧化碳还原中的应用,其特征在于,采用活性炭加入到分散有钯纳米颗粒的体系中并超声复合,钯纳米颗粒为钯立方体纳米晶、内凹钯纳米晶或者八面体钯纳米晶。
7.根据权利要求6所述的钯纳米颗粒在电催化二氧化碳还原中的应用,其特征在于,钯纳米颗粒和活性炭的质量比为1:(1—10),优选1:(4—8)。
8.根据权利要求6所述的钯纳米颗粒在电催化二氧化碳还原中的应用,其特征在于,活性炭比表面积220—260m2/g,粒径10—30nm。
9.根据权利要求6所述的钯纳米颗粒在电催化二氧化碳还原中的应用,其特征在于,钯立方体纳米晶的边长为20nm—25nm;八面体钯纳米晶的边长为21nm—24nm;内凹钯纳米晶的立方体边长为22nm—26nm,Pd纳米晶在每个面上呈现一个平滑的平面凹陷结构,内凹表面与平面之间的角度为18°,对应的表面是(310)晶面。
10.根据权利要求6所述的钯纳米颗粒在电催化二氧化碳还原中的应用,其特征在于,对于内凹钯纳米晶在-0.9V达到88-92%,对于钯立方体纳米晶达到80.5%-81.5%,对于八面体钯纳米晶达到67%-73%。
CN201810229551.3A 2018-03-20 2018-03-20 钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中的应用 Pending CN110302777A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810229551.3A CN110302777A (zh) 2018-03-20 2018-03-20 钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810229551.3A CN110302777A (zh) 2018-03-20 2018-03-20 钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中的应用

Publications (1)

Publication Number Publication Date
CN110302777A true CN110302777A (zh) 2019-10-08

Family

ID=68073371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810229551.3A Pending CN110302777A (zh) 2018-03-20 2018-03-20 钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中的应用

Country Status (1)

Country Link
CN (1) CN110302777A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686719A (zh) * 2020-06-17 2020-09-22 青岛科技大学 一种钯金属/碳纸催化剂及其制备方法和应用
CN114406278A (zh) * 2021-12-10 2022-04-29 深圳市百翱生物科技有限公司 一种钯纳米立方体颗粒的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030178707A1 (en) * 2002-03-21 2003-09-25 Abbott Donald C. Preplated stamped small outline no-lead leadframes having etched profiles
CN102764648A (zh) * 2011-05-06 2012-11-07 北京林业大学 一种钯催化剂的制备方法,由该方法制备的钯催化剂及应用
US20140213427A1 (en) * 2013-01-31 2014-07-31 Sunpower Technologies Llc Photocatalyst for the Reduction of Carbon Dioxide
WO2015108608A2 (en) * 2013-11-04 2015-07-23 Portland State University Method of making a metallic composite and use thereof
CN107146895A (zh) * 2017-05-10 2017-09-08 上海亮仓能源科技有限公司 一种车载燃料电池用 Pt 基八面体型纳米晶体阴极催化剂及其制备方法
CN107233917A (zh) * 2017-06-26 2017-10-10 厦门大学 一种钯氢纳米颗粒的制备及在电催化氧化甲酸中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030178707A1 (en) * 2002-03-21 2003-09-25 Abbott Donald C. Preplated stamped small outline no-lead leadframes having etched profiles
CN102764648A (zh) * 2011-05-06 2012-11-07 北京林业大学 一种钯催化剂的制备方法,由该方法制备的钯催化剂及应用
US20140213427A1 (en) * 2013-01-31 2014-07-31 Sunpower Technologies Llc Photocatalyst for the Reduction of Carbon Dioxide
WO2015108608A2 (en) * 2013-11-04 2015-07-23 Portland State University Method of making a metallic composite and use thereof
CN107146895A (zh) * 2017-05-10 2017-09-08 上海亮仓能源科技有限公司 一种车载燃料电池用 Pt 基八面体型纳米晶体阴极催化剂及其制备方法
CN107233917A (zh) * 2017-06-26 2017-10-10 厦门大学 一种钯氢纳米颗粒的制备及在电催化氧化甲酸中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HONGWEN HUANG等: "Understanding of Strain Effects in the Electrochemical Reduction of CO2:Using Pd Nanostructures as an Ideal Platform", 《ANGEW. CHEM. INT. ED. 》 *
MINGSHANG JIN等: "Palladium Concave Nanocubes with High-Index Facets and Their Enhanced Catalytic Properties", 《ANGEW. CHEM. INT. ED. 》 *
崔泽琳等: "钯纳米颗粒制备方法的研究进展", 《化学与黏合》 *
贾欢欢: "钯基金属纳米晶体的可控合成及其CO2电还原性能研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111686719A (zh) * 2020-06-17 2020-09-22 青岛科技大学 一种钯金属/碳纸催化剂及其制备方法和应用
CN114406278A (zh) * 2021-12-10 2022-04-29 深圳市百翱生物科技有限公司 一种钯纳米立方体颗粒的制备方法

Similar Documents

Publication Publication Date Title
Dong et al. Efficient MOF-derived V–Ni3S2 nanosheet arrays for electrocatalytic overall water splitting in alkali
CN110504458A (zh) 一种双金属-氮掺杂碳纳米电催化材料的制备方法
CN110252335B (zh) 一种碳包覆镍钌纳米材料及其制备方法和应用
CN102544531B (zh) 一种Pd/TiO2/C复合纳米催化剂及其制备方法和应用
CN102078811B (zh) 均相沉淀-原位还原法制备炭载Pd纳米粒子催化剂的方法
CN102024955B (zh) 一种用于燃料电池的三维网状纳米多孔钯钌电极材料及其制备方法
CN102166523B (zh) 一种镍纳米粒子负载多壁碳纳米管催化剂制备方法
CN108654659B (zh) 一种磷化钼/石墨烯复合纳米材料及其制备方法
CN108722453A (zh) 一种用于碱性电催化析氢的磷化钼/碳复合纳米材料
CN107175105B (zh) 石墨烯负载钯铱纳米颗粒催化剂制备方法及其甲酸氧化电催化应用
Chen et al. Design and research progress of nano materials in cathode catalysts of microbial fuel cells: A review
CN101856626A (zh) 一种表面腈基改性的多壁碳纳米管负载纳米铂催化剂的制备方法
WO2018176259A1 (zh) 一种纳米复合材料及其制备方法和应用
CN102886260A (zh) 一种钯钌/多壁碳纳米管催化剂及其制备方法
CN106298263A (zh) 一种铋/炭超级电容电池及其制备方法
CN102380371A (zh) 一种直接甲醇燃料电池阳极催化剂的制备方法
CN110302777A (zh) 钯纳米颗粒—活性炭复合材料及其在二氧化碳电催化还原中的应用
Foruzin et al. Ultrasonication construction of the nano-petal NiCoFe-layered double hydroxide: An excellent water oxidation electrocatalyst
Gong et al. Synthesis of PdCu nanowire assembly and their catalytic activity toward ethanol oxidation
Zhang et al. Improving oxygen reduction reaction by cobalt iron-layered double hydroxide layer on nickel-metal organic framework as cathode catalyst in microbial fuel cell
CN110265230A (zh) 一种镍钴-功能化石墨烯量子点@氧化还原石墨烯复合材料及其制备方法与应用
Li et al. Core-shell structured Co (OH) F@ FeOOH enables highly efficient overall water splitting in alkaline electrolyte
CN107069049B (zh) 一种介孔聚吡咯纳米环负载Pt催化剂及其制备方法
Zhao et al. Three-dimensional heterogeneous copper cobalt phosphides Nanoflowers for enhancing catalytic performance for electro-oxidation of methanol
Zhang et al. Synthesis the flower-like NC/NiO nanocomposites by one-pot hydrothermal method as efficient electrocatalyst for methanol oxidation in alkaline electrolyte

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191008

RJ01 Rejection of invention patent application after publication