CN110283800A - Glucose oxidation enzyme mutant, double enzyme coexpression vectors and its application - Google Patents
Glucose oxidation enzyme mutant, double enzyme coexpression vectors and its application Download PDFInfo
- Publication number
- CN110283800A CN110283800A CN201910787949.3A CN201910787949A CN110283800A CN 110283800 A CN110283800 A CN 110283800A CN 201910787949 A CN201910787949 A CN 201910787949A CN 110283800 A CN110283800 A CN 110283800A
- Authority
- CN
- China
- Prior art keywords
- ala
- gly
- leu
- val
- arg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0014—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
- C12N9/0022—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0065—Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/50—Polycarboxylic acids having keto groups, e.g. 2-ketoglutaric acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y104/00—Oxidoreductases acting on the CH-NH2 group of donors (1.4)
- C12Y104/03—Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
- C12Y104/03011—L-Glutamate oxidase (1.4.3.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y111/00—Oxidoreductases acting on a peroxide as acceptor (1.11)
- C12Y111/01—Peroxidases (1.11.1)
- C12Y111/01006—Catalase (1.11.1.6)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明公开了一种通过对L‑谷氨酸氧化酶进行定点突变,获得一种酶活明显提高的谷氨酸氧化酶突变体,共表达该突变体酶和过氧化氢酶构建重组工程菌株,以L‑谷氨酸盐为底物,在常温常压条件下制备α‑酮戊二酸。本发明所采用的工艺简单,具有高转化率、易分离纯化、生产条件温和、环境污染小等特点,具有较好的工业化应用前景。
The invention discloses a glutamic acid oxidase mutant with significantly improved enzyme activity obtained by performing site-directed mutation on L-glutamic acid oxidase, and co-expressing the mutant enzyme and catalase to construct a recombinant engineering strain , using L-glutamate as a substrate to prepare α-ketoglutarate under normal temperature and pressure conditions. The process adopted in the present invention is simple, has the characteristics of high conversion rate, easy separation and purification, mild production conditions, little environmental pollution, etc., and has good industrial application prospect.
Description
技术领域technical field
本发明涉及一种谷氨酸氧化酶突变体、双酶共表达载体及其应用,属于生物工程技术领域。The invention relates to a glutamic acid oxidase mutant, a double-enzyme co-expression carrier and applications thereof, belonging to the technical field of bioengineering.
背景技术Background technique
α-酮戊二酸(α-KG)是一种重要的有机酸,在有机体细胞代谢中发挥着重要作用,也是合成多种糖类、氨基酸以及蛋白质等的重要前体物质,在食品、医药、饲料、化工和化妆品等行业中具有广阔的应用前景。近年来,α-KG广泛应用于运动营养饮料和保健品,α-KG经人体消化吸收后,体内过多的氨可以结合到α-KG上以减少氨中毒带来的问题,同时参与体内氮代谢等代谢过程。此外,α-KG也可作为体格增强剂,与鸟氨酸结合后,能提高生长激素、胰岛素的水平,而且可抑制肌纤维的分解、在减少蛋白质消耗的前提下起到修复肌肉损伤的作用, 具有较高的保健价值。α-Ketoglutarate (α-KG) is an important organic acid, which plays an important role in the metabolism of organism cells, and is also an important precursor for the synthesis of various sugars, amino acids and proteins. It has broad application prospects in industries such as feed, chemical and cosmetics. In recent years, α-KG has been widely used in sports nutrition drinks and health products. After α-KG is digested and absorbed by the human body, excessive ammonia in the body can be combined with α-KG to reduce the problems caused by ammonia poisoning, and at the same time participate in the nitrogen metabolism and other metabolic processes. In addition, α-KG can also be used as a physical enhancer. After being combined with ornithine, it can increase the level of growth hormone and insulin, and can inhibit the decomposition of muscle fibers and repair muscle damage on the premise of reducing protein consumption. Has high health value.
目前,α-KG的生产方法包括化学合成法、微生物发酵法和生物催化法。传统α-KG生产采用化学合成法,但化学合成工艺中所使用的强酸强碱、氰化物等有害试剂,不仅容易引起环境污染,更限制了其在食品、化妆品和医药等行业的应用。微生物发酵法发酵周期长,且发酵产物中丙酮酸、富马酸等副产物较多,会增加后续α-KG提取的难度和费用,尚未实现工业大规模生产。酶法生产α-KG具有反应周期短、转化率高等优势,牛盼清等通过诱变获得高产谷氨酸氧化酶的链霉菌突变株,在最优条件下转化24 h,α-KG产量可达38.1 g/L(牛盼清, 等. 生物工程学报, 2014, 8: 1318-22);利用基因工程的方法,将谷氨酸氧化酶基因在大肠杆菌中异源表达,通过酶法催化,24 h生成α-KG产量104.7 g/L(Niu PQ, et al. JBiotechnol, 2014, 179:56-62)。利用纯化酶进行体外催化不仅需要经过繁琐的蛋白纯化步骤,而且反应过程中需外源添加大量昂贵的过氧化氢酶辅助催化,大大增加了工业成本。相比分离酶进行体外催化,全细胞生物催化剂更容易制备,催化性能更加稳定,不易受外界温度、pH等因素的影响;转化过程中不需外源添加辅助因子,且无有毒有害产物的生成,环境友好,具有工业化应用前景。At present, the production methods of α-KG include chemical synthesis, microbial fermentation and biocatalysis. Traditional α-KG is produced by chemical synthesis, but the strong acid and alkali, cyanide and other harmful reagents used in the chemical synthesis process not only easily cause environmental pollution, but also limit its application in food, cosmetics and pharmaceutical industries. The microbial fermentation method has a long fermentation period, and there are many by-products such as pyruvic acid and fumaric acid in the fermentation product, which will increase the difficulty and cost of subsequent α-KG extraction, and industrial large-scale production has not yet been realized. Enzymatic production of α-KG has the advantages of short reaction cycle and high conversion rate. Niu Panqing et al. obtained a Streptomyces mutant strain with high glutamate oxidase production through mutagenesis. Under optimal conditions, the α-KG yield can reach 24 h. up to 38.1 g/L (Niu Panqing, et al. Acta Bioengineering, 2014, 8: 1318-22); using genetic engineering, the glutamic acid oxidase gene was heterologously expressed in Escherichia coli and catalyzed by enzymatic , the yield of α-KG was 104.7 g/L in 24 hours (Niu PQ, et al. JBiotechnol, 2014, 179:56-62). The use of purified enzymes for in vitro catalysis not only requires tedious protein purification steps, but also requires the addition of a large amount of expensive catalase to assist catalysis during the reaction process, which greatly increases the industrial cost. Compared with isolated enzymes for in vitro catalysis, whole-cell biocatalysts are easier to prepare, have more stable catalytic performance, and are not easily affected by external temperature, pH and other factors; no exogenous cofactors are required during the conversion process, and no toxic and harmful products are generated , environment-friendly and has industrial application prospect.
谷氨酸氧化酶 (L-glutamate oxidase, LGOX) 是一种以黄素腺嘌呤二核苷酸为辅基的黄素蛋白酶类,具有高度的底物立体异构选择性,催化效率高,反应条件温和,能在不添加外源性辅助因子的条件下氧化L-谷氨酸生成过氧化氢、氨和α-酮戊二酸。研究发现,该酶主要存在于链霉菌中,但产酶能力相差较大。发掘和鉴定具有高活性或底物特异性的谷氨酸氧化酶,并获得符合生理研究和生产应用要求的酶催化体系,将为工业生产α-KG提供有利条件。L-glutamate oxidase (LGOX) is a flavoproteinase with flavin adenine dinucleotide as the prosthetic group, which has high substrate stereoselectivity, high catalytic efficiency, and Under mild conditions, it can oxidize L-glutamic acid to generate hydrogen peroxide, ammonia and α-ketoglutarate without adding exogenous cofactors. The study found that the enzyme mainly exists in Streptomyces, but the enzyme-producing ability varies greatly. Discovering and identifying glutamate oxidase with high activity or substrate specificity, and obtaining an enzyme catalytic system that meets the requirements of physiological research and production applications will provide favorable conditions for the industrial production of α-KG.
发明内容Contents of the invention
本发明的目的在于利用基因工程手段对微生物来源的L-谷氨酸氧化酶和过氧化氢酶进行共表达优化,构建出了催化性能优良的共表达重组菌株,并使用该菌株建立了高效生产α-KG的全细胞转化方法,如图1所示。The purpose of the present invention is to optimize the co-expression of L-glutamic acid oxidase and catalase derived from microorganisms by means of genetic engineering, construct a co-expression recombinant bacterial strain with excellent catalytic performance, and use the bacterial strain to establish a high-efficiency production The whole cell transformation method of α-KG is shown in Figure 1.
本发明的一个目的在于提供一种酶活提高的谷氨酸氧化酶突变体,是将对应于SEQ ID NO:1的第280位氨基酸由丝氨酸S突变为苏氨酸T的氨基酸序列;或者所述谷氨酸氧化酶突变体是进一步包括在对应于SEQ ID NO:1的第533位氨基酸由组氨酸H突变为亮氨酸L的双位点突变的氨基酸序列。在一个实施方案中,所述谷氨酸氧化酶突变体包括如SEQ IDNO:5所示的氨基酸序列,所述谷氨酸氧化酶突变体的编码核苷酸序列可以是SEQ ID NO:6所示的核苷酸序列;在另一个实施方案中,所述谷氨酸氧化酶突变体包括如SEQ ID NO:7所示的氨基酸序列,所述谷氨酸氧化酶突变体的编码核苷酸序列可以是SEQ ID NO:8所示的核苷酸序列。本发明所述谷氨酸氧化酶突变体编码核苷酸序列可以是来源于SEQ ID NO:2所示的野生型的L-谷氨酸氧化酶编码核苷酸序列,例如所述突变体的编码核苷酸序列可以是SEQ ID NO:2所示的核苷酸序列经突变或特定位点的核苷酸被取代而得到。One object of the present invention is to provide a glutamic acid oxidase mutant with improved enzymatic activity, which is the amino acid sequence corresponding to the 280th amino acid of SEQ ID NO:1 mutated from serine S to threonine T; or the The glutamate oxidase mutant is an amino acid sequence that further includes a double-site mutation of histidine H to leucine L at the 533rd amino acid corresponding to SEQ ID NO:1. In one embodiment, the glutamate oxidase mutant comprises the amino acid sequence shown in SEQ ID NO: 5, and the coding nucleotide sequence of the glutamate oxidase mutant may be SEQ ID NO: 6 The nucleotide sequence shown; In another embodiment, described glutamate oxidase mutant comprises the aminoacid sequence shown in SEQ ID NO:7, the coding nucleotide of described glutamate oxidase mutant The sequence may be the nucleotide sequence shown in SEQ ID NO:8. The glutamate oxidase mutant coding nucleotide sequence of the present invention can be derived from the wild-type L-glutamic acid oxidase coding nucleotide sequence shown in SEQ ID NO: 2, such as the mutant's The coding nucleotide sequence can be obtained by mutating the nucleotide sequence shown in SEQ ID NO: 2 or by substituting nucleotides at specific positions.
在一个实施方案中,所述野生型L-谷氨酸氧化酶来源于茂源链霉菌(Streptomyces mobaraensis)。In one embodiment, the wild-type L-glutamic acid oxidase is derived from Streptomyces mobaraensis .
在一个实施方案中,所述谷氨酸氧化酶突变体的氨基酸序列还可以包括1-10个其他氨基酸残基的取代、缺失或插入,但仍然保持L-谷氨酸氧化酶活性。In one embodiment, the amino acid sequence of the glutamate oxidase mutant may also include 1-10 substitutions, deletions or insertions of other amino acid residues, but still maintain L-glutamate oxidase activity.
本发明还提供表达上述谷氨酸氧化酶突变体的重组菌株,是将所述突变体的编码核苷酸序列或含有所述编码核苷酸序列的载体导入宿主菌株所得到。所述重组菌株可用于生产α-酮戊二酸。The present invention also provides a recombinant strain expressing the above-mentioned glutamic acid oxidase mutant, which is obtained by introducing the coding nucleotide sequence of the mutant or a vector containing the coding nucleotide sequence into a host strain. The recombinant strain can be used to produce α-ketoglutarate.
本发明的第二个目的在于提供一种生产α-KG的双酶共表达载体,所述共表达载体是在一个质粒中同时导入L-谷氨酸氧化酶和过氧化氢酶的编码基因。The second object of the present invention is to provide a dual-enzyme co-expression vector for producing α-KG. The co-expression vector is to simultaneously introduce the coding genes of L-glutamate oxidase and catalase into one plasmid.
根据本发明,所述L-谷氨酸氧化酶来源于链霉菌属,所述过氧化氢酶来源于肠杆菌属。根据本发明,所述用于双酶共表达的载体种类没有特殊限定,可以为能够在菌株中表达目的基因的本领域常用的各种表达载体,例如大肠杆菌-谷氨酸棒杆菌穿梭表达质粒pXMJ19,或pDXW系列载体,或pBL1系列载体,或大肠杆菌表达质粒pET系列载体, 或pBAD系列载体,或枯草芽孢杆菌表达质粒pHT01,或pMA5载体等,在优选的实施方式中所述表达载体为pXMJ19质粒。在一个实施方案中,所述L-谷氨酸氧化酶含有如SEQ ID NO:1所示的氨基酸序列,其编码核苷酸序列如SEQ ID NO:2所示。在另一个实施方案中,所述L-谷氨酸氧化酶是如第一目的所述的谷氨酸氧化酶突变体,所述突变体的氨基酸如SEQ ID NO:5或SEQID NO:7所示,其编码核苷酸序列如SEQ ID NO:6或SEQ ID NO:8所示。According to the present invention, the L-glutamic acid oxidase is derived from the genus Streptomyces, and the catalase is derived from the genus Enterobacter. According to the present invention, the type of vector used for dual-enzyme co-expression is not particularly limited, and can be various expression vectors commonly used in the art capable of expressing a gene of interest in a bacterial strain, such as an Escherichia coli-Corynebacterium glutamicum shuttle expression plasmid pXMJ19, or pDXW series vectors, or pBL1 series vectors, or Escherichia coli expression plasmid pET series vectors, or pBAD series vectors, or Bacillus subtilis expression plasmid pHT01, or pMA5 vectors, etc. In a preferred embodiment, the expression vector is pXMJ19 plasmid. In one embodiment, the L-glutamic acid oxidase contains the amino acid sequence shown in SEQ ID NO:1, and its coding nucleotide sequence is shown in SEQ ID NO:2. In another embodiment, the L-glutamate oxidase is the glutamate oxidase mutant as described in the first object, and the amino acid of the mutant is as shown in SEQ ID NO:5 or SEQ ID NO:7 Its encoding nucleotide sequence is shown in SEQ ID NO:6 or SEQ ID NO:8.
在一个实施方案中,所述双酶共表达载体中过氧化氢酶含有如SEQ ID NO:3所示的氨基酸序列,其编码核苷酸序列如SEQ ID NO:4所示。In one embodiment, the catalase in the dual-enzyme co-expression vector contains the amino acid sequence shown in SEQ ID NO:3, and its encoding nucleotide sequence is shown in SEQ ID NO:4.
本发明提供了多种单质粒双酶共表达体系,在一个质粒中同时表达L-谷氨酸氧化酶的编码基因和过氧化氢酶的编码基因。在一个实施方案中,所述双酶共表达载体是采用单启动子模式将一个启动子和所述L-谷氨酸氧化酶的编码基因以及过氧化氢的编码基因进行串联表达,所述两种编码基因可以任意顺序串联;在另一个实施方案中,所述双酶共表达载体是采用双启动子模式,分别在L-谷氨酸氧化酶和过氧化氢酶的编码基因前分别添加启动子。所述启动子可以为tac强启动子或者trc强启动子。在一个实施方案中,优选单启动子模式,且启动子为tac强启动子。The invention provides multiple single-plasmid double-enzyme co-expression systems, which simultaneously express the coding gene of L-glutamic acid oxidase and the coding gene of catalase in one plasmid. In one embodiment, the dual-enzyme co-expression vector uses a single promoter mode to express a promoter, the gene encoding L-glutamate oxidase and the gene encoding hydrogen peroxide in tandem, and the two The two coding genes can be connected in any order; in another embodiment, the dual-enzyme co-expression vector adopts a dual-promoter mode, adding promoters before the coding genes of L-glutamate oxidase and catalase respectively. son. The promoter can be a strong tac promoter or a strong trc promoter. In one embodiment, a single promoter format is preferred and the promoter is a strong tac promoter.
在本发明的实施方案中,在单启动子模式中,两个编码基因之间可以增加保守型RBS相关序列进行分割;或者在双启动子模式中,启动子和编码基因之间分别增加RBS相关序列。In an embodiment of the present invention, in the single promoter mode, the conservative RBS-related sequence can be added between the two coding genes for segmentation; or in the double-promoter mode, the RBS-related sequence can be increased between the promoter and the coding gene sequence.
在一个具体实施方案中,采用单个tac强启动子将L-谷氨酸氧化酶编码基因和过氧化氢编码基因进行串联表达,其中L-谷氨酸氧化酶编码基因和过氧化氢酶编码基因间由保守性RBS相关序列所分割;在另一个具体实施方案中,采用双启动子模式分别在L-谷氨酸氧化酶编码基因和过氧化氢酶编码基因前添加tac强启动子和保守性RBS相关序列;在又一个具体实施方案中,采用双启动子模式在L-谷氨酸氧化酶编码基因前添加tac强启动子和保守性RBS相关序列,在过氧化氢酶基因前添加trc强启动子和保守性RBS相关序列。In a specific embodiment, the gene encoding L-glutamate oxidase and the gene encoding hydrogen peroxide are expressed in tandem using a single strong tac promoter, wherein the gene encoding L-glutamate oxidase and the gene encoding catalase are separated by conserved RBS-related sequences; in another specific embodiment, a strong tac promoter and a conserved RBS-associated sequence; in yet another specific embodiment, a strong tac promoter and a conserved RBS-associated sequence are added before the L-glutamate oxidase coding gene using a double promoter pattern, and a trc-strong promoter is added before the catalase gene Promoter and conserved RBS-associated sequences.
本发明用于共表达体系构建的启动子和RBS相关序列为:The promoter and RBS-related sequences used in the co-expression system construction of the present invention are:
本发明的第三个目的在于提供一种生产α-KG的双酶共表达重组菌株,所述重组菌株含有如第二目的所述的双酶共表达载体。在一个实施方案中,所述重组菌株是将所述双酶共表达载体转化或导入宿主菌株所得。本发明的宿主菌株是可以表达所述谷氨酸氧化酶和过氧化氢酶的菌株,所述宿主菌株可以选自棒杆菌属、埃希氏菌属或者芽孢杆菌属,例如为谷氨酸棒杆菌(Corynebacterium glutamicum)、大肠杆菌(Escherichia coli)或枯草芽孢杆菌(Bacillus subtilis);优选为谷氨酸棒杆菌(Corynebacterium glutamicum),更优选为谷氨酸棒杆菌ATCC 13032。The third object of the present invention is to provide a dual-enzyme co-expression recombinant strain for producing α-KG, which contains the dual-enzyme co-expression vector as described in the second object. In one embodiment, the recombinant strain is obtained by transforming or introducing the dual-enzyme co-expression vector into a host strain. The host bacterial strain of the present invention is the bacterial strain that can express described glutamic acid oxidase and catalase, and described host bacterial strain can be selected from Corynebacterium, Escherichia or Bacillus, for example is glutamic acid rod Corynebacterium glutamicum , Escherichia coli or Bacillus subtilis ; preferably Corynebacterium glutamicum , more preferably Corynebacterium glutamicum ATCC 13032.
本发明的第四个目的在于提供一种全细胞催化菌泥,所述菌泥包括第三目的所述的双酶共表达重组菌株;具体地,将所述重组菌株通过高密度液体深层发酵制备。The fourth object of the present invention is to provide a whole-cell catalytic sludge, which includes the double-enzyme co-expression recombinant strain described in the third object; specifically, the recombinant bacterial strain is prepared by high-density liquid submerged fermentation .
在一个实施方案中,所述全细胞催化菌泥采用如下方法制备得到:In one embodiment, the whole-cell catalytic sludge is prepared by the following method:
(1)将第三目的所述的共表达重组菌株接种于种子培养基培养;(1) Inoculate the co-expression recombinant strain described in the third objective on the seed medium for culture;
(2)随后将种子液接种于发酵培养基发酵,任选地添加异丙基-β-D-硫代吡喃半乳糖苷(IPTG)诱导目的蛋白表达,收集菌体细胞,得到所述全细胞催化菌泥。(2) Then inoculate the seed solution in the fermentation medium for fermentation, optionally add isopropyl-β-D-thiogalactopyranoside (IPTG) to induce the expression of the target protein, and collect the bacterial cells to obtain the whole Cell Catalytic Sludge.
在一个具体的实施方案中,所述全细胞催化菌泥的制备方法如下:In a specific embodiment, the preparation method of the whole cell catalytic sludge is as follows:
将所述的共表达重组菌株接种于含有100 mL种子培养基(酵母粉 2.5 g/L,蛋白胨 5g/L, NaCl 5 g/L,脑心浸液 18.5 g/L,山梨醇 91 g/L)的500 mL三角瓶中,于30°C振荡培养15-18 h;按照5%接种量转接于已经装有5 L发酵培养基(葡糖糖 100 g/L,玉米浆 15 g/L,硫酸铵 20 g/L,硫酸镁 1 g/L,磷酸二氢钾 0.5 g/L,磷酸氢二钾 0.1 g/L,柠檬酸钠 2g/L,碳酸钙 2 g/L;pH 7.0)的发酵罐中,设定培养温度30~32°C,控制培养pH值为7.0,培养前期控制转速为300 r/min,当溶氧降至20 %以下,设置转速与溶氧偶联。待菌体浓度OD600生长至约25~30时,添加终浓度为0.4 mM的异丙基-β-D-硫代吡喃半乳糖苷(IPTG)诱导目的蛋白表达,设置诱导温度为25~30°C,控制培养pH值为7.0,诱导时间约24 h,菌体生长的最终浓度OD600可达150.0左右。待整个诱导过程完成后,将上述发酵培养物进行离心,收集菌体细胞,即得全细胞催化菌泥。The co-expressed recombinant strain was inoculated in 100 mL of seed culture medium (yeast powder 2.5 g/L, peptone 5 g/L, NaCl 5 g/L, brain heart infusion 18.5 g/L, sorbitol 91 g/L ) in a 500 mL Erlenmeyer flask, shake culture at 30°C for 15-18 h; transfer to 5 L fermentation medium (glucose 100 g/L, corn steep liquor 15 g/L) according to 5% inoculum , ammonium sulfate 20 g/L, magnesium sulfate 1 g/L, potassium dihydrogen phosphate 0.5 g/L, dipotassium hydrogen phosphate 0.1 g/L, sodium citrate 2 g/L, calcium carbonate 2 g/L; pH 7.0) In the fermenter, set the culture temperature at 30-32°C, control the pH value of the culture to 7.0, and control the speed at 300 r/min in the early stage of culture. When the dissolved oxygen drops below 20%, set the speed to be coupled with the dissolved oxygen. When the cell concentration OD 600 grows to about 25~30, add isopropyl-β-D-thiogalactopyranoside (IPTG) at a final concentration of 0.4 mM to induce the expression of the target protein, and set the induction temperature to 25~30. At 30°C, the pH value of the culture was controlled to be 7.0, and the induction time was about 24 hours. The final concentration OD 600 of bacterial growth could reach about 150.0. After the whole induction process is completed, the above-mentioned fermentation culture is centrifuged, and the bacterial cells are collected to obtain the whole-cell catalytic sludge.
本发明的第五个目的在于提供上述谷氨酸氧化酶突变体、双酶共表达载体、重组菌株或全细胞催化菌泥在制备α-酮戊二酸中的应用。The fifth object of the present invention is to provide the application of the above-mentioned glutamate oxidase mutant, double-enzyme co-expression vector, recombinant strain or whole cell catalytic sludge in the preparation of α-ketoglutarate.
本发明的第六目的还提供一种全细胞催化制备α-酮戊二酸的方法,包括培养第三目的所述的双酶共表达重组菌株。The sixth object of the present invention is also to provide a whole cell catalytic method for producing α-ketoglutarate, comprising culturing the recombinant strain co-expressing the double enzymes described in the third object.
在一个实施方案中,是在水相发酵体系中加入谷氨酸钠一水合物,加入上述重组菌株或者含有所述重组菌株的全细胞催化菌泥重悬,进行催化反应。任选地,在催化反应中加入异丙基-β-D-硫代吡喃半乳糖苷(IPTG)诱导目的蛋白表达。作为一个优选的实施方案,本发明采用全细胞催化方法制备α-酮戊二酸,无需再加入外源性的酶催化剂。In one embodiment, sodium glutamate monohydrate is added to the aqueous fermentation system, and the above-mentioned recombinant strain or the whole-cell catalytic sludge containing the recombinant strain is added to resuspend to carry out the catalytic reaction. Optionally, isopropyl-β-D-thiogalactopyranoside (IPTG) is added to the catalytic reaction to induce expression of the protein of interest. As a preferred embodiment, the present invention adopts a whole-cell catalytic method to prepare α-ketoglutarate without adding exogenous enzyme catalyst.
在具体实施方案中,所述发酵体系中优选谷氨酸钠一水合物(味精)的终浓度为270 g/L。在一个实施方案中,发酵体系中所述全细胞催化菌泥的浓度为10~20 g/L,例如为12 g/L、15 g/L、18 g/L。在一个实施方案中,控制转速为400 r/min,设置溶氧为25~40%,反应温度为35°C,催化反应时间为24~48 h。In a specific embodiment, the preferred final concentration of monosodium glutamate monohydrate (MSG) in the fermentation system is 270 g/L. In one embodiment, the concentration of the whole cell catalytic sludge in the fermentation system is 10-20 g/L, such as 12 g/L, 15 g/L, 18 g/L. In one embodiment, the control speed is 400 r/min, the dissolved oxygen is set at 25-40%, the reaction temperature is 35°C, and the catalytic reaction time is 24-48 h.
本发明中术语“对应于”具有本领域普通技术人员通常理解的意义。具体地说,“对应于”表示两条序列经同源性或序列相同性比对后,一条序列与另一条序列中的指定位置相对应的位置。因此,例如,就“对应于SEQ ID NO:1第280位氨基酸由丝氨酸S突变为苏氨酸T”而言,如果在SEQ ID NO: 1所示氨基酸序列的一端加上6×His标签,那么所得突变体中对应于SEQ ID NO:1所示氨基酸序列的第280位就可能是突变体的氨基酸序列中第286位。本领域普通技术人员可以采用本领域已知的任何测定序列同源性或相同性的方法测定或比较序列的同源性或相同性,包括但不限于计算机分子生物学(Computational MolecularBiology),Lesk,A.M. 编,牛津大学出版社, 纽约, 1988; 生物计算: 信息学和基因组项目(Biocomputing:Informatics and Genome Projects), Smith,D.W. 编, 学术出版社,纽约, 1993; 序列数据的计算机分析(Computer Analysis of Sequence Data), 第一部分, Griffin, A.M. 和 Griffin, H.G. 编, Humana Press, 新泽西, 1994等文献中所记载的方法。The term "corresponding to" in the present invention has the meaning commonly understood by those of ordinary skill in the art. Specifically, "corresponding to" means that after two sequences are aligned for homology or sequence identity, one sequence corresponds to the specified position in the other sequence. Therefore, for example, in terms of "mutation from serine S to threonine T corresponding to the 280th amino acid of SEQ ID NO: 1", if a 6×His tag is added to one end of the amino acid sequence shown in SEQ ID NO: 1, Then the 280th position corresponding to the amino acid sequence shown in SEQ ID NO: 1 in the obtained mutant may be the 286th position in the amino acid sequence of the mutant. Those of ordinary skill in the art can use any method known in the art for determining sequence homology or identity to determine or compare sequence homology or identity, including but not limited to Computational Molecular Biology (Computational Molecular Biology), Lesk, Edited by A.M., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects (Biocomputing: Informatics and Genome Projects), edited by Smith, D.W., Academic Press, New York, 1993; Computer Analysis of Sequence Data of Sequence Data), Part I, Griffin, A.M. and Griffin, H.G. eds., Humana Press, New Jersey, 1994 et al.
本发明的有益效果Beneficial effects of the present invention
本发明成功构建了一种高效共表达谷氨酸氧化酶和过氧化氢酶的重组工程菌株,并提供了一种不需外源添加过氧化氢酶的α-酮戊二酸生物制备方法,该方法具有较高的底物转化率且副产物较少,制备方法简单方便,生产条件温和、环境污染小,具有很好的技术应用前景。本发明使用的L-谷氨酸氧化酶的催化性能优良,能够高效的催化底物L-谷氨酸生成α-酮戊二酸,本发明使用的过氧化氢酶,能够将催化反应中产生的过氧化氢副产物快速降解,从而促进α-酮戊二酸生产。本发明可以优选公认的食品安全级微生物谷氨酸棒杆菌作为生产菌株,该菌株作为传统的主要工业发酵微生物,用于生产味精已有数十年的历史,因此使用该菌生产α-酮戊二酸可以有效避免食品安全隐患。The present invention successfully constructs a recombinant engineering strain that efficiently co-expresses glutamate oxidase and catalase, and provides a biological preparation method of α-ketoglutarate without adding catalase from an external source, The method has high substrate conversion rate and less by-products, simple and convenient preparation method, mild production conditions, little environmental pollution, and good technical application prospect. The L-glutamic acid oxidase used in the present invention has excellent catalytic performance, and can efficiently catalyze the substrate L-glutamic acid to generate α-ketoglutarate. The catalase used in the present invention can convert the The hydrogen peroxide by-product is rapidly degraded, thereby promoting the production of α-ketoglutarate. In the present invention, Corynebacterium glutamicum, a recognized food safety grade microorganism, can be selected as the production strain. As a traditional main industrial fermentation microorganism, this strain has been used for the production of monosodium glutamate for decades. Therefore, this strain is used to produce α-ketopentyl Diacids can effectively avoid food safety hazards.
附图说明Description of drawings
图1是基于全细胞催化生产α-酮戊二酸示意图。Figure 1 is a schematic diagram of α-ketoglutarate production based on whole cell catalysis.
图2是共表达重组菌株全细胞可溶性总蛋白SDS-PAGE电泳图。Fig. 2 is the SDS-PAGE electrophoresis diagram of the whole cell soluble protein of the co-expressed recombinant strain.
图3是谷氨酸氧化酶突变体活性分析。Figure 3 is the activity analysis of glutamate oxidase mutants.
图4是全细胞催化液中α-酮戊二酸含量分析检测图。Fig. 4 is an analysis and detection diagram of α-ketoglutarate content in the whole cell catalytic solution.
具体实施方式Detailed ways
下面的实施进一步说明本发明的内容,但不应理解为对本发明的限制。以下实施例中,大肠杆菌DH5α和谷氨酸棒杆菌均可市售获得,大肠杆菌DH5α用于本发明中所有基因的克隆,谷氨酸棒杆菌用于本发明中基因蛋白表达及全细胞转化生产α-酮戊二酸。大肠杆菌DH5α感受态细胞与谷氨酸棒杆菌感受态细胞按照常规方法制备。下列实施例中未注明具体条件的试验方法,按照常规条件进行,例如《分子克隆:实验室手册》中所述的条件,或按照相应生物学试剂的制造厂商所建议的条件。The following implementation further illustrates the content of the present invention, but should not be construed as limiting the present invention. In the following examples, both Escherichia coli DH5α and Corynebacterium glutamicum are commercially available, Escherichia coli DH5α is used for cloning of all genes in the present invention, and Corynebacterium glutamicum is used for gene protein expression and whole cell transformation in the present invention Production of alpha-ketoglutarate. Escherichia coli DH5α competent cells and Corynebacterium glutamicum competent cells were prepared according to conventional methods. For the test methods not indicated in the following examples, the specific conditions were carried out according to the conventional conditions, such as the conditions described in "Molecular Cloning: Laboratory Manual", or according to the conditions suggested by the manufacturers of the corresponding biological reagents.
实施例1 谷氨酸氧化酶和过氧化氢酶共表达载体的构建Example 1 Construction of glutamate oxidase and catalase co-expression vector
本领域技术人员应该理解的是,谷氨酸棒杆菌与茂源链霉菌等在表达蛋白质时,都表现有不同程度的密码子偏爱性。将来自茂源链霉菌的谷氨酸氧化酶基因进行密码子优化,可以使目标蛋白在谷氨酸棒杆菌表达系统中更有效地表达,所述密码子优化的方法为本领域技术人员所公知,在此不再赘述。It should be understood by those skilled in the art that Corynebacterium glutamicum and Streptomyces moyuanensis all have different degrees of codon preference when expressing proteins. Codon optimization of the glutamic acid oxidase gene from Streptomyces Maoyuan can make the target protein more efficiently expressed in the expression system of Corynebacterium glutamicum, and the codon optimization method is well known to those skilled in the art , which will not be repeated here.
本发明将来自茂源链霉菌(S. mobaraensis DSM40903)的谷氨酸氧化酶基因按照谷氨酸棒杆菌的密码子使用频率进行优化,核苷酸序列如SEQ ID No:2所示,委托苏州金唯智生物科技有限公司进行基因合成,并以Lgox-5F和Lgox-3R为引物对,通过PCR扩增获得起始密码子前端已添加保守性RBS相关序列的谷氨酸氧化酶基因序列。以rbs-katE-5F和rbs-katE-3R为引物对,以大肠杆菌(E. coli MG1655)基因组为模板,通过PCR扩增获得起始密码子前端已添加保守性RBS相关序列的过氧化氢酶基因序列。以上述两段基因序列为模板,并以Lgox-5F和rbs-katE-3R为引物,通过搭桥PCR扩增获得已经分别添加RBS序列的谷氨酸氧化酶和过氧化氢酶融合片段(rbs-lgox-rbs-katE)。以pXMJ19-5F和pXMJ19-3R为引物对,质粒pXMJ19为模板,通过PCR获得含有AarI酶切位点的pXMJ19质粒骨架。采用基于GoldenGate 克隆的片段装配方法,将融合片段rbs-lgox-rbs-katE和pXMJ19质粒骨架连接成单启动子串联表达质粒。将上述所获重组质粒命名为pXMJ19-tac-lgox-katE,并送苏州金唯智生物科技有限公司进行测序确认。In the present invention, the glutamic acid oxidase gene from Streptomyces mobaraensis ( S. mobaraensis DSM40903) is optimized according to the codon usage frequency of Corynebacterium glutamicum. The nucleotide sequence is shown in SEQ ID No: 2. Jinweizhi Biotechnology Co., Ltd. carried out gene synthesis, and used Lgox-5F and Lgox-3R as a primer pair to obtain the glutamic acid oxidase gene sequence with a conservative RBS-related sequence added to the front of the start codon through PCR amplification. Using rbs-katE-5F and rbs-katE-3R as a primer pair, using Escherichia coli ( E. coli MG1655) genome as a template, obtain hydrogen peroxide with a conserved RBS-related sequence added to the front of the start codon by PCR amplification Enzyme gene sequence. Using the above two gene sequences as templates and using Lgox-5F and rbs-katE-3R as primers, the fusion fragments of glutamate oxidase and catalase (rbs- lgox-rbs-katE). Using pXMJ19-5F and pXMJ19-3R as a primer pair and plasmid pXMJ19 as a template, the pXMJ19 plasmid backbone containing the AarI restriction site was obtained by PCR. Using the fragment assembly method based on GoldenGate cloning, the fusion fragment rbs-lgox-rbs-katE and the pXMJ19 plasmid backbone were connected into a single promoter tandem expression plasmid. The recombinant plasmid obtained above was named pXMJ19-tac-lgox-katE, and sent to Suzhou Jinweizhi Biotechnology Co., Ltd. for sequencing confirmation.
选用pXMJ19-tac-lgox-katE质粒为模板,利用pXMJ19-lk-5F和pXMJ19-lk-3R引物对,通过PCR获得含有AarI酶切位点的pXMJ19-tac-lgox-katE质粒骨架。将tac-fusionF和tac-fusionR引物进行退火后融合后形成含有粘性末端的双链DNA片段,即tac启动子序列;将trc-fusionF和trc-fusionR引物进行退火后融合后形成含有粘性末端的双链DNA片段,即trc启动子序列。将质粒骨架经过AarI内切酶处理后,分别与上述获得的tac启动子序列和trc启动子序列进行连接,分别获得两种双启动子表达质粒pXMJ19-tac-lgox-tac-katE和 pXMJ19-tac-lgox-trc-katE,将所获质粒送苏州金唯智生物科技有限公司进行测序确认。The pXMJ19-tac-lgox-katE plasmid was selected as a template, and the pXMJ19-tac-lgox-katE plasmid backbone containing the AarI restriction site was obtained by PCR using the pXMJ19-lk-5F and pXMJ19-lk-3R primer pairs. The tac-fusionF and tac-fusionR primers are annealed and fused to form a double-stranded DNA fragment containing cohesive ends, that is, the tac promoter sequence; trc-fusionF and trc-fusionR primers are annealed and fused to form a double-stranded DNA fragment containing cohesive ends Strand DNA fragment, namely trc promoter sequence. After the plasmid backbone was treated with AarI endonuclease, it was ligated with the tac promoter sequence and trc promoter sequence obtained above to obtain two dual-promoter expression plasmids pXMJ19-tac-lgox-tac-katE and pXMJ19-tac -lgox-trc-katE, send the obtained plasmid to Suzhou Jinweizhi Biotechnology Co., Ltd. for sequencing confirmation.
上述实施案例中所用引物序列为: The primer sequences used in the above-mentioned implementation cases are:
在本实施例中, PCR扩增反应体系为:10 μL 5 × HF Phusion buffer,2.5 μL 2.5mM dNTP,2.5 μL 10 μM Primer 1,2.5 μL 10 μM Primer 2,0.5 μL Template,0.5 μLDMSO,0.5 μL Phusion DNA聚合酶,补充ddH2O至50 μL。PCR反应条件为:98°C预变性1 min,98°C变性10 s,60°C退火20 s,72°C延伸1 min,35个循环;72°C延伸8 min,16°C保存。In this example, the PCR amplification reaction system is: 10 μL 5 × HF Phusion buffer, 2.5 μL 2.5mM dNTP, 2.5 μL 10 μM Primer 1, 2.5 μL 10 μM Primer 2, 0.5 μL Template, 0.5 μL DMSO, 0.5 μL Phusion DNA Polymerase, supplemented with ddH 2 O to 50 μL. The PCR reaction conditions were as follows: pre-denaturation at 98°C for 1 min, denaturation at 98°C for 10 s, annealing at 60°C for 20 s, extension at 72°C for 1 min, 35 cycles; extension at 72°C for 8 min, and storage at 16°C.
在本实施例中, Golden Gate组装体系为:1.5 μL 10 × T4 Ligase buffer,1 μL T4 Ligase,1 μL AarI内切酶,0.5 μL 100 × BSA,0.2 μL Oligo,200 ng 基因片段或质粒骨架,补充ddH2O至15 μL。Golden Gate组装程序为:37°C,3 min;22°C,4 min;循环30次;22°C,20 min;50°C,2 min;80°C,2 min;16°C,5 min。反应结束后,将反应液直接转化大肠杆菌DH5α感受态,经过平板抗性筛选后,挑取转化子进行验证。In this example, the Golden Gate assembly system is: 1.5 μL 10 × T4 Ligase buffer, 1 μL T4 Ligase, 1 μL AarI endonuclease, 0.5 μL 100 × BSA, 0.2 μL Oligo, 200 ng gene fragment or plasmid backbone, Supplement ddH 2 O to 15 μL. The Golden Gate assembly procedure is: 37°C, 3 min; 22°C, 4 min; cycle 30 times; 22°C, 20 min; 50°C, 2 min; 80°C, 2 min; 16°C, 5 min min. After the reaction, the reaction solution was directly transformed into Escherichia coli DH5α competent, and after plate resistance screening, the transformants were picked for verification.
在本实施例中,酶切体系为:5 μL 10 × FastDigest buffer,2 μL AarI内切酶;0.5 μL 100 × BSA,200 ng DNA片段,补充ddH2O至50 μL。酶切反应条件为37°C,酶切时间为2 h。In this example, the digestion system was: 5 μL 10 × FastDigest buffer, 2 μL AarI endonuclease; 0.5 μL 100 × BSA, 200 ng DNA fragments, supplemented with ddH 2 O to 50 μL. The digestion reaction conditions were 37°C and the digestion time was 2 h.
本实施例选取的表达载体pXMJ19为诱导表达型载体,该质粒本身含有强启动子tac相关序列(包括操纵序列lacO),当加入IPTG或乳糖等诱导物时,会促使阻遏蛋白离开操纵序列从而起始基因表达。The expression vector pXMJ19 selected in this example is an inducible expression vector. The plasmid itself contains a strong promoter tac-related sequence (including the operator sequence lacO). initial gene expression.
实施例2 谷氨酸氧化酶和过氧化氢酶共表达重组菌株构建和表达分析Example 2 Construction and Expression Analysis of Glutamate Oxidase and Catalase Co-expression Recombinant Strain
提取上述实施例1中所获的共表达质粒pXMJ19-tac-lgox-katE、pXMJ19-tac-lgox-tac-katE和pXMJ19-tac-lgox-trc-katE,采用电转化法将其转入谷氨酸棒杆菌,所述具体转化方法为:取100 μL谷氨酸棒杆菌感受态细胞,分别加入约200 ng 上述共表达质粒,充分混匀后转移到已预冷2 mm电转杯中并在冰上放置20 min,调节电转仪电压为2.1 kV进行电激,完成后立即于加入1 mL LBHIS液体培养基,置于46°C水浴锅热激6 min,在32°C、150rpm摇床复苏培养2 h后,涂布含有15 μg/mL氨苄青霉素的LBHIS固体培养基,32°C过夜培养,待生长出单菌落后进行验证。Extract the co-expression plasmids pXMJ19-tac-lgox-katE, pXMJ19-tac-lgox-tac-katE and pXMJ19-tac-lgox-trc-katE obtained in the above-mentioned Example 1, and transfer them to glutamine by electroporation acid Corynebacterium, the specific transformation method is: take 100 μL of Corynebacterium glutamicum competent cells, add about 200 ng of the above-mentioned co-expression plasmids respectively, mix well, transfer to a pre-cooled 2 mm electroporation cup, and store in ice Place it on the table for 20 minutes, adjust the voltage of the electrotransfer instrument to 2.1 kV for electric shock, immediately add 1 mL LBHIS liquid medium, place in a 46°C water bath for heat shock for 6 minutes, and revive culture at 32°C, 150rpm shaker After 2 h, spread LBHIS solid medium containing 15 μg/mL ampicillin, culture overnight at 32°C, and verify after a single colony grows.
将上述获得的含有不同共表达质粒的重组谷氨酸棒杆菌进行蛋白诱导表达检测,分析谷氨酸氧化酶和过氧化氢酶表达情况。具体方法为:分别挑取单克隆接种于含有100mL LBHIS液体培养基的摇瓶中,在32°C,200 r/min摇床中过夜培养。随后,按照2%接种量将过夜菌重新转接于100 mL LBHIS液体培养基中,在32°C,200 r/min摇床中培养至菌体浓度OD600至1.0左右,添加终浓度为0.4 mM IPTG诱导目的蛋白表达,调整培养温度至28°C,继续诱导培养12 h。待诱导完成后,取1 mL菌液进行超声破碎处理后,随后利用SDS-PAGE检测共表达菌株中双酶的表达情况。The recombinant Corynebacterium glutamicum containing different co-expression plasmids obtained above was subjected to protein induction expression detection, and the expression of glutamate oxidase and catalase was analyzed. The specific method is as follows: single clones were picked and inoculated in shake flasks containing 100 mL LBHIS liquid medium, and cultured overnight at 32°C in a shaker at 200 r/min. Subsequently, according to the 2% inoculation amount, the overnight bacteria were retransferred into 100 mL LBHIS liquid medium, cultivated in a shaker at 32°C and 200 r/min until the bacterial cell concentration OD 600 to about 1.0, and the final concentration of 0.4 mM IPTG induced the expression of the target protein, adjusted the culture temperature to 28°C, and continued to induce culture for 12 h. After the induction was completed, 1 mL of the bacterial liquid was taken for sonication, and then SDS-PAGE was used to detect the expression of the dual enzymes in the co-expression strains.
如图2所示,蛋白表达分析发现,pXMJ19-tac-lgox-tac-katE共表达菌株中过氧化氢酶表达量明显高于谷氨酸氧化酶,表明在过氧化氢酶编码基因前添加tac启动子有助于基因表达;pXMJ19-tac-lgox-trc-katE共表达菌株中,过氧化氢酶表达量却出现明显下降,提示该trc启动子不适用于双酶共表达系统;pXMJ19-tac-lgox-katE共表达菌株中谷氨酸氧化酶和过氧化氢酶都有相对较高的表达水平,两者蛋白浓度基本类似。As shown in Figure 2, protein expression analysis found that the expression of catalase in the pXMJ19-tac-lgox-tac-katE co-expression strain was significantly higher than that of glutamate oxidase, indicating that tac was added before the gene encoding catalase The promoter is helpful for gene expression; in the pXMJ19-tac-lgox-trc-katE co-expression strain, the expression of catalase decreased significantly, suggesting that the trc promoter is not suitable for the dual-enzyme co-expression system; pXMJ19-tac Both glutamate oxidase and catalase have relatively high expression levels in -lgox-katE co-expression strains, and the protein concentrations of the two are basically similar.
实施例3 高密度发酵培养制备全细胞催化用菌泥Example 3 High-density fermentation culture to prepare whole-cell catalysis sludge
本实施例用于提供一种共表达重组菌株的高密度发酵培养和菌泥制备方法,所述发酵培养的方法可以包括以下步骤:将上述实施例2中获得的共表达重组菌株接种至已含有氯霉素抗性的种子培养基中,在32°C,200 r/min摇床中震荡培养16 h,获得共表达重组菌株种子液;按照5%接种量将种子液接种于已装有5 L发酵培养基的发酵罐中,设定培养温度32°C,搅拌转速300 r/min,控制培养pH值为7.0,当溶氧降至20%以下时,设置转速与溶氧偶联。监测菌体浓度OD600,待菌体生长至OD600约为25时,添加终浓度为0.4 mM IPTG诱导物激活目的蛋白表达,设定培养温度约28°C,控制培养pH值为7.0,诱导时间约24 h,最终菌体浓度OD600可达150.0左右;将上述液体发酵培养物在转速8000×g条件下离心10 min后,倒掉发酵液上清,收集菌体细胞,即得重组谷氨酸棒杆菌菌泥,可放置于4°C冰箱备用。This embodiment is used to provide a method for high-density fermentation culture and sludge preparation of co-expressed recombinant strains. The method of fermentation culture may include the following steps: inoculate the co-expressed recombinant strain obtained in the above-mentioned Example 2 into the In the chloramphenicol-resistant seed medium, shake culture at 32°C and 200 r/min for 16 h to obtain the seed liquid of the co-expression recombinant strain; inoculate the seed liquid in the 5 In the fermenter of L fermentation medium, the culture temperature was set at 32°C, the stirring speed was 300 r/min, and the pH value of the culture was controlled to be 7.0. When the dissolved oxygen dropped below 20%, the speed was set to be coupled with the dissolved oxygen. Monitor the cell concentration OD 600 , and when the cell grows to an OD 600 of about 25, add a final concentration of 0.4 mM IPTG inducer to activate the expression of the target protein, set the culture temperature at about 28°C, and control the culture pH value to 7.0 to induce The time is about 24 hours, and the final cell concentration OD 600 can reach about 150.0; centrifuge the above liquid fermentation culture at a speed of 8000×g for 10 min, pour off the supernatant of the fermentation broth, and collect the cells to obtain the recombinant corn Corynebacterium acidic acid sludge can be placed in a 4°C refrigerator for later use.
本领域技术人员应该理解的是,种子培养基和发酵培养基中加入的抗生素作为筛选标记用于共表达重组菌株的发酵培养,所述抗生素的浓度没有特别的限制,工作浓度为15 μg/L。在本实施例中,所述种子培养基的组分为:酵母粉 2.5 g/L,蛋白胨 5 g/L, NaCl5 g/L,脑心浸液 18.5 g/L,山梨醇 91 g/L;所述发酵培养基的组分为:葡糖糖 100 g/L,玉米浆 15 g/L,硫酸铵 20 g/L,硫酸镁 1 g/L,磷酸二氢钾 0.5 g/L,磷酸氢二钾 0.1 g/L,柠檬酸钠 2 g/L,碳酸钙 2 g/L,调整培养基至pH 7.0。在本实施例中对培养基pH的调节,所使用的酸碱溶液及浓度没有特别的限制,本实施例采用酸溶液为50%醋酸,碱溶液为50%氨水。Those skilled in the art should understand that the antibiotics added in the seed medium and fermentation medium are used as selection markers for the fermentation of co-expressed recombinant strains. The concentration of the antibiotics is not particularly limited, and the working concentration is 15 μg/L . In this embodiment, the components of the seed medium are: yeast powder 2.5 g/L, peptone 5 g/L, NaCl 5 g/L, brain heart infusion 18.5 g/L, sorbitol 91 g/L; The components of the fermentation medium are: glucose 100 g/L, corn steep liquor 15 g/L, ammonium sulfate 20 g/L, magnesium sulfate 1 g/L, potassium dihydrogen phosphate 0.5 g/L, hydrogen phosphate Dipotassium 0.1 g/L, sodium citrate 2 g/L, calcium carbonate 2 g/L, adjust the medium to pH 7.0. In this embodiment, there is no special limitation on the acid-base solution and the concentration used to adjust the pH of the culture medium. In this embodiment, the acid solution is 50% acetic acid, and the alkali solution is 50% ammonia water.
实施例4 建立全细胞转化工艺制备α-酮戊二酸Example 4 Establishment of Whole Cell Transformation Process for Preparation of α-Ketoglutarate
本实施例用于提供一种全细胞转化生产α-KG方法,基于上述实施例2中构建的共表达重组谷氨酸棒杆菌为全细胞催化剂,建立α-KG的生物制备工艺。所述α-KG的生产方法具体是利用发酵罐建立5 L全细胞催化体系,添加270 g/L终浓度的谷氨酸钠一水合物(味精)底物,加入10 g/L上述实施例3中制备的全细胞菌泥,控制发酵罐转速400 r/min,设置溶氧不低于25%,催化反应温度35°C,催化反应时间40 h,待反应结束后,利用液相色谱法(HPLC)对催化反应液组分进行定量分析。This example is used to provide a method for whole cell transformation to produce α-KG. Based on the co-expression recombinant Corynebacterium glutamicum constructed in the above-mentioned Example 2 as the whole cell catalyst, a biological preparation process of α-KG was established. The production method of α-KG is specifically to use a fermenter to establish a 5 L whole-cell catalytic system, add 270 g/L of sodium glutamate monohydrate (MSG) substrate at a final concentration, and add 10 g/L of the above-mentioned embodiment For the whole-cell sludge prepared in 3, control the fermenter rotation speed to 400 r/min, set the dissolved oxygen to not less than 25%, the catalytic reaction temperature to 35°C, and the catalytic reaction time to 40 h. (HPLC) Quantitative analysis of catalytic reaction solution components.
本实施例中所建立的α-KG生产方法,不需要外源添加昂贵的过氧化氢酶,整个催化反应过程无需控制反应体系pH值,可大大节约生产成本和简化工艺流程。The α-KG production method established in this example does not require the addition of expensive catalase from an external source, and the entire catalytic reaction process does not need to control the pH value of the reaction system, which can greatly save production costs and simplify the process flow.
本实施例中所述HPLC分析,具体方法为:取全细胞催化反应液1 mL,12000×g离心5 min后取上清,使用0.02 μm孔径滤膜进行过滤。反应液组分采用高效液相色谱(Agilent1200,USA)测定,色谱条件为:分析柱采用Bio-Rad Aminex HPX-87H色谱柱,流动相为5 mMH2SO4,流速为0.6 mL/min,检测温度为30°C,检测器为紫外检测器检测,检测波长210 nm。The HPLC analysis described in this example, the specific method is: take 1 mL of the whole-cell catalytic reaction solution, centrifuge at 12000×g for 5 min, take the supernatant, and filter it with a filter membrane with a pore size of 0.02 μm. The components of the reaction solution were determined by high-performance liquid chromatography (Agilent1200, USA), and the chromatographic conditions were as follows: the analytical column was a Bio-Rad Aminex HPX-87H chromatographic column, the mobile phase was 5 mMH 2 SO 4 , and the flow rate was 0.6 mL/min. The temperature is 30°C, and the detector is an ultraviolet detector with a detection wavelength of 210 nm.
经液相色谱检测分析,基于pXMJ19-tac-lgox-katE构建获得的共表达菌株表现出最高α-KG生产能力,其全细胞催化反应液中α-KG的含量可达200.0 g/L,底物摩尔转化率达95%以上,且反应液中无复杂组分,有助于简化下游分离纯化流程,具有较好的技术应用前景。Through liquid chromatography detection and analysis, the co-expression strain obtained based on pXMJ19-tac-lgox-katE showed the highest α-KG production capacity, and the content of α-KG in the whole-cell catalytic reaction liquid could reach 200.0 g/L, and the bottom The molar conversion rate is more than 95%, and there are no complex components in the reaction solution, which helps to simplify the downstream separation and purification process, and has a good technical application prospect.
实施例5 谷氨酸氧化酶突变体构建及活性分析Example 5 Construction and Activity Analysis of Glutamate Oxidase Mutants
本实施例用于提供一种酶活提高的谷氨酸氧化酶突变体构建方法。通过分析谷氨酸氧化酶的3D结构与同源序列比对,确定SEQ ID NO:1的氨基酸序列的第280位丝氨酸S和第533位组氨酸H为目的突变位点。利用定点突变技术,根据待突变的氨基酸位点来设计点突变引物,通过PCR方法获得谷氨酸氧化酶突变序列。This example is used to provide a method for constructing glutamate oxidase mutants with improved enzyme activity. By analyzing the 3D structure of glutamate oxidase and comparing it with homologous sequences, it was determined that the 280th serine S and the 533rd histidine H of the amino acid sequence of SEQ ID NO: 1 were the target mutation sites. Using site-directed mutagenesis technology, design point mutation primers according to the amino acid site to be mutated, and obtain the glutamic acid oxidase mutant sequence by PCR.
选用pXMJ19-tac-lgox-katE质粒为模板,利用S280T-5F和LGOX-DN引物对扩增获得lgox-S280T上游片段,利用LGOX-UP和S280T-3R引物对扩增获得lgox-S280T下游片段。将此上下游片段混合后作为模板,基于融合PCR原理,利用LGOX-UP/LGOX-DN引物对扩增获得lgox-S280T片段,即为含有S280T单突变位点的谷氨酸氧化酶。将该谷氨酸氧化酶突变序列和pET21b载体进行连接,构建获得pET21b-lgox-S280T重组质粒。选用lgox-S280T片段为模板,分别利用LGOX-UP/H533L-3R引物对和H533L-5F/LGOX-DN和引物对,扩增获得lgox-S280T H533L的上下游片段。将此上下游片段混合后作为模板,基于融合PCR原理,利用LGOX-UP/LGOX-DN引物对扩增获得lgox-S280T H533L片段,即为含有S280TH533L双突变位点的谷氨酸氧化酶。将该谷氨酸氧化酶突变序列和pET21b载体进行连接,构建获得pET21b-lgox-S280TH533L重组质粒。将上述重组质粒分别转化E. coli BL21(DE3)感受态细胞,经过平板抗性筛选后,挑取转化子并测序验证。将构建成功的E. coli BL21/pET21b-lgox-S280T、E. coli BL21/pET21b-lgox-S280TH533L重组工程菌与含有未突变谷氨酸氧化酶基因的重组工程菌,分别接种于5 mL含有氨苄青霉素的LB培养基中,37°C、200 r/min 过夜培养后,按照1%接种量重新转接于100 mL含有氨苄青霉素的LB培养基中,待菌体密度达OD600值为0.6时,加入终浓度为0.4 mM的异丙基-β-D-硫代吡喃半乳糖苷(IPTG),于16°C、200 r/min 培养条件下诱导表达10 h后,离心收集获得湿菌泥,用无菌水洗涤后重悬菌体。将获得的重悬菌体浓度调整至OD600值为10左右,利用超声波细胞破碎仪进行细胞破碎,设置超声波功率200 W,超声2 s间歇1 s,超声10 min。待超声过程完毕后,在4°C条件下8000×g离心10 min,所获上清可用于后续的蛋白表达分析和Ni-NTA纯化。The pXMJ19-tac-lgox-katE plasmid was selected as a template, and the upstream fragment of lgox-S280T was amplified by primer pair S280T-5F and LGOX-DN, and the downstream fragment of lgox-S280T was amplified by primer pair LGOX-UP and S280T-3R. The upstream and downstream fragments were mixed as a template, and based on the principle of fusion PCR, the LGOX-UP/LGOX-DN primer pair was used to amplify the lgox-S280T fragment, which is glutamic acid oxidase containing the S280T single mutation site. The glutamic acid oxidase mutant sequence was connected with the pET21b vector to construct the pET21b-lgox-S280T recombinant plasmid. The lgox-S280T fragment was selected as a template, and the upstream and downstream fragments of lgox-S280T H533L were amplified by using the LGOX-UP/H533L-3R primer pair and the H533L-5F/LGOX-DN primer pair respectively. The upstream and downstream fragments were mixed as a template, and based on the principle of fusion PCR, the LGOX-UP/LGOX-DN primer pair was used to amplify the lgox-S280T H533L fragment, which is glutamate oxidase containing the S280TH533L double mutation site. The glutamic acid oxidase mutant sequence was connected to the pET21b vector to construct the pET21b-lgox-S280TH533L recombinant plasmid. The above-mentioned recombinant plasmids were transformed into E. coli BL21 (DE3) competent cells, and after plate resistance screening, transformants were picked and sequenced for verification. The successfully constructed E. coli BL21/pET21b-lgox-S280T, E. coli BL21/pET21b-lgox-S280TH533L recombinant engineering bacteria and the recombinant engineering bacteria containing the unmutated glutamate oxidase gene were inoculated in 5 mL ampicillin containing In LB medium containing penicillin, after culturing overnight at 37°C and 200 r/min, retransfer to 100 mL LB medium containing ampicillin according to 1% inoculation amount, and when the cell density reaches OD 600 value of 0.6 , adding isopropyl-β-D-thiogalactopyranoside (IPTG) at a final concentration of 0.4 mM, induced expression at 16°C, 200 r/min for 10 h, and collected by centrifugation to obtain wet bacteria Mud, washed with sterile water and resuspended bacteria. Adjust the concentration of the obtained resuspended bacteria to an OD 600 value of about 10, and use an ultrasonic cell disruptor to disrupt the cells, set the ultrasonic power to 200 W, sonicate for 2 s with an interval of 1 s, and sonicate for 10 min. After the sonication process, centrifuge at 8000×g for 10 min at 4°C, and the obtained supernatant can be used for subsequent protein expression analysis and Ni-NTA purification.
本实施例中所述Ni-NTA纯化采用标准实验室方案。具体方法为:纯化所用填料为镍,整个纯化过程在4°C冰箱中进行。将1-2 mL填料注入层析柱后,用3~5 倍柱体积的去离子水冲洗柱子,再加入5倍柱体积的裂解缓冲液(20 mM Na2HPO4,200 mM NaCl,pH 7.0)平衡柱子,使填料处于与目的蛋白相同的缓冲体系下。将样品加到平衡好的层析柱中,上下颠倒使目的蛋白与填料充分接触,待柱液分层后,收集流出液,重复上述步骤2~3次。使用10~15倍柱体积的洗杂缓存液(20 mM Na2HPO4,200 mM NaCl,50 mM 咪唑,pH 7.0)进行清洗,去除非特异性吸附的杂蛋白,使用考马斯亮蓝溶液检测流出液,直到没有明显蛋白被检测出。用洗脱缓存液(20 mM Na2HPO4,200 mM NaCl,500 mM 咪唑,pH 7.0)洗脱目的蛋白,收集流出液,使用考马斯亮蓝检测液检测流出液,直到没有明显蛋白被检测出。将收集到目的蛋白用30 kDa Amicon超滤管进行浓缩,在4°C条件下5000×g离心10 min,用保存缓冲液(20 mMNa2HPO4,pH 7.0)稀释蛋白液,直到咪唑的浓度低于10 mmol/L。The Ni-NTA described in this example was purified using standard laboratory protocols. The specific method is: the filler used for purification is nickel, and the whole purification process is carried out in a refrigerator at 4°C. After injecting 1-2 mL filler into the chromatography column, wash the column with 3-5 times column volume of deionized water, and then add 5 times column volume of lysis buffer (20 mM Na 2 HPO 4 , 200 mM NaCl, pH 7.0 ) Equilibrate the column so that the filler is under the same buffer system as the target protein. Add the sample to a well-balanced chromatographic column, turn it upside down to make the target protein fully contact with the filler, collect the effluent after the column liquid is separated, and repeat the above steps 2 to 3 times. Wash with 10-15 times column volume of impurity buffer (20 mM Na 2 HPO 4 , 200 mM NaCl, 50 mM imidazole, pH 7.0) to remove non-specifically adsorbed impurities, and use Coomassie brilliant blue solution to detect the effluent , until no significant protein was detected. Elute the target protein with elution buffer solution (20 mM Na 2 HPO 4 , 200 mM NaCl, 500 mM imidazole, pH 7.0), collect the effluent, and use Coomassie brilliant blue detection solution to detect the effluent until no obvious protein is detected . Concentrate the collected target protein with a 30 kDa Amicon ultrafiltration tube, centrifuge at 5000×g for 10 min at 4°C, and dilute the protein solution with preservation buffer (20 mMNa 2 HPO 4 , pH 7.0) until the concentration of imidazole less than 10 mmol/L.
利用Ni-NTA纯化后获得的纯酶进行酶促反应来测定酶活力。酶促反应的总体积为1 mL,包括600 μL 100 mM谷氨酸钠底物,300 μL ddH2O和100 μL适量浓度酶液,混匀后在37°C条件下反应30 min,于沸水浴中煮沸10 min终止反应。待反应结束后,取20 μL酶促反应液,加入400 μL 2 mM 2,4-二硝基苯肼溶液,在37°C条件下孵育20 min后,随后加入1 mL1 M 氢氧化钠溶液终止反应。将显色液3~10倍稀释后进行吸光值测定(检测波长390nm),通过绘制标准曲线计算样品浓度。酶活定义为每分钟生成1 μmol的α-KG所需的酶量是1 U。结果表明,如图3所示,谷氨酸氧化酶突变体与野生型酶相比,比酶活获得了显著提高,280位丝氨酸关键位点的氨基酸改变由突变前的120 U/mg提高到185 U/mg,280位丝氨酸和533位组氨酸关键位点的氨基酸改变由突变前的120 U/mg提高到215 U/mg,说明两种突变体的催化性能均得到一定程度的提高。Enzyme activity was determined by enzymatic reaction using pure enzyme obtained after Ni-NTA purification. The total volume of the enzymatic reaction is 1 mL, including 600 μL 100 mM sodium glutamate substrate, 300 μL ddH 2 O and 100 μL enzyme solution of appropriate concentration, mix well and react at 37°C for 30 min, in boiling water Boil in a bath for 10 min to terminate the reaction. After the reaction is over, take 20 μL of the enzymatic reaction solution, add 400 μL of 2 mM 2,4-dinitrophenylhydrazine solution, incubate at 37°C for 20 min, then add 1 mL of 1 M sodium hydroxide solution to terminate reaction. After diluting the chromogenic solution 3-10 times, measure the absorbance (detection wavelength 390nm), and calculate the sample concentration by drawing a standard curve. Enzyme activity is defined as the amount of enzyme required to generate 1 μmol of α-KG per minute is 1 U. The results showed that, as shown in Figure 3, compared with the wild-type enzyme, the specific enzyme activity of the glutamate oxidase mutant was significantly improved, and the amino acid change at the 280-position serine key site was increased from 120 U/mg before mutation to The amino acid changes at 185 U/mg, 280 serine and 533 histidine key sites increased from 120 U/mg before mutation to 215 U/mg, indicating that the catalytic properties of the two mutants were improved to a certain extent.
实施例6 谷氨酸氧化酶突变体在生物转化生产α-KG中的应用Example 6 Application of Glutamate Oxidase Mutant in Biotransformation Production of α-KG
本实施例用于提供一种谷氨酸氧化酶突变体在α-KG生产中的应用。利用定点突变技术,以上述实施例1中构建的pXMJ19-tac-lgox-katE质粒为模板,分别以S280T-5F/S280T-3R和H533L-5F/H533L-3R为引物,获得同时含有S280T和H533L突变位点的重组表达质粒,命名为pXMJ19-tac-lgoxS280TH533L-katE。将该突变质粒转化谷氨酸棒杆菌,经过平板抗性筛选后,获得pXMJ19-tac-lgoxS280TH533L-katE共表达菌株,根据实施例4中建立的全细胞转化工艺,进行α-KG生产。具体方法为:利用发酵罐建立5 L全细胞催化体系,添加270 g/L终浓度的谷氨酸钠一水合物(味精)底物,加入10 g/L全细胞菌泥,控制发酵罐转速400 r/min,设置溶氧不低于25%,催化反应温度35°C,催化反应时间32 h。待反应结束后,利用液相色谱法(HPLC)对催化反应液组分进行定量分析。This example is used to provide an application of a glutamate oxidase mutant in the production of α-KG. Using the site-directed mutagenesis technique, using the pXMJ19-tac-lgox-katE plasmid constructed in Example 1 above as a template, and using S280T-5F/S280T-3R and H533L-5F/H533L-3R as primers, respectively, to obtain both S280T and H533L The recombinant expression plasmid of the mutation site is named pXMJ19-tac-lgoxS280TH533L-katE. The mutant plasmid was transformed into Corynebacterium glutamicum, and after plate resistance screening, a pXMJ19-tac-lgoxS280TH533L-katE co-expression strain was obtained, and α-KG was produced according to the whole cell transformation process established in Example 4. The specific method is: use a fermenter to establish a 5 L whole-cell catalytic system, add 270 g/L final concentration of sodium glutamate monohydrate (MSG) substrate, add 10 g/L whole-cell sludge, and control the speed of the fermenter 400 r/min, set dissolved oxygen not lower than 25%, catalytic reaction temperature 35°C, catalytic reaction time 32 h. After the reaction, the components of the catalytic reaction solution were quantitatively analyzed by liquid chromatography (HPLC).
如图4所示,经液相色谱检测分析,全细胞转化液中成分较为单一,底物及杂质残留较少。基于谷氨酸氧化酶突变体构建获得的共表达菌株表现出更优的α-KG生产能力,在全细胞转化反应32 h后,转化液中α-KG的含量可达205.0 g/L,底物摩尔转化率可达97.5%,与含有未突变谷氨酸氧化酶基因的重组工程菌相比,在全细胞催化时间、产物产量及摩尔转化率等方面都具有更好优势,可大大节约生产成本和简化工艺流程,具有良好的工业化应用前景。As shown in Fig. 4, through liquid chromatography detection and analysis, the components in the whole cell transformation liquid are relatively single, and there are few residues of substrates and impurities. The co-expression strain obtained based on the glutamic acid oxidase mutant showed better α-KG production capacity. After 32 h of whole-cell transformation reaction, the content of α-KG in the transformation solution could reach 205.0 g/L, and the bottom The molar conversion rate can reach 97.5%. Compared with the recombinant engineering bacteria containing the unmutated glutamic acid oxidase gene, it has better advantages in terms of whole-cell catalysis time, product yield and molar conversion rate, which can greatly save production. The method has low cost and simplified technological process, and has good industrial application prospect.
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The embodiments of the present invention have been described above. However, the present invention is not limited to the above-mentioned embodiments. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
序列表sequence listing
<110> 中国科学院天津工业生物技术研究所<110> Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
<120> 谷氨酸氧化酶突变体、双酶共表达载体及其应用<120> Glutamate oxidase mutant, dual-enzyme co-expression vector and application thereof
<130> CPCN19111019<130> CPCN19111019
<141> 2019-08-22<141> 2019-08-22
<160> 29<160> 29
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 622<211>622
<212> PRT<212> PRT
<213> Streptomyces mobaraensis<213> Streptomyces mobaraensis
<400> 1<400> 1
Met Ala Val Pro Ala Lys Ser Thr Ala Asp Trp Asp Thr Cys Leu GluMet Ala Val Pro Ala Lys Ser Thr Ala Asp Trp Asp Thr Cys Leu Glu
1 5 10 151 5 10 15
Val Ala Arg Ala Leu Leu Val Val Asp Glu His Asp Arg Pro Leu ValVal Ala Arg Ala Leu Leu Val Val Asp Glu His Asp Arg Pro Leu Val
20 25 30 20 25 30
Pro Glu Tyr Lys Lys Ile Leu Asp Asp Gly Leu Pro Arg Thr Gly LysPro Glu Tyr Lys Lys Ile Leu Asp Asp Gly Leu Pro Arg Thr Gly Lys
35 40 45 35 40 45
Lys Ala Gly Arg Lys Val Leu Val Val Gly Ala Gly Pro Ala Gly LeuLys Ala Gly Arg Lys Val Leu Val Val Gly Ala Gly Pro Ala Gly Leu
50 55 60 50 55 60
Val Ala Ala Trp Leu Leu Lys Arg Ala Gly His His Val Thr Leu LeuVal Ala Ala Trp Leu Leu Lys Arg Ala Gly His His Val Thr Leu Leu
65 70 75 8065 70 75 80
Glu Ala Asn Gly Asn Arg Val Gly Gly Arg Ile Lys Thr Phe Arg LysGlu Ala Asn Gly Asn Arg Val Gly Gly Arg Ile Lys Thr Phe Arg Lys
85 90 95 85 90 95
Gly Gly His Glu His Ala Val Gln Pro Phe Ala Asp Pro Arg Gln TyrGly Gly His Glu His Ala Val Gln Pro Phe Ala Asp Pro Arg Gln Tyr
100 105 110 100 105 110
Ala Glu Ala Gly Ala Met Arg Ile Pro Gly Ser His Pro Leu Val MetAla Glu Ala Gly Ala Met Arg Ile Pro Gly Ser His Pro Leu Val Met
115 120 125 115 120 125
Ser Leu Ile Asp Gly Leu Gly Val Lys Arg Arg Pro Phe Tyr Leu ValSer Leu Ile Asp Gly Leu Gly Val Lys Arg Arg Pro Phe Tyr Leu Val
130 135 140 130 135 140
Asp Val Asp Gly Gln Gly Lys Pro Val Asn His Ala Trp Leu His ValAsp Val Asp Gly Gln Gly Lys Pro Val Asn His Ala Trp Leu His Val
145 150 155 160145 150 155 160
Asn Gly Val Arg Val Arg Arg Ala Asp Tyr Val Lys Asp Pro Arg LysAsn Gly Val Arg Val Arg Arg Ala Asp Tyr Val Lys Asp Pro Arg Lys
165 170 175 165 170 175
Val Asn Arg Ser Phe Gly Val Pro Arg Glu Leu Trp Asp Thr Pro SerVal Asn Arg Ser Phe Gly Val Pro Arg Glu Leu Trp Asp Thr Pro Ser
180 185 190 180 185 190
Ser Val Ile Leu Arg Arg Val Leu Asp Pro Val Arg Asp Glu Phe SerSer Val Ile Leu Arg Arg Val Leu Asp Pro Val Arg Asp Glu Phe Ser
195 200 205 195 200 205
Thr Ala Gly Ala Asp Gly Lys Arg Val Asp Lys Pro Met Pro Glu ArgThr Ala Gly Ala Asp Gly Lys Arg Val Asp Lys Pro Met Pro Glu Arg
210 215 220 210 215 220
Val Lys Gly Trp Ala Arg Val Ile Gln Lys Tyr Gly Asp Trp Ser MetVal Lys Gly Trp Ala Arg Val Ile Gln Lys Tyr Gly Asp Trp Ser Met
225 230 235 240225 230 235 240
Tyr Arg Phe Leu Thr Glu Glu Ala Gly Phe Asp Glu Arg Thr Leu AspTyr Arg Phe Leu Thr Glu Glu Ala Gly Phe Asp Glu Arg Thr Leu Asp
245 250 255 245 250 255
Leu Val Gly Thr Leu Glu Asn Leu Thr Ser Arg Leu Pro Leu Ser PheLeu Val Gly Thr Leu Glu Asn Leu Thr Ser Arg Leu Pro Leu Ser Phe
260 265 270 260 265 270
Val His Ser Phe Ile Ser Gln Ser Leu Ile Ser Pro Asp Thr Ala PheVal His Ser Phe Ile Ser Gln Ser Leu Ile Ser Pro Asp Thr Ala Phe
275 280 285 275 280 285
Trp Glu Leu Val Gly Gly Thr Ala Ser Leu Pro Asp Ala Leu Leu LysTrp Glu Leu Val Gly Gly Thr Ala Ser Leu Pro Asp Ala Leu Leu Lys
290 295 300 290 295 300
Lys Val Asp Asp Val Leu Arg Leu Asp Arg Arg Ala Thr Arg Ile GluLys Val Asp Asp Val Leu Arg Leu Asp Arg Arg Ala Thr Arg Ile Glu
305 310 315 320305 310 315 320
Tyr Trp Ser Pro Asp Arg Thr Gly Ala Asp Arg Ala Thr His Val ArgTyr Trp Ser Pro Asp Arg Thr Gly Ala Asp Arg Ala Thr His Val Arg
325 330 335 325 330 335
Glu Gly Gly Pro His Val Trp Ile Asp Thr Val Ser Glu Gly Arg AspGlu Gly Gly Pro His Val Trp Ile Asp Thr Val Ser Glu Gly Arg Asp
340 345 350 340 345 350
Gly Lys Val Val Arg Glu Gln Phe Thr Gly Asp Leu Ala Ile Val ThrGly Lys Val Val Arg Glu Gln Phe Thr Gly Asp Leu Ala Ile Val Thr
355 360 365 355 360 365
Val Pro Phe Thr Gly Leu Arg His Val Gln Val Ser Pro Leu Met SerVal Pro Phe Thr Gly Leu Arg His Val Gln Val Ser Pro Leu Met Ser
370 375 380 370 375 380
Tyr Gly Lys Arg Arg Ala Val Thr Glu Leu His Tyr Asp Ser Ala ThrTyr Gly Lys Arg Arg Ala Val Thr Glu Leu His Tyr Asp Ser Ala Thr
385 390 395 400385 390 395 400
Lys Val Leu Leu Glu Phe Ser Arg Arg Trp Trp Glu Phe Thr Glu GluLys Val Leu Leu Glu Phe Ser Arg Arg Trp Trp Glu Phe Thr Glu Glu
405 410 415 405 410 415
Asp Trp Lys Arg Glu Leu Glu Asp Val Arg Pro Gly Leu Tyr Ala AlaAsp Trp Lys Arg Glu Leu Glu Asp Val Arg Pro Gly Leu Tyr Ala Ala
420 425 430 420 425 430
Tyr Arg Asp Gly Lys Ala Pro Ala Asp Gly Ser Leu Leu Gly Thr HisTyr Arg Asp Gly Lys Ala Pro Ala Asp Gly Ser Leu Leu Gly Thr His
435 440 445 435 440 445
Pro Ser Val Pro His Gly His Ile Ser Gln Ala Gln Arg Ala His TyrPro Ser Val Pro His Gly His Ile Ser Gln Ala Gln Arg Ala His Tyr
450 455 460 450 455 460
Ala Ala Asn Tyr Trp Glu Gly Arg Asp Gln Pro Glu Ala Ala His IleAla Ala Asn Tyr Trp Glu Gly Arg Asp Gln Pro Glu Ala Ala His Ile
465 470 475 480465 470 475 480
Val Gly Gly Gly Ser Val Ser Asp Asn Pro Asn Arg Phe Met Phe AsnVal Gly Gly Gly Ser Val Ser Asp Asn Pro Asn Arg Phe Met Phe Asn
485 490 495 485 490 495
Pro Ser His Pro Val Pro Gly Ser Glu Gly Gly Val Val Leu Ala ValPro Ser His Pro Val Pro Gly Ser Glu Gly Gly Val Val Leu Ala Val
500 505 510 500 505 510
Tyr Cys Trp Ala Asp Asp Ala Ser Arg Trp Asp Ser Leu Asp Asp GluTyr Cys Trp Ala Asp Asp Ala Ser Arg Trp Asp Ser Leu Asp Asp Glu
515 520 525 515 520 525
Ala Arg Tyr Pro His Ala Leu Cys Gly Leu Gln Gln Val Tyr Gly GlnAla Arg Tyr Pro His Ala Leu Cys Gly Leu Gln Gln Val Tyr Gly Gln
530 535 540 530 535 540
Arg Val Glu Val Phe Tyr Thr Gly Ala Gly Arg Thr Gln Ser Trp LeuArg Val Glu Val Phe Tyr Thr Gly Ala Gly Arg Thr Gln Ser Trp Leu
545 550 555 560545 550 555 560
Arg Asp Pro Tyr Ala Tyr Gly Glu Ala Ser Val Leu Leu Pro Gly GlnArg Asp Pro Tyr Ala Tyr Gly Glu Ala Ser Val Leu Leu Pro Gly Gln
565 570 575 565 570 575
His Thr Glu Leu Leu Gly Ala Ile Arg Glu Pro Glu Gly Pro Leu HisHis Thr Glu Leu Leu Gly Ala Ile Arg Glu Pro Glu Gly Pro Leu His
580 585 590 580 585 590
Phe Ala Gly Asp His Thr Ser Val Lys Pro Ser Trp Ile Glu Gly AlaPhe Ala Gly Asp His Thr Ser Val Lys Pro Ser Trp Ile Glu Gly Ala
595 600 605 595 600 605
Val Glu Ser Gly Val Arg Ala Ala Leu Glu Ala His Leu AlaVal Glu Ser Gly Val Arg Ala Ala Leu Glu Ala His Leu Ala
610 615 620 610 615 620
<210> 2<210> 2
<211> 1869<211> 1869
<212> DNA<212>DNA
<213> Streptomyces mobaraensis<213> Streptomyces mobaraensis
<400> 2<400> 2
atggcggttc ctgcgaaaag caccgcggat tgggatacct gtctggaagt ggcgcgcgcg 60atggcggttc ctgcgaaaag caccgcggat tgggatacct gtctggaagt ggcgcgcgcg 60
ttattagtgg tggatgaaca tgatcgtccg ctggtgccgg aatataagaa gattctggat 120ttattatagtgg tggatgaaca tgatcgtccg ctggtgccgg aatataagaa gattctggat 120
gatggcctgc ctcgcaccgg taaaaaagcg ggccgcaaag tgttagttgt tggtgcgggt 180gatggcctgc ctcgcaccgg taaaaaagcg ggccgcaaag tgttagttgt tggtgcgggt 180
cctgcaggtt tagttgcggc gtggctgtta aaacgtgcgg gtcatcatgt gactctgctg 240cctgcaggtt tagttgcggc gtggctgtta aaacgtgcgg gtcatcatgt gactctgctg 240
gaagcgaacg gcaatcgtgt tggcggccgc attaaaacct ttcgcaaagg cggccatgaa 300gaagcgaacg gcaatcgtgt tggcggccgc attaaaacct ttcgcaaagg cggccatgaa 300
catgcggttc agccgtttgc agatccgcgt cagtatgcag aagcaggcgc gatgcgtatt 360catgcggttc agccgtttgc agatccgcgt cagtatgcag aagcaggcgc gatgcgtatt 360
cctggcagcc atccgttagt gatgagcctg attgatggcc tgggtgttaa acgccgcccg 420cctggcagcc atccgttagt gatgagcctg attgatggcc tgggtgttaa acgccgcccg 420
ttttatctgg tggatgtgga tggccaaggc aaaccggtta accatgcgtg gctgcatgtg 480ttttatctgg tggatgtgga tggccaaggc aaaccggtta accatgcgtg gctgcatgtg 480
aatggtgttc gcgttcgccg tgcggattat gtgaaagatc cgcgcaaagt gaaccgcagc 540aatggtgttc gcgttcgccg tgcggattat gtgaaagatc cgcgcaaagt gaaccgcagc 540
tttggtgtgc cgcgtgaatt atgggatacc ccgagcagcg ttattctgcg ccgcgtttta 600tttggtgtgc cgcgtgaatt atgggatacc ccgagcagcg ttaattctgcg ccgcgtttta 600
gatcctgtgc gcgatgaatt ttcaaccgcg ggcgcggatg gtaaacgcgt ggataaaccg 660gatcctgtgc gcgatgaatt ttcaaccgcg ggcgcggatg gtaaacgcgt ggataaaccg 660
atgccggaac gcgttaaagg ttgggcgcgc gtgattcaga aatatggcga ctggagcatg 720atgccggaac gcgttaaagg ttgggcgcgc gtgattcaga aatatggcga ctggagcatg 720
tatcgctttc tgaccgaaga agcgggcttt gatgaacgca ccctggattt agttggcacc 780tatcgctttc tgaccgaaga agcgggcttt gatgaacgca ccctggattt agttggcacc 780
ctggaaaact taaccagccg cctgccgtta agctttgtgc atagctttat tagccagagc 840ctggaaaact taaccagccg cctgccgtta agctttgtgc atagctttat tagccagagc 840
ctgatttcac cggataccgc gttttgggaa ctggttggtg gcaccgcgag cttacctgat 900ctgatttcac cggataccgc gttttgggaa ctggttggtg gcaccgcgag cttacctgat 900
gcgctgctga aaaaagtgga tgatgtgctg cgcttagatc gtcgtgcgac ccgcattgaa 960gcgctgctga aaaaagtgga tgatgtgctg cgcttagatc gtcgtgcgac ccgcattgaa 960
tattggagcc cggatcgtac tggtgcggat cgtgcgaccc atgttcgtga aggtggtccg 1020tattggagcc cggatcgtac tggtgcggat cgtgcgaccc atgttcgtga aggtggtccg 1020
catgtgtgga ttgataccgt gagcgaaggc cgcgatggca aagttgtgcg cgaacagttt 1080catgtgtgga ttgataccgt gagcgaaggc cgcgatggca aagttgtgcg cgaacagttt 1080
actggcgatc tggcgattgt gaccgtgccg tttaccggtc tgcgccatgt tcaagtgagc 1140actggcgatc tggcgattgt gaccgtgccg tttaccggtc tgcgccatgt tcaagtgagc 1140
ccgctgatga gctatggtaa acgtcgcgcg gtgaccgaac tgcattatga tagcgcgacc 1200ccgctgatga gctatggtaa acgtcgcgcg gtgaccgaac tgcattatga tagcgcgacc 1200
aaagtgctgc tggaatttag ccgccgctgg tgggaattta ccgaagaaga ttggaaacgc 1260aaagtgctgc tggaatttag ccgccgctgg tgggaattta ccgaagaaga ttggaaacgc 1260
gaactggaag atgttcgccc gggcttatat gcagcgtatc gcgatggtaa agcgcctgcg 1320gaactggaag atgttcgccc gggcttatat gcagcgtatc gcgatggtaa agcgcctgcg 1320
gatggtagct tattaggcac ccatccgtca gttccgcatg gccatattag ccaagcgcag 1380gatggtagct tattaggcac ccatccgtca gttccgcatg gccatattag ccaagcgcag 1380
cgtgcacatt atgcggcgaa ctattgggaa ggccgcgatc aacctgaagc ggcgcatatt 1440cgtgcacatt atgcggcgaa ctattgggaa ggccgcgatc aacctgaagc ggcgcatatt 1440
gttggtggtg gcagcgttag cgataacccg aaccgcttta tgtttaaccc gagccatccg 1500gttggtggtg gcagcgttag cgataacccg aaccgcttta tgtttaaccc gagccatccg 1500
gttcctggta gcgaaggtgg tgttgtgctg gcggtttatt gctgggcgga tgatgcaagc 1560gttcctggta gcgaaggtgg tgttgtgctg gcggtttatt gctgggcgga tgatgcaagc 1560
cgttgggata gcctggatga tgaagcgcgc tatccgcatg cactgtgtgg tctgcaacag 1620cgttgggata gcctggatga tgaagcgcgc tatccgcatg cactgtgtgg tctgcaacag 1620
gtttatggcc agcgcgtgga agtgttttat accggcgcgg gtcgtactca atcatggctg 1680gtttatggcc agcgcgtgga agtgttttat accggcgcgg gtcgtactca atcatggctg 1680
cgtgatccgt atgcgtatgg cgaagcgagc gttttattac ctggccagca taccgaatta 1740cgtgatccgt atgcgtatgg cgaagcgagc gttttattac ctggccagca taccgaatta 1740
ctgggcgcga ttcgcgaacc tgaaggccct ttacattttg cgggcgatca tacctcagtg 1800ctgggcgcga ttcgcgaacc tgaaggccct ttacattttg cgggcgatca tacctcagtg 1800
aaaccgagct ggattgaagg tgcggtggaa agcggtgttc gtgcggcgtt agaagcgcat 1860aaaccgagct ggattgaagg tgcggtggaa agcggtgttc gtgcggcgtt agaagcgcat 1860
ttagcgtaa 1869ttagcgtaa 1869
<210> 3<210> 3
<211> 753<211> 753
<212> PRT<212> PRT
<213> Escherichia coli<213> Escherichia coli
<400> 3<400> 3
Met Ser Gln His Asn Glu Lys Asn Pro His Gln His Gln Ser Pro LeuMet Ser Gln His Asn Glu Lys Asn Pro His Gln His Gln Ser Pro Leu
1 5 10 151 5 10 15
His Asp Ser Ser Glu Ala Lys Pro Gly Met Asp Ser Leu Ala Pro GluHis Asp Ser Ser Glu Ala Lys Pro Gly Met Asp Ser Leu Ala Pro Glu
20 25 30 20 25 30
Asp Gly Ser His Arg Pro Ala Ala Glu Pro Thr Pro Pro Gly Ala GlnAsp Gly Ser His Arg Pro Ala Ala Glu Pro Thr Pro Pro Gly Ala Gln
35 40 45 35 40 45
Pro Thr Ala Pro Gly Ser Leu Lys Ala Pro Asp Thr Arg Asn Glu LysPro Thr Ala Pro Gly Ser Leu Lys Ala Pro Asp Thr Arg Asn Glu Lys
50 55 60 50 55 60
Leu Asn Ser Leu Glu Asp Val Arg Lys Gly Ser Glu Asn Tyr Ala LeuLeu Asn Ser Leu Glu Asp Val Arg Lys Gly Ser Glu Asn Tyr Ala Leu
65 70 75 8065 70 75 80
Thr Thr Asn Gln Gly Val Arg Ile Ala Asp Asp Gln Asn Ser Leu ArgThr Thr Asn Gln Gly Val Arg Ile Ala Asp Asp Gln Asn Ser Leu Arg
85 90 95 85 90 95
Ala Gly Ser Arg Gly Pro Thr Leu Leu Glu Asp Phe Ile Leu Arg GluAla Gly Ser Arg Gly Pro Thr Leu Leu Glu Asp Phe Ile Leu Arg Glu
100 105 110 100 105 110
Lys Ile Thr His Phe Asp His Glu Arg Ile Pro Glu Arg Ile Val HisLys Ile Thr His Phe Asp His Glu Arg Ile Pro Glu Arg Ile Val His
115 120 125 115 120 125
Ala Arg Gly Ser Ala Ala His Gly Tyr Phe Gln Pro Tyr Lys Ser LeuAla Arg Gly Ser Ala Ala His Gly Tyr Phe Gln Pro Tyr Lys Ser Leu
130 135 140 130 135 140
Ser Asp Ile Thr Lys Ala Asp Phe Leu Ser Asp Pro Asn Lys Ile ThrSer Asp Ile Thr Lys Ala Asp Phe Leu Ser Asp Pro Asn Lys Ile Thr
145 150 155 160145 150 155 160
Pro Val Phe Val Arg Phe Ser Thr Val Gln Gly Gly Ala Gly Ser AlaPro Val Phe Val Arg Phe Ser Thr Val Gln Gly Gly Ala Gly Ser Ala
165 170 175 165 170 175
Asp Thr Val Arg Asp Ile Arg Gly Phe Ala Thr Lys Phe Tyr Thr GluAsp Thr Val Arg Asp Ile Arg Gly Phe Ala Thr Lys Phe Tyr Thr Glu
180 185 190 180 185 190
Glu Gly Ile Phe Asp Leu Val Gly Asn Asn Thr Pro Ile Phe Phe IleGlu Gly Ile Phe Asp Leu Val Gly Asn Asn Thr Pro Ile Phe Phe Ile
195 200 205 195 200 205
Gln Asp Ala His Lys Phe Pro Asp Phe Val His Ala Val Lys Pro GluGln Asp Ala His Lys Phe Pro Asp Phe Val His Ala Val Lys Pro Glu
210 215 220 210 215 220
Pro His Trp Ala Ile Pro Gln Gly Gln Ser Ala His Asp Thr Phe TrpPro His Trp Ala Ile Pro Gln Gly Gln Ser Ala His Asp Thr Phe Trp
225 230 235 240225 230 235 240
Asp Tyr Val Ser Leu Gln Pro Glu Thr Leu His Asn Val Met Trp AlaAsp Tyr Val Ser Leu Gln Pro Glu Thr Leu His Asn Val Met Trp Ala
245 250 255 245 250 255
Met Ser Asp Arg Gly Ile Pro Arg Ser Tyr Arg Thr Met Glu Gly PheMet Ser Asp Arg Gly Ile Pro Arg Ser Tyr Arg Thr Met Glu Gly Phe
260 265 270 260 265 270
Gly Ile His Thr Phe Arg Leu Ile Asn Ala Glu Gly Lys Ala Thr PheGly Ile His Thr Phe Arg Leu Ile Asn Ala Glu Gly Lys Ala Thr Phe
275 280 285 275 280 285
Val Arg Phe His Trp Lys Pro Leu Ala Gly Lys Ala Ser Leu Val TrpVal Arg Phe His Trp Lys Pro Leu Ala Gly Lys Ala Ser Leu Val Trp
290 295 300 290 295 300
Asp Glu Ala Gln Lys Leu Thr Gly Arg Asp Pro Asp Phe His Arg ArgAsp Glu Ala Gln Lys Leu Thr Gly Arg Asp Pro Asp Phe His Arg Arg
305 310 315 320305 310 315 320
Glu Leu Trp Glu Ala Ile Glu Ala Gly Asp Phe Pro Glu Tyr Glu LeuGlu Leu Trp Glu Ala Ile Glu Ala Gly Asp Phe Pro Glu Tyr Glu Leu
325 330 335 325 330 335
Gly Phe Gln Leu Ile Pro Glu Glu Asp Glu Phe Lys Phe Asp Phe AspGly Phe Gln Leu Ile Pro Glu Glu Asp Glu Phe Lys Phe Asp Phe Asp
340 345 350 340 345 350
Leu Leu Asp Pro Thr Lys Leu Ile Pro Glu Glu Leu Val Pro Val GlnLeu Leu Asp Pro Thr Lys Leu Ile Pro Glu Glu Leu Val Pro Val Gln
355 360 365 355 360 365
Arg Val Gly Lys Met Val Leu Asn Arg Asn Pro Asp Asn Phe Phe AlaArg Val Gly Lys Met Val Leu Asn Arg Asn Pro Asp Asn Phe Phe Ala
370 375 380 370 375 380
Glu Asn Glu Gln Ala Ala Phe His Pro Gly His Ile Val Pro Gly LeuGlu Asn Glu Gln Ala Ala Phe His Pro Gly His Ile Val Pro Gly Leu
385 390 395 400385 390 395 400
Asp Phe Thr Asn Asp Pro Leu Leu Gln Gly Arg Leu Phe Ser Tyr ThrAsp Phe Thr Asn Asp Pro Leu Leu Gln Gly Arg Leu Phe Ser Tyr Thr
405 410 415 405 410 415
Asp Thr Gln Ile Ser Arg Leu Gly Gly Pro Asn Phe His Glu Ile ProAsp Thr Gln Ile Ser Arg Leu Gly Gly Pro Asn Phe His Glu Ile Pro
420 425 430 420 425 430
Ile Asn Arg Pro Thr Cys Pro Tyr His Asn Phe Gln Arg Asp Gly MetIle Asn Arg Pro Thr Cys Pro Tyr His Asn Phe Gln Arg Asp Gly Met
435 440 445 435 440 445
His Arg Met Gly Ile Asp Thr Asn Pro Ala Asn Tyr Glu Pro Asn SerHis Arg Met Gly Ile Asp Thr Asn Pro Ala Asn Tyr Glu Pro Asn Ser
450 455 460 450 455 460
Ile Asn Asp Asn Trp Pro Arg Glu Thr Pro Pro Gly Pro Lys Arg GlyIle Asn Asp Asn Trp Pro Arg Glu Thr Pro Pro Gly Pro Lys Arg Gly
465 470 475 480465 470 475 480
Gly Phe Glu Ser Tyr Gln Glu Arg Val Glu Gly Asn Lys Val Arg GluGly Phe Glu Ser Tyr Gln Glu Arg Val Glu Gly Asn Lys Val Arg Glu
485 490 495 485 490 495
Arg Ser Pro Ser Phe Gly Glu Tyr Tyr Ser His Pro Arg Leu Phe TrpArg Ser Pro Ser Phe Gly Glu Tyr Tyr Ser His Pro Arg Leu Phe Trp
500 505 510 500 505 510
Leu Ser Gln Thr Pro Phe Glu Gln Arg His Ile Val Asp Gly Phe SerLeu Ser Gln Thr Pro Phe Glu Gln Arg His Ile Val Asp Gly Phe Ser
515 520 525 515 520 525
Phe Glu Leu Ser Lys Val Val Arg Pro Tyr Ile Arg Glu Arg Val ValPhe Glu Leu Ser Lys Val Val Arg Pro Tyr Ile Arg Glu Arg Val Val
530 535 540 530 535 540
Asp Gln Leu Ala His Ile Asp Leu Thr Leu Ala Gln Ala Val Ala LysAsp Gln Leu Ala His Ile Asp Leu Thr Leu Ala Gln Ala Val Ala Lys
545 550 555 560545 550 555 560
Asn Leu Gly Ile Glu Leu Thr Asp Asp Gln Leu Asn Ile Thr Pro ProAsn Leu Gly Ile Glu Leu Thr Asp Asp Gln Leu Asn Ile Thr Pro Pro
565 570 575 565 570 575
Pro Asp Val Asn Gly Leu Lys Lys Asp Pro Ser Leu Ser Leu Tyr AlaPro Asp Val Asn Gly Leu Lys Lys Asp Pro Ser Leu Ser Leu Tyr Ala
580 585 590 580 585 590
Ile Pro Asp Gly Asp Val Lys Gly Arg Val Val Ala Ile Leu Leu AsnIle Pro Asp Gly Asp Val Lys Gly Arg Val Val Ala Ile Leu Leu Asn
595 600 605 595 600 605
Asp Glu Val Arg Ser Ala Asp Leu Leu Ala Ile Leu Lys Ala Leu LysAsp Glu Val Arg Ser Ala Asp Leu Leu Ala Ile Leu Lys Ala Leu Lys
610 615 620 610 615 620
Ala Lys Gly Val His Ala Lys Leu Leu Tyr Ser Arg Met Gly Glu ValAla Lys Gly Val His Ala Lys Leu Leu Tyr Ser Arg Met Gly Glu Val
625 630 635 640625 630 635 640
Thr Ala Asp Asp Gly Thr Val Leu Pro Ile Ala Ala Thr Phe Ala GlyThr Ala Asp Asp Gly Thr Val Leu Pro Ile Ala Ala Thr Phe Ala Gly
645 650 655 645 650 655
Ala Pro Ser Leu Thr Val Asp Ala Val Ile Val Pro Cys Gly Asn IleAla Pro Ser Leu Thr Val Asp Ala Val Ile Val Pro Cys Gly Asn Ile
660 665 670 660 665 670
Ala Asp Ile Ala Asp Asn Gly Asp Ala Asn Tyr Tyr Leu Met Glu AlaAla Asp Ile Ala Asp Asn Gly Asp Ala Asn Tyr Tyr Leu Met Glu Ala
675 680 685 675 680 685
Tyr Lys His Leu Lys Pro Ile Ala Leu Ala Gly Asp Ala Arg Lys PheTyr Lys His Leu Lys Pro Ile Ala Leu Ala Gly Asp Ala Arg Lys Phe
690 695 700 690 695 700
Lys Ala Thr Ile Lys Ile Ala Asp Gln Gly Glu Glu Gly Ile Val GluLys Ala Thr Ile Lys Ile Ala Asp Gln Gly Glu Glu Gly Ile Val Glu
705 710 715 720705 710 715 720
Ala Asp Ser Ala Asp Gly Ser Phe Met Asp Glu Leu Leu Thr Leu MetAla Asp Ser Ala Asp Gly Ser Phe Met Asp Glu Leu Leu Thr Leu Met
725 730 735 725 730 735
Ala Ala His Arg Val Trp Ser Arg Ile Pro Lys Ile Asp Lys Ile ProAla Ala His Arg Val Trp Ser Arg Ile Pro Lys Ile Asp Lys Ile Pro
740 745 750 740 745 750
AlaAla
<210> 4<210> 4
<211> 2262<211> 2262
<212> DNA<212>DNA
<213> Escherichia coli<213> Escherichia coli
<400> 4<400> 4
atgtcgcaac ataacgaaaa gaacccacat cagcaccagt caccactaca cgattccagc 60atgtcgcaac ataacgaaaa gaacccacat cagcaccagt caccactaca cgattccagc 60
gaagcgaaac cggggatgga ctcactggca cctgaggacg gctctcatcg tccagcggct 120gaagcgaaac cggggatgga ctcactggca cctgaggacg gctctcatcg tccagcggct 120
gaaccaacac cgccaggtgc acaacctacc gccccaggga gcctgaaagc ccctgatacg 180gaaccaacac cgccaggtgc acaacctacc gccccaggga gcctgaaagc ccctgatacg 180
cgtaacgaaa aacttaattc tctggaagac gtacgcaaag gcagtgaaaa ttatgcgctg 240cgtaacgaaa aacttaattc tctggaagac gtacgcaaag gcagtgaaaa ttatgcgctg 240
accactaatc agggcgtgcg catcgccgac gatcaaaact cactgcgtgc cggtagccgt 300accactaatc agggcgtgcg catcgccgac gatcaaaact cactgcgtgc cggtagccgt 300
ggtccaacgc tgctggaaga ttttattctg cgcgagaaaa tcacccactt tgaccatgag 360ggtccaacgc tgctggaaga ttttattctg cgcgagaaaa tcacccactt tgaccatgag 360
cgcattccgg aacgtattgt tcatgcacgc ggatcagccg ctcacggtta tttccagcca 420cgcattccgg aacgtattgt tcatgcacgc ggatcagccg ctcacggtta tttccagcca 420
tataaaagct taagcgatat taccaaagcg gatttcctct cagatccgaa caaaatcacc 480tataaaagct taagcgatat taccaaagcg gatttcctct cagatccgaa caaaatcacc 480
ccagtatttg tacgtttctc taccgttcag ggtggtgctg gctctgctga taccgtgcgt 540ccagtatttg tacgtttctc taccgttcag ggtggtgctg gctctgctga taccgtgcgt 540
gatatccgtg gctttgccac caagttctat accgaagagg gtatttttga cctcgttggc 600gatatccgtg gctttgccac caagttctat accgaagagg gtatttttga cctcgttggc 600
aataacacgc caatcttctt tatccaggat gcgcataaat tccccgattt tgttcatgcg 660aataacacgc caatcttctt tatccaggat gcgcataaat tccccgattt tgttcatgcg 660
gtaaaaccag aaccgcactg ggcaattcca caagggcaaa gtgcccacga tactttctgg 720gtaaaaccag aaccgcactg ggcaattcca caagggcaaa gtgcccacga tactttctgg 720
gattatgttt ctctgcaacc tgaaactctg cacaacgtga tgtgggcgat gtcggatcgc 780gattatgttt ctctgcaacc tgaaactctg cacaacgtga tgtgggcgat gtcggatcgc 780
ggcatccccc gcagttaccg caccatggaa ggcttcggta ttcacacctt ccgcctgatt 840ggcatccccc gcagttaccg caccatggaa ggcttcggta ttcacacctt ccgcctgatt 840
aatgccgaag ggaaggcaac gtttgtacgt ttccactgga aaccactggc aggtaaagcc 900aatgccgaag ggaaggcaac gtttgtacgt ttccactgga aaccactggc aggtaaagcc 900
tcactcgttt gggatgaagc acaaaaactc accggacgtg acccggactt ccaccgccgc 960tcactcgttt gggatgaagc acaaaaactc accggacgtg acccggactt ccaccgccgc 960
gagttgtggg aagccattga agcaggcgat tttccggaat acgaactggg cttccagttg 1020gagttgtggg aagccattga agcaggcgat tttccggaat acgaactggg cttccagttg 1020
attcctgaag aagatgaatt caagttcgac ttcgatcttc tcgatccaac caaacttatc 1080attcctgaag aagatgaatt caagttcgac ttcgatcttc tcgatccaac caaacttatc 1080
ccggaagaac tggtgcccgt tcagcgtgtc ggcaaaatgg tgctcaatcg caacccggat 1140ccggaagaac tggtgcccgt tcagcgtgtc ggcaaaatgg tgctcaatcg caacccggat 1140
aacttctttg ctgaaaacga acaggcggct ttccatcctg ggcatatcgt gccgggactg 1200aacttctttg ctgaaaacga acaggcggct ttccatcctg ggcatatcgt gccgggactg 1200
gacttcacca acgatccgct gttgcaggga cgtttgttct cctataccga tacacaaatc 1260gacttcacca acgatccgct gttgcaggga cgtttgttct cctataccga tacacaaatc 1260
agtcgtcttg gtgggccgaa tttccatgag attccgatta accgtccgac ctgcccttac 1320agtcgtcttg gtgggccgaa tttccatgag attccgatta accgtccgac ctgcccttac 1320
cataatttcc agcgtgacgg catgcatcgc atggggatcg acactaaccc ggcgaattac 1380cataatttcc agcgtgacgg catgcatcgc atggggatcg acactaaccc ggcgaattac 1380
gaaccgaact cgattaacga taactggccg cgcgaaacac cgccggggcc gaaacgcggc 1440gaaccgaact cgattaacga taactggccg cgcgaaacac cgccggggcc gaaacgcggc 1440
ggttttgaat cataccagga gcgcgtggaa ggcaataaag ttcgcgagcg cagcccatcg 1500ggttttgaat cataccagga gcgcgtggaa ggcaataaag ttcgcgagcg cagcccatcg 1500
tttggcgaat attattccca tccgcgtctg ttctggctaa gtcagacgcc atttgagcag 1560tttggcgaat attattccca tccgcgtctg ttctggctaa gtcagacgcc atttgagcag 1560
cgccatattg tcgatggttt cagttttgag ttaagcaaag tcgttcgtcc gtatattcgt 1620cgccatattg tcgatggttt cagttttgag ttaagcaaag tcgttcgtcc gtatattcgt 1620
gagcgcgttg ttgaccagct ggcgcatatt gatctcactc tggcccaggc ggtggcgaaa 1680gagcgcgttg ttgaccagct ggcgcatatt gatctcactc tggcccaggc ggtggcgaaa 1680
aatctcggta tcgaactgac tgacgaccag ctgaatatca ccccacctcc ggacgtcaac 1740aatctcggta tcgaactgac tgacgaccag ctgaatatca ccccacctcc ggacgtcaac 1740
ggtctgaaaa aggatccatc cttaagtttg tacgccattc ctgacggtga tgtgaaaggt 1800ggtctgaaaa aggatccatc cttaagtttg tacgccattc ctgacggtga tgtgaaaggt 1800
cgcgtggtag cgattttact taatgatgaa gtgagatcgg cagaccttct ggccattctc 1860cgcgtggtag cgattttact taatgatgaa gtgagatcgg cagaccttct ggccattctc 1860
aaggcgctga aggccaaagg cgttcatgcc aaactgctct actcccgaat gggtgaagtg 1920aaggcgctga aggccaaagg cgttcatgcc aaactgctct actcccgaat gggtgaagtg 1920
actgcggatg acggtacggt gttgcctata gccgctacct ttgccggtgc accttcgctg 1980actgcggatg acggtacggt gttgcctata gccgctacct ttgccggtgc accttcgctg 1980
acggtcgatg cggtcattgt cccttgcggc aatatcgcgg atatcgctga caacggcgat 2040acggtcgatg cggtcattgt cccttgcggc aatatcgcgg atatcgctga caacggcgat 2040
gccaactact acctgatgga agcctacaaa caccttaaac cgattgcgct ggcgggtgac 2100gccaactact acctgatgga agcctacaaa caccttaaac cgattgcgct ggcgggtgac 2100
gcgcgcaagt ttaaagcaac aatcaagatc gctgaccagg gtgaagaagg gattgtggaa 2160gcgcgcaagt ttaaagcaac aatcaagatc gctgaccagg gtgaagaagg gattgtggaa 2160
gctgacagcg ctgacggtag ttttatggat gaactgctaa cgctgatggc agcacaccgc 2220gctgacagcg ctgacggtag ttttatggat gaactgctaa cgctgatggc agcacaccgc 2220
gtgtggtcac gcattcctaa gattgacaaa attcctgcct ga 2262gtgtggtcac gcattcctaa gattgacaaa attcctgcct ga 2262
<210> 5<210> 5
<211> 622<211>622
<212> PRT<212> PRT
<213> 人工序列<213> Artificial sequence
<400> 5<400> 5
Met Ala Val Pro Ala Lys Ser Thr Ala Asp Trp Asp Thr Cys Leu GluMet Ala Val Pro Ala Lys Ser Thr Ala Asp Trp Asp Thr Cys Leu Glu
1 5 10 151 5 10 15
Val Ala Arg Ala Leu Leu Val Val Asp Glu His Asp Arg Pro Leu ValVal Ala Arg Ala Leu Leu Val Val Asp Glu His Asp Arg Pro Leu Val
20 25 30 20 25 30
Pro Glu Tyr Lys Lys Ile Leu Asp Asp Gly Leu Pro Arg Thr Gly LysPro Glu Tyr Lys Lys Ile Leu Asp Asp Gly Leu Pro Arg Thr Gly Lys
35 40 45 35 40 45
Lys Ala Gly Arg Lys Val Leu Val Val Gly Ala Gly Pro Ala Gly LeuLys Ala Gly Arg Lys Val Leu Val Val Gly Ala Gly Pro Ala Gly Leu
50 55 60 50 55 60
Val Ala Ala Trp Leu Leu Lys Arg Ala Gly His His Val Thr Leu LeuVal Ala Ala Trp Leu Leu Lys Arg Ala Gly His His Val Thr Leu Leu
65 70 75 8065 70 75 80
Glu Ala Asn Gly Asn Arg Val Gly Gly Arg Ile Lys Thr Phe Arg LysGlu Ala Asn Gly Asn Arg Val Gly Gly Arg Ile Lys Thr Phe Arg Lys
85 90 95 85 90 95
Gly Gly His Glu His Ala Val Gln Pro Phe Ala Asp Pro Arg Gln TyrGly Gly His Glu His Ala Val Gln Pro Phe Ala Asp Pro Arg Gln Tyr
100 105 110 100 105 110
Ala Glu Ala Gly Ala Met Arg Ile Pro Gly Ser His Pro Leu Val MetAla Glu Ala Gly Ala Met Arg Ile Pro Gly Ser His Pro Leu Val Met
115 120 125 115 120 125
Ser Leu Ile Asp Gly Leu Gly Val Lys Arg Arg Pro Phe Tyr Leu ValSer Leu Ile Asp Gly Leu Gly Val Lys Arg Arg Pro Phe Tyr Leu Val
130 135 140 130 135 140
Asp Val Asp Gly Gln Gly Lys Pro Val Asn His Ala Trp Leu His ValAsp Val Asp Gly Gln Gly Lys Pro Val Asn His Ala Trp Leu His Val
145 150 155 160145 150 155 160
Asn Gly Val Arg Val Arg Arg Ala Asp Tyr Val Lys Asp Pro Arg LysAsn Gly Val Arg Val Arg Arg Ala Asp Tyr Val Lys Asp Pro Arg Lys
165 170 175 165 170 175
Val Asn Arg Ser Phe Gly Val Pro Arg Glu Leu Trp Asp Thr Pro SerVal Asn Arg Ser Phe Gly Val Pro Arg Glu Leu Trp Asp Thr Pro Ser
180 185 190 180 185 190
Ser Val Ile Leu Arg Arg Val Leu Asp Pro Val Arg Asp Glu Phe SerSer Val Ile Leu Arg Arg Val Leu Asp Pro Val Arg Asp Glu Phe Ser
195 200 205 195 200 205
Thr Ala Gly Ala Asp Gly Lys Arg Val Asp Lys Pro Met Pro Glu ArgThr Ala Gly Ala Asp Gly Lys Arg Val Asp Lys Pro Met Pro Glu Arg
210 215 220 210 215 220
Val Lys Gly Trp Ala Arg Val Ile Gln Lys Tyr Gly Asp Trp Ser MetVal Lys Gly Trp Ala Arg Val Ile Gln Lys Tyr Gly Asp Trp Ser Met
225 230 235 240225 230 235 240
Tyr Arg Phe Leu Thr Glu Glu Ala Gly Phe Asp Glu Arg Thr Leu AspTyr Arg Phe Leu Thr Glu Glu Ala Gly Phe Asp Glu Arg Thr Leu Asp
245 250 255 245 250 255
Leu Val Gly Thr Leu Glu Asn Leu Thr Ser Arg Leu Pro Leu Ser PheLeu Val Gly Thr Leu Glu Asn Leu Thr Ser Arg Leu Pro Leu Ser Phe
260 265 270 260 265 270
Val His Ser Phe Ile Ser Gln Thr Leu Ile Ser Pro Asp Thr Ala PheVal His Ser Phe Ile Ser Gln Thr Leu Ile Ser Pro Asp Thr Ala Phe
275 280 285 275 280 285
Trp Glu Leu Val Gly Gly Thr Ala Ser Leu Pro Asp Ala Leu Leu LysTrp Glu Leu Val Gly Gly Thr Ala Ser Leu Pro Asp Ala Leu Leu Lys
290 295 300 290 295 300
Lys Val Asp Asp Val Leu Arg Leu Asp Arg Arg Ala Thr Arg Ile GluLys Val Asp Asp Val Leu Arg Leu Asp Arg Arg Ala Thr Arg Ile Glu
305 310 315 320305 310 315 320
Tyr Trp Ser Pro Asp Arg Thr Gly Ala Asp Arg Ala Thr His Val ArgTyr Trp Ser Pro Asp Arg Thr Gly Ala Asp Arg Ala Thr His Val Arg
325 330 335 325 330 335
Glu Gly Gly Pro His Val Trp Ile Asp Thr Val Ser Glu Gly Arg AspGlu Gly Gly Pro His Val Trp Ile Asp Thr Val Ser Glu Gly Arg Asp
340 345 350 340 345 350
Gly Lys Val Val Arg Glu Gln Phe Thr Gly Asp Leu Ala Ile Val ThrGly Lys Val Val Arg Glu Gln Phe Thr Gly Asp Leu Ala Ile Val Thr
355 360 365 355 360 365
Val Pro Phe Thr Gly Leu Arg His Val Gln Val Ser Pro Leu Met SerVal Pro Phe Thr Gly Leu Arg His Val Gln Val Ser Pro Leu Met Ser
370 375 380 370 375 380
Tyr Gly Lys Arg Arg Ala Val Thr Glu Leu His Tyr Asp Ser Ala ThrTyr Gly Lys Arg Arg Ala Val Thr Glu Leu His Tyr Asp Ser Ala Thr
385 390 395 400385 390 395 400
Lys Val Leu Leu Glu Phe Ser Arg Arg Trp Trp Glu Phe Thr Glu GluLys Val Leu Leu Glu Phe Ser Arg Arg Trp Trp Glu Phe Thr Glu Glu
405 410 415 405 410 415
Asp Trp Lys Arg Glu Leu Glu Asp Val Arg Pro Gly Leu Tyr Ala AlaAsp Trp Lys Arg Glu Leu Glu Asp Val Arg Pro Gly Leu Tyr Ala Ala
420 425 430 420 425 430
Tyr Arg Asp Gly Lys Ala Pro Ala Asp Gly Ser Leu Leu Gly Thr HisTyr Arg Asp Gly Lys Ala Pro Ala Asp Gly Ser Leu Leu Gly Thr His
435 440 445 435 440 445
Pro Ser Val Pro His Gly His Ile Ser Gln Ala Gln Arg Ala His TyrPro Ser Val Pro His Gly His Ile Ser Gln Ala Gln Arg Ala His Tyr
450 455 460 450 455 460
Ala Ala Asn Tyr Trp Glu Gly Arg Asp Gln Pro Glu Ala Ala His IleAla Ala Asn Tyr Trp Glu Gly Arg Asp Gln Pro Glu Ala Ala His Ile
465 470 475 480465 470 475 480
Val Gly Gly Gly Ser Val Ser Asp Asn Pro Asn Arg Phe Met Phe AsnVal Gly Gly Gly Ser Val Ser Asp Asn Pro Asn Arg Phe Met Phe Asn
485 490 495 485 490 495
Pro Ser His Pro Val Pro Gly Ser Glu Gly Gly Val Val Leu Ala ValPro Ser His Pro Val Pro Gly Ser Glu Gly Gly Val Val Leu Ala Val
500 505 510 500 505 510
Tyr Cys Trp Ala Asp Asp Ala Ser Arg Trp Asp Ser Leu Asp Asp GluTyr Cys Trp Ala Asp Asp Ala Ser Arg Trp Asp Ser Leu Asp Asp Glu
515 520 525 515 520 525
Ala Arg Tyr Pro His Ala Leu Cys Gly Leu Gln Gln Val Tyr Gly GlnAla Arg Tyr Pro His Ala Leu Cys Gly Leu Gln Gln Val Tyr Gly Gln
530 535 540 530 535 540
Arg Val Glu Val Phe Tyr Thr Gly Ala Gly Arg Thr Gln Ser Trp LeuArg Val Glu Val Phe Tyr Thr Gly Ala Gly Arg Thr Gln Ser Trp Leu
545 550 555 560545 550 555 560
Arg Asp Pro Tyr Ala Tyr Gly Glu Ala Ser Val Leu Leu Pro Gly GlnArg Asp Pro Tyr Ala Tyr Gly Glu Ala Ser Val Leu Leu Pro Gly Gln
565 570 575 565 570 575
His Thr Glu Leu Leu Gly Ala Ile Arg Glu Pro Glu Gly Pro Leu HisHis Thr Glu Leu Leu Gly Ala Ile Arg Glu Pro Glu Gly Pro Leu His
580 585 590 580 585 590
Phe Ala Gly Asp His Thr Ser Val Lys Pro Ser Trp Ile Glu Gly AlaPhe Ala Gly Asp His Thr Ser Val Lys Pro Ser Trp Ile Glu Gly Ala
595 600 605 595 600 605
Val Glu Ser Gly Val Arg Ala Ala Leu Glu Ala His Leu AlaVal Glu Ser Gly Val Arg Ala Ala Leu Glu Ala His Leu Ala
610 615 620 610 615 620
<210> 6<210> 6
<211> 1869<211> 1869
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 6<400> 6
atggcggttc ctgcgaaaag caccgcggat tgggatacct gtctggaagt ggcgcgcgcg 60atggcggttc ctgcgaaaag caccgcggat tgggatacct gtctggaagt ggcgcgcgcg 60
ttattagtgg tggatgaaca tgatcgtccg ctggtgccgg aatataagaa gattctggat 120ttattatagtgg tggatgaaca tgatcgtccg ctggtgccgg aatataagaa gattctggat 120
gatggcctgc ctcgcaccgg taaaaaagcg ggccgcaaag tgttagttgt tggtgcgggt 180gatggcctgc ctcgcaccgg taaaaaagcg ggccgcaaag tgttagttgt tggtgcgggt 180
cctgcaggtt tagttgcggc gtggctgtta aaacgtgcgg gtcatcatgt gactctgctg 240cctgcaggtt tagttgcggc gtggctgtta aaacgtgcgg gtcatcatgt gactctgctg 240
gaagcgaacg gcaatcgtgt tggcggccgc attaaaacct ttcgcaaagg cggccatgaa 300gaagcgaacg gcaatcgtgt tggcggccgc attaaaacct ttcgcaaagg cggccatgaa 300
catgcggttc agccgtttgc agatccgcgt cagtatgcag aagcaggcgc gatgcgtatt 360catgcggttc agccgtttgc agatccgcgt cagtatgcag aagcaggcgc gatgcgtatt 360
cctggcagcc atccgttagt gatgagcctg attgatggcc tgggtgttaa acgccgcccg 420cctggcagcc atccgttagt gatgagcctg attgatggcc tgggtgttaa acgccgcccg 420
ttttatctgg tggatgtgga tggccaaggc aaaccggtta accatgcgtg gctgcatgtg 480ttttatctgg tggatgtgga tggccaaggc aaaccggtta accatgcgtg gctgcatgtg 480
aatggtgttc gcgttcgccg tgcggattat gtgaaagatc cgcgcaaagt gaaccgcagc 540aatggtgttc gcgttcgccg tgcggattat gtgaaagatc cgcgcaaagt gaaccgcagc 540
tttggtgtgc cgcgtgaatt atgggatacc ccgagcagcg ttattctgcg ccgcgtttta 600tttggtgtgc cgcgtgaatt atgggatacc ccgagcagcg ttaattctgcg ccgcgtttta 600
gatcctgtgc gcgatgaatt ttcaaccgcg ggcgcggatg gtaaacgcgt ggataaaccg 660gatcctgtgc gcgatgaatt ttcaaccgcg ggcgcggatg gtaaacgcgt ggataaaccg 660
atgccggaac gcgttaaagg ttgggcgcgc gtgattcaga aatatggcga ctggagcatg 720atgccggaac gcgttaaagg ttgggcgcgc gtgattcaga aatatggcga ctggagcatg 720
tatcgctttc tgaccgaaga agcgggcttt gatgaacgca ccctggattt agttggcacc 780tatcgctttc tgaccgaaga agcgggcttt gatgaacgca ccctggattt agttggcacc 780
ctggaaaact taaccagccg cctgccgtta agctttgtgc atagctttat tagccagacc 840ctggaaaact taaccagccg cctgccgtta agctttgtgc atagctttat tagccagacc 840
ctgatttcac cggataccgc gttttgggaa ctggttggtg gcaccgcgag cttacctgat 900ctgatttcac cggataccgc gttttgggaa ctggttggtg gcaccgcgag cttacctgat 900
gcgctgctga aaaaagtgga tgatgtgctg cgcttagatc gtcgtgcgac ccgcattgaa 960gcgctgctga aaaaagtgga tgatgtgctg cgcttagatc gtcgtgcgac ccgcattgaa 960
tattggagcc cggatcgtac tggtgcggat cgtgcgaccc atgttcgtga aggtggtccg 1020tattggagcc cggatcgtac tggtgcggat cgtgcgaccc atgttcgtga aggtggtccg 1020
catgtgtgga ttgataccgt gagcgaaggc cgcgatggca aagttgtgcg cgaacagttt 1080catgtgtgga ttgataccgt gagcgaaggc cgcgatggca aagttgtgcg cgaacagttt 1080
actggcgatc tggcgattgt gaccgtgccg tttaccggtc tgcgccatgt tcaagtgagc 1140actggcgatc tggcgattgt gaccgtgccg tttaccggtc tgcgccatgt tcaagtgagc 1140
ccgctgatga gctatggtaa acgtcgcgcg gtgaccgaac tgcattatga tagcgcgacc 1200ccgctgatga gctatggtaa acgtcgcgcg gtgaccgaac tgcattatga tagcgcgacc 1200
aaagtgctgc tggaatttag ccgccgctgg tgggaattta ccgaagaaga ttggaaacgc 1260aaagtgctgc tggaatttag ccgccgctgg tgggaattta ccgaagaaga ttggaaacgc 1260
gaactggaag atgttcgccc gggcttatat gcagcgtatc gcgatggtaa agcgcctgcg 1320gaactggaag atgttcgccc gggcttatat gcagcgtatc gcgatggtaa agcgcctgcg 1320
gatggtagct tattaggcac ccatccgtca gttccgcatg gccatattag ccaagcgcag 1380gatggtagct tattaggcac ccatccgtca gttccgcatg gccatattag ccaagcgcag 1380
cgtgcacatt atgcggcgaa ctattgggaa ggccgcgatc aacctgaagc ggcgcatatt 1440cgtgcacatt atgcggcgaa ctattgggaa ggccgcgatc aacctgaagc ggcgcatatt 1440
gttggtggtg gcagcgttag cgataacccg aaccgcttta tgtttaaccc gagccatccg 1500gttggtggtg gcagcgttag cgataacccg aaccgcttta tgtttaaccc gagccatccg 1500
gttcctggta gcgaaggtgg tgttgtgctg gcggtttatt gctgggcgga tgatgcaagc 1560gttcctggta gcgaaggtgg tgttgtgctg gcggtttatt gctgggcgga tgatgcaagc 1560
cgttgggata gcctggatga tgaagcgcgc tatccgcatg cactgtgtgg tctgcaacag 1620cgttgggata gcctggatga tgaagcgcgc tatccgcatg cactgtgtgg tctgcaacag 1620
gtttatggcc agcgcgtgga agtgttttat accggcgcgg gtcgtactca atcatggctg 1680gtttatggcc agcgcgtgga agtgttttat accggcgcgg gtcgtactca atcatggctg 1680
cgtgatccgt atgcgtatgg cgaagcgagc gttttattac ctggccagca taccgaatta 1740cgtgatccgt atgcgtatgg cgaagcgagc gttttattac ctggccagca taccgaatta 1740
ctgggcgcga ttcgcgaacc tgaaggccct ttacattttg cgggcgatca tacctcagtg 1800ctgggcgcga ttcgcgaacc tgaaggccct ttacattttg cgggcgatca tacctcagtg 1800
aaaccgagct ggattgaagg tgcggtggaa agcggtgttc gtgcggcgtt agaagcgcat 1860aaaccgagct ggattgaagg tgcggtggaa agcggtgttc gtgcggcgtt agaagcgcat 1860
ttagcgtaa 1869ttagcgtaa 1869
<210> 7<210> 7
<211> 622<211>622
<212> PRT<212> PRT
<213> 人工序列<213> Artificial sequence
<400> 7<400> 7
Met Ala Val Pro Ala Lys Ser Thr Ala Asp Trp Asp Thr Cys Leu GluMet Ala Val Pro Ala Lys Ser Thr Ala Asp Trp Asp Thr Cys Leu Glu
1 5 10 151 5 10 15
Val Ala Arg Ala Leu Leu Val Val Asp Glu His Asp Arg Pro Leu ValVal Ala Arg Ala Leu Leu Val Val Asp Glu His Asp Arg Pro Leu Val
20 25 30 20 25 30
Pro Glu Tyr Lys Lys Ile Leu Asp Asp Gly Leu Pro Arg Thr Gly LysPro Glu Tyr Lys Lys Ile Leu Asp Asp Gly Leu Pro Arg Thr Gly Lys
35 40 45 35 40 45
Lys Ala Gly Arg Lys Val Leu Val Val Gly Ala Gly Pro Ala Gly LeuLys Ala Gly Arg Lys Val Leu Val Val Gly Ala Gly Pro Ala Gly Leu
50 55 60 50 55 60
Val Ala Ala Trp Leu Leu Lys Arg Ala Gly His His Val Thr Leu LeuVal Ala Ala Trp Leu Leu Lys Arg Ala Gly His His Val Thr Leu Leu
65 70 75 8065 70 75 80
Glu Ala Asn Gly Asn Arg Val Gly Gly Arg Ile Lys Thr Phe Arg LysGlu Ala Asn Gly Asn Arg Val Gly Gly Arg Ile Lys Thr Phe Arg Lys
85 90 95 85 90 95
Gly Gly His Glu His Ala Val Gln Pro Phe Ala Asp Pro Arg Gln TyrGly Gly His Glu His Ala Val Gln Pro Phe Ala Asp Pro Arg Gln Tyr
100 105 110 100 105 110
Ala Glu Ala Gly Ala Met Arg Ile Pro Gly Ser His Pro Leu Val MetAla Glu Ala Gly Ala Met Arg Ile Pro Gly Ser His Pro Leu Val Met
115 120 125 115 120 125
Ser Leu Ile Asp Gly Leu Gly Val Lys Arg Arg Pro Phe Tyr Leu ValSer Leu Ile Asp Gly Leu Gly Val Lys Arg Arg Pro Phe Tyr Leu Val
130 135 140 130 135 140
Asp Val Asp Gly Gln Gly Lys Pro Val Asn His Ala Trp Leu His ValAsp Val Asp Gly Gln Gly Lys Pro Val Asn His Ala Trp Leu His Val
145 150 155 160145 150 155 160
Asn Gly Val Arg Val Arg Arg Ala Asp Tyr Val Lys Asp Pro Arg LysAsn Gly Val Arg Val Arg Arg Ala Asp Tyr Val Lys Asp Pro Arg Lys
165 170 175 165 170 175
Val Asn Arg Ser Phe Gly Val Pro Arg Glu Leu Trp Asp Thr Pro SerVal Asn Arg Ser Phe Gly Val Pro Arg Glu Leu Trp Asp Thr Pro Ser
180 185 190 180 185 190
Ser Val Ile Leu Arg Arg Val Leu Asp Pro Val Arg Asp Glu Phe SerSer Val Ile Leu Arg Arg Val Leu Asp Pro Val Arg Asp Glu Phe Ser
195 200 205 195 200 205
Thr Ala Gly Ala Asp Gly Lys Arg Val Asp Lys Pro Met Pro Glu ArgThr Ala Gly Ala Asp Gly Lys Arg Val Asp Lys Pro Met Pro Glu Arg
210 215 220 210 215 220
Val Lys Gly Trp Ala Arg Val Ile Gln Lys Tyr Gly Asp Trp Ser MetVal Lys Gly Trp Ala Arg Val Ile Gln Lys Tyr Gly Asp Trp Ser Met
225 230 235 240225 230 235 240
Tyr Arg Phe Leu Thr Glu Glu Ala Gly Phe Asp Glu Arg Thr Leu AspTyr Arg Phe Leu Thr Glu Glu Ala Gly Phe Asp Glu Arg Thr Leu Asp
245 250 255 245 250 255
Leu Val Gly Thr Leu Glu Asn Leu Thr Ser Arg Leu Pro Leu Ser PheLeu Val Gly Thr Leu Glu Asn Leu Thr Ser Arg Leu Pro Leu Ser Phe
260 265 270 260 265 270
Val His Ser Phe Ile Ser Gln Thr Leu Ile Ser Pro Asp Thr Ala PheVal His Ser Phe Ile Ser Gln Thr Leu Ile Ser Pro Asp Thr Ala Phe
275 280 285 275 280 285
Trp Glu Leu Val Gly Gly Thr Ala Ser Leu Pro Asp Ala Leu Leu LysTrp Glu Leu Val Gly Gly Thr Ala Ser Leu Pro Asp Ala Leu Leu Lys
290 295 300 290 295 300
Lys Val Asp Asp Val Leu Arg Leu Asp Arg Arg Ala Thr Arg Ile GluLys Val Asp Asp Val Leu Arg Leu Asp Arg Arg Ala Thr Arg Ile Glu
305 310 315 320305 310 315 320
Tyr Trp Ser Pro Asp Arg Thr Gly Ala Asp Arg Ala Thr His Val ArgTyr Trp Ser Pro Asp Arg Thr Gly Ala Asp Arg Ala Thr His Val Arg
325 330 335 325 330 335
Glu Gly Gly Pro His Val Trp Ile Asp Thr Val Ser Glu Gly Arg AspGlu Gly Gly Pro His Val Trp Ile Asp Thr Val Ser Glu Gly Arg Asp
340 345 350 340 345 350
Gly Lys Val Val Arg Glu Gln Phe Thr Gly Asp Leu Ala Ile Val ThrGly Lys Val Val Arg Glu Gln Phe Thr Gly Asp Leu Ala Ile Val Thr
355 360 365 355 360 365
Val Pro Phe Thr Gly Leu Arg His Val Gln Val Ser Pro Leu Met SerVal Pro Phe Thr Gly Leu Arg His Val Gln Val Ser Pro Leu Met Ser
370 375 380 370 375 380
Tyr Gly Lys Arg Arg Ala Val Thr Glu Leu His Tyr Asp Ser Ala ThrTyr Gly Lys Arg Arg Ala Val Thr Glu Leu His Tyr Asp Ser Ala Thr
385 390 395 400385 390 395 400
Lys Val Leu Leu Glu Phe Ser Arg Arg Trp Trp Glu Phe Thr Glu GluLys Val Leu Leu Glu Phe Ser Arg Arg Trp Trp Glu Phe Thr Glu Glu
405 410 415 405 410 415
Asp Trp Lys Arg Glu Leu Glu Asp Val Arg Pro Gly Leu Tyr Ala AlaAsp Trp Lys Arg Glu Leu Glu Asp Val Arg Pro Gly Leu Tyr Ala Ala
420 425 430 420 425 430
Tyr Arg Asp Gly Lys Ala Pro Ala Asp Gly Ser Leu Leu Gly Thr HisTyr Arg Asp Gly Lys Ala Pro Ala Asp Gly Ser Leu Leu Gly Thr His
435 440 445 435 440 445
Pro Ser Val Pro His Gly His Ile Ser Gln Ala Gln Arg Ala His TyrPro Ser Val Pro His Gly His Ile Ser Gln Ala Gln Arg Ala His Tyr
450 455 460 450 455 460
Ala Ala Asn Tyr Trp Glu Gly Arg Asp Gln Pro Glu Ala Ala His IleAla Ala Asn Tyr Trp Glu Gly Arg Asp Gln Pro Glu Ala Ala His Ile
465 470 475 480465 470 475 480
Val Gly Gly Gly Ser Val Ser Asp Asn Pro Asn Arg Phe Met Phe AsnVal Gly Gly Gly Ser Val Ser Asp Asn Pro Asn Arg Phe Met Phe Asn
485 490 495 485 490 495
Pro Ser His Pro Val Pro Gly Ser Glu Gly Gly Val Val Leu Ala ValPro Ser His Pro Val Pro Gly Ser Glu Gly Gly Val Val Leu Ala Val
500 505 510 500 505 510
Tyr Cys Trp Ala Asp Asp Ala Ser Arg Trp Asp Ser Leu Asp Asp GluTyr Cys Trp Ala Asp Asp Ala Ser Arg Trp Asp Ser Leu Asp Asp Glu
515 520 525 515 520 525
Ala Arg Tyr Pro Leu Ala Leu Cys Gly Leu Gln Gln Val Tyr Gly GlnAla Arg Tyr Pro Leu Ala Leu Cys Gly Leu Gln Gln Val Tyr Gly Gln
530 535 540 530 535 540
Arg Val Glu Val Phe Tyr Thr Gly Ala Gly Arg Thr Gln Ser Trp LeuArg Val Glu Val Phe Tyr Thr Gly Ala Gly Arg Thr Gln Ser Trp Leu
545 550 555 560545 550 555 560
Arg Asp Pro Tyr Ala Tyr Gly Glu Ala Ser Val Leu Leu Pro Gly GlnArg Asp Pro Tyr Ala Tyr Gly Glu Ala Ser Val Leu Leu Pro Gly Gln
565 570 575 565 570 575
His Thr Glu Leu Leu Gly Ala Ile Arg Glu Pro Glu Gly Pro Leu HisHis Thr Glu Leu Leu Gly Ala Ile Arg Glu Pro Glu Gly Pro Leu His
580 585 590 580 585 590
Phe Ala Gly Asp His Thr Ser Val Lys Pro Ser Trp Ile Glu Gly AlaPhe Ala Gly Asp His Thr Ser Val Lys Pro Ser Trp Ile Glu Gly Ala
595 600 605 595 600 605
Val Glu Ser Gly Val Arg Ala Ala Leu Glu Ala His Leu AlaVal Glu Ser Gly Val Arg Ala Ala Leu Glu Ala His Leu Ala
610 615 620 610 615 620
<210> 8<210> 8
<211> 1869<211> 1869
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 8<400> 8
atggcggttc ctgcgaaaag caccgcggat tgggatacct gtctggaagt ggcgcgcgcg 60atggcggttc ctgcgaaaag caccgcggat tgggatacct gtctggaagt ggcgcgcgcg 60
ttattagtgg tggatgaaca tgatcgtccg ctggtgccgg aatataagaa gattctggat 120ttattatagtgg tggatgaaca tgatcgtccg ctggtgccgg aatataagaa gattctggat 120
gatggcctgc ctcgcaccgg taaaaaagcg ggccgcaaag tgttagttgt tggtgcgggt 180gatggcctgc ctcgcaccgg taaaaaagcg ggccgcaaag tgttagttgt tggtgcgggt 180
cctgcaggtt tagttgcggc gtggctgtta aaacgtgcgg gtcatcatgt gactctgctg 240cctgcaggtt tagttgcggc gtggctgtta aaacgtgcgg gtcatcatgt gactctgctg 240
gaagcgaacg gcaatcgtgt tggcggccgc attaaaacct ttcgcaaagg cggccatgaa 300gaagcgaacg gcaatcgtgt tggcggccgc attaaaacct ttcgcaaagg cggccatgaa 300
catgcggttc agccgtttgc agatccgcgt cagtatgcag aagcaggcgc gatgcgtatt 360catgcggttc agccgtttgc agatccgcgt cagtatgcag aagcaggcgc gatgcgtatt 360
cctggcagcc atccgttagt gatgagcctg attgatggcc tgggtgttaa acgccgcccg 420cctggcagcc atccgttagt gatgagcctg attgatggcc tgggtgttaa acgccgcccg 420
ttttatctgg tggatgtgga tggccaaggc aaaccggtta accatgcgtg gctgcatgtg 480ttttatctgg tggatgtgga tggccaaggc aaaccggtta accatgcgtg gctgcatgtg 480
aatggtgttc gcgttcgccg tgcggattat gtgaaagatc cgcgcaaagt gaaccgcagc 540aatggtgttc gcgttcgccg tgcggattat gtgaaagatc cgcgcaaagt gaaccgcagc 540
tttggtgtgc cgcgtgaatt atgggatacc ccgagcagcg ttattctgcg ccgcgtttta 600tttggtgtgc cgcgtgaatt atgggatacc ccgagcagcg ttaattctgcg ccgcgtttta 600
gatcctgtgc gcgatgaatt ttcaaccgcg ggcgcggatg gtaaacgcgt ggataaaccg 660gatcctgtgc gcgatgaatt ttcaaccgcg ggcgcggatg gtaaacgcgt ggataaaccg 660
atgccggaac gcgttaaagg ttgggcgcgc gtgattcaga aatatggcga ctggagcatg 720atgccggaac gcgttaaagg ttgggcgcgc gtgattcaga aatatggcga ctggagcatg 720
tatcgctttc tgaccgaaga agcgggcttt gatgaacgca ccctggattt agttggcacc 780tatcgctttc tgaccgaaga agcgggcttt gatgaacgca ccctggattt agttggcacc 780
ctggaaaact taaccagccg cctgccgtta agctttgtgc atagctttat tagccagacc 840ctggaaaact taaccagccg cctgccgtta agctttgtgc atagctttat tagccagacc 840
ctgatttcac cggataccgc gttttgggaa ctggttggtg gcaccgcgag cttacctgat 900ctgatttcac cggataccgc gttttgggaa ctggttggtg gcaccgcgag cttacctgat 900
gcgctgctga aaaaagtgga tgatgtgctg cgcttagatc gtcgtgcgac ccgcattgaa 960gcgctgctga aaaaagtgga tgatgtgctg cgcttagatc gtcgtgcgac ccgcattgaa 960
tattggagcc cggatcgtac tggtgcggat cgtgcgaccc atgttcgtga aggtggtccg 1020tattggagcc cggatcgtac tggtgcggat cgtgcgaccc atgttcgtga aggtggtccg 1020
catgtgtgga ttgataccgt gagcgaaggc cgcgatggca aagttgtgcg cgaacagttt 1080catgtgtgga ttgataccgt gagcgaaggc cgcgatggca aagttgtgcg cgaacagttt 1080
actggcgatc tggcgattgt gaccgtgccg tttaccggtc tgcgccatgt tcaagtgagc 1140actggcgatc tggcgattgt gaccgtgccg tttaccggtc tgcgccatgt tcaagtgagc 1140
ccgctgatga gctatggtaa acgtcgcgcg gtgaccgaac tgcattatga tagcgcgacc 1200ccgctgatga gctatggtaa acgtcgcgcg gtgaccgaac tgcattatga tagcgcgacc 1200
aaagtgctgc tggaatttag ccgccgctgg tgggaattta ccgaagaaga ttggaaacgc 1260aaagtgctgc tggaatttag ccgccgctgg tgggaattta ccgaagaaga ttggaaacgc 1260
gaactggaag atgttcgccc gggcttatat gcagcgtatc gcgatggtaa agcgcctgcg 1320gaactggaag atgttcgccc gggcttatat gcagcgtatc gcgatggtaa agcgcctgcg 1320
gatggtagct tattaggcac ccatccgtca gttccgcatg gccatattag ccaagcgcag 1380gatggtagct tattaggcac ccatccgtca gttccgcatg gccatattag ccaagcgcag 1380
cgtgcacatt atgcggcgaa ctattgggaa ggccgcgatc aacctgaagc ggcgcatatt 1440cgtgcacatt atgcggcgaa ctattgggaa ggccgcgatc aacctgaagc ggcgcatatt 1440
gttggtggtg gcagcgttag cgataacccg aaccgcttta tgtttaaccc gagccatccg 1500gttggtggtg gcagcgttag cgataacccg aaccgcttta tgtttaaccc gagccatccg 1500
gttcctggta gcgaaggtgg tgttgtgctg gcggtttatt gctgggcgga tgatgcaagc 1560gttcctggta gcgaaggtgg tgttgtgctg gcggtttatt gctgggcgga tgatgcaagc 1560
cgttgggata gcctggatga tgaagcgcgc tatccgcttg cactgtgtgg tctgcaacag 1620cgttgggata gcctggatga tgaagcgcgc tatccgcttg cactgtgtgg tctgcaacag 1620
gtttatggcc agcgcgtgga agtgttttat accggcgcgg gtcgtactca atcatggctg 1680gtttatggcc agcgcgtgga agtgttttat accggcgcgg gtcgtactca atcatggctg 1680
cgtgatccgt atgcgtatgg cgaagcgagc gttttattac ctggccagca taccgaatta 1740cgtgatccgt atgcgtatgg cgaagcgagc gttttattac ctggccagca taccgaatta 1740
ctgggcgcga ttcgcgaacc tgaaggccct ttacattttg cgggcgatca tacctcagtg 1800ctgggcgcga ttcgcgaacc tgaaggccct ttacattttg cgggcgatca tacctcagtg 1800
aaaccgagct ggattgaagg tgcggtggaa agcggtgttc gtgcggcgtt agaagcgcat 1860aaaccgagct ggattgaagg tgcggtggaa agcggtgttc gtgcggcgtt agaagcgcat 1860
ttagcgtaa 1869ttagcgtaa 1869
<210> 9<210> 9
<211> 81<211> 81
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 9<400> 9
aactgttgac aattaatcat cggctcgtat aatgtgtgga attgtgagcg gataacaatt 60aactgttgac aattaatcat cggctcgtat aatgtgtgga attgtgagcg gataacaatt 60
tcacacagga aacagaatta a 81tcacacagga aacagaatta a 81
<210> 10<210> 10
<211> 66<211> 66
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 10<400> 10
tgaaatgagc tgttgacaat taatcatccg gctcgtataa tgtgtggaat tgtgagcgga 60tgaaatgagc tgttgacaat taatcatccg gctcgtataa tgtgtggaat tgtgagcgga 60
taacaa 66taacaa 66
<210> 11<210> 11
<211> 21<211> 21
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 11<400> 11
ctttaagaag gagatataca t 21ctttaagaag gagatataca t 21
<210> 12<210> 12
<211> 64<211> 64
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 12<400> 12
cactacgcac ctgcaaaata agctttaaga aggagatata catatggcgg ttcctgcgaa 60cactacgcac ctgcaaaata agctttaaga aggagatata catatggcgg ttcctgcgaa 60
aagc 64aagc 64
<210> 13<210> 13
<211> 64<211> 64
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 13<400> 13
cttttcgtta tgttgcgaca tatgtatatc tccttcttaa agttacgcta aatgcgcttc 60cttttcgtta tgttgcgaca tatgtatatc tccttcttaa agttacgcta aatgcgcttc 60
taac 64taac 64
<210> 14<210> 14
<211> 64<211> 64
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 14<400> 14
gttagaagcg catttagcgt aactttaaga aggagatata catatgtcgc aacataacga 60gttagaagcg catttagcgt aactttaaga aggagatata catatgtcgc aacataacga 60
aaag 64aaag 64
<210> 15<210> 15
<211> 47<211> 47
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 15<400> 15
cactacgcac ctgcaaaaat gctcaggcag gaattttgtc aatctta 47cactacgcac ctgcaaaaat gctcaggcag gaattttgtc aatctta 47
<210> 16<210> 16
<211> 41<211> 41
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 16<400> 16
cactacgcac ctgcaaaagc atgcctgcag gtcgactcta g 41cactacgcac ctgcaaaagc atgcctgcag gtcgactcta g 41
<210> 17<210> 17
<211> 42<211> 42
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 17<400> 17
cactacgcac ctgcaaaact taattaattc tgtttcctgt gt 42cactacgcac ctgcaaaact taattaattc tgtttcctgt gt 42
<210> 18<210> 18
<211> 48<211> 48
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 18<400> 18
cactacgcac ctgcaaaact atgccaagtg tgcttcgagt gctgcacg 48cactacgcac ctgcaaaact atgccaagtg tgcttcgagt gctgcacg 48
<210> 19<210> 19
<211> 60<211> 60
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 19<400> 19
cactacgcac ctgcaaaact ttaagaagga gatatacata tgtcgcaaca taacgaaaag 60cactacgcac ctgcaaaact ttaagaagga gatatacata tgtcgcaaca taacgaaaag 60
<210> 20<210> 20
<211> 85<211> 85
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 20<400> 20
atagaactgt tgacaattaa tcatcggctc gtataatgtg tggaattgtg agcggataac 60atagaactgt tgacaattaa tcatcggctc gtataatgtg tggaattgtg agcggataac 60
aatttcacac aggaaacaga attaa 85aatttcacac aggaaacaga attaa 85
<210> 21<210> 21
<211> 83<211> 83
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 21<400> 21
aaagttaatt ctgtttcctg tgtgaaattg ttatccgctc acaattccac acattatacg 60aaagttaatt ctgtttcctg tgtgaaattg ttatccgctc acaattccac attatacg 60
agccgatgat taagtcaaca gtt 83agccgatgat taagtcaaca gtt 83
<210> 22<210> 22
<211> 70<211> 70
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 22<400> 22
atagtgaaat gagctgttga caattaatca tccggctcgt ataatgtgtg gaattgtgag 60atagtgaaat gagctgttga caattaatca tccggctcgt ataatgtgtg gaattgtgag 60
cggataacaa 70cggataacaa 70
<210> 23<210> 23
<211> 70<211> 70
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 23<400> 23
aaagttgtta tccgctcaca attccacaca ttatacgagc cggatgatta attgtcaaca 60aaagttgtta tccgctcaca attccacaca ttatacgagc cggatgatta attgtcaaca 60
gctcatttca 70gctcatttca 70
<210> 24<210> 24
<211> 35<211> 35
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 24<400> 24
gctttattag ccagaccctg atttcaccgg atacc 35gctttattag ccagaccctg atttcaccgg atacc 35
<210> 25<210> 25
<211> 34<211> 34
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 25<400> 25
aaatcagggt ctggctaata aagctatgca caaa 34aaatcagggt ctggctaata aagctatgca caaa 34
<210> 26<210> 26
<211> 33<211> 33
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 26<400> 26
aagcgcgcta tccgcttgca ctgtgtggtc tgc 33aagcgcgcta tccgcttgca ctgtgtggtc tgc 33
<210> 27<210> 27
<211> 32<211> 32
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 27<400> 27
acagtgcaag cggatagcgc gcttcatcat cc 32acagtgcaag cggatagcgc gcttcatcat cc 32
<210> 28<210> 28
<211> 30<211> 30
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 28<400> 28
catgcatatg gcggttcctg cgaaaagcac 30catgcatatg gcggttcctg cgaaaagcac 30
<210> 29<210> 29
<211> 40<211> 40
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 29<400> 29
ctagctcgag cgctaaatgc gcttctaacg ccgcacgaac 40ctagctcgag cgctaaatgc gcttctaacg ccgcacgaac 40
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910787949.3A CN110283800B (en) | 2019-08-26 | 2019-08-26 | Glucose oxidation enzyme mutant, double enzyme coexpression vectors and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910787949.3A CN110283800B (en) | 2019-08-26 | 2019-08-26 | Glucose oxidation enzyme mutant, double enzyme coexpression vectors and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110283800A true CN110283800A (en) | 2019-09-27 |
CN110283800B CN110283800B (en) | 2019-11-05 |
Family
ID=68025185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910787949.3A Active CN110283800B (en) | 2019-08-26 | 2019-08-26 | Glucose oxidation enzyme mutant, double enzyme coexpression vectors and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110283800B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112625993A (en) * | 2021-01-05 | 2021-04-09 | 雅本化学股份有限公司 | Preparation of alpha-ketoglutaric acid by microbial conversion method |
EP4130023A4 (en) * | 2020-03-24 | 2024-04-24 | Ajinomoto Co., Inc. | L-glutamic acid oxidaze mutant |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106282205A (en) * | 2015-06-12 | 2017-01-04 | 上海市农业科学院 | A kind of high than L-GLOD gene multisite mutant alive and its preparation method and application |
CN109266664A (en) * | 2018-10-23 | 2019-01-25 | 南京工业大学 | Method for improving stability of glutamate oxidase by using fusion truncated expression strategy |
CN109295023A (en) * | 2018-11-09 | 2019-02-01 | 南京红杉生物科技有限公司 | Glucose oxidation enzyme mutant, nucleic acid molecules and application and the method for preparing ketoglutaric acid |
-
2019
- 2019-08-26 CN CN201910787949.3A patent/CN110283800B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106282205A (en) * | 2015-06-12 | 2017-01-04 | 上海市农业科学院 | A kind of high than L-GLOD gene multisite mutant alive and its preparation method and application |
CN109266664A (en) * | 2018-10-23 | 2019-01-25 | 南京工业大学 | Method for improving stability of glutamate oxidase by using fusion truncated expression strategy |
CN109295023A (en) * | 2018-11-09 | 2019-02-01 | 南京红杉生物科技有限公司 | Glucose oxidation enzyme mutant, nucleic acid molecules and application and the method for preparing ketoglutaric acid |
Non-Patent Citations (3)
Title |
---|
GAZI SAKIR HOSSAIN ET AL: "Improved production of α-ketoglutaric acid (α-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of l-amino aciddeaminase and deletion of the α-KG utilization pathway", 《JOURNAL OF BIOTECHNOLOGY》 * |
QINGDAI LIU ET AL: "Co-expression of L-glutamate oxidase and catalase in Escherichia coli to produce a-ketoglutaric acid by whole-cell biocatalyst", 《BIOTECHNOL LETT》 * |
牛盼清等: "酶法转化L-谷氨酸生产α-酮戊二酸", 《生物工程学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4130023A4 (en) * | 2020-03-24 | 2024-04-24 | Ajinomoto Co., Inc. | L-glutamic acid oxidaze mutant |
CN112625993A (en) * | 2021-01-05 | 2021-04-09 | 雅本化学股份有限公司 | Preparation of alpha-ketoglutaric acid by microbial conversion method |
CN112625993B (en) * | 2021-01-05 | 2023-01-20 | 雅本化学股份有限公司 | Preparation of alpha-ketoglutaric acid by microbial conversion method |
Also Published As
Publication number | Publication date |
---|---|
CN110283800B (en) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111635898B (en) | Glutamic acid decarboxylase mutant and application thereof in preparation of gamma-aminobutyric acid | |
CN107723307A (en) | A kind of method and its application for efficiently preparing the epimerase of D psicoses 3 | |
CN104593308B (en) | A kind of genetic engineering bacterium and its construction method and the application in production xylitol | |
CN105907732A (en) | D-lactic dehydrogenase, engineering strain containing D-lactic dehydrogenase and construction method and use of engineering strain | |
CN114107152B (en) | Construction method and application of high-yield 3-fucosyllactose microorganism | |
CN106929521B (en) | Aldehyde ketone reductase gene recombination co-expression vector, engineering bacterium and application thereof | |
WO2023103578A1 (en) | A genetically engineered bacterium and a preparation method and use thereof | |
CN112662637B (en) | Formate dehydrogenase mutant and preparation method and application thereof | |
WO2022174597A1 (en) | Genetically engineered bacterium for producing l-sarcosine, construction method therefor and use thereof | |
CN110373370B (en) | Catalytic system coupled with ATP regeneration system and application of catalytic system in glutathione production process | |
CN112391372A (en) | Glutamic acid decarboxylase mutant, genetic engineering bacterium and application thereof | |
CN109576239B (en) | Heat-resistant phosphorylase and application thereof | |
CN110283800B (en) | Glucose oxidation enzyme mutant, double enzyme coexpression vectors and its application | |
CN114058560B (en) | Process for the production of glycine | |
US20210324391A1 (en) | Recombinant microorganism, preparation method therefor and application thereof in producing coenzyme q10 | |
CN107881159A (en) | A kind of method of raising D amino acid oxidase solubility heterogenous expressions | |
CN113462678B (en) | A glutamate decarboxylase mutant | |
CN113355299B (en) | Ketoacid reductase, genes, engineered bacteria and their application in the synthesis of chiral aromatic 2-hydroxy acids | |
CN101613707B (en) | A method for producing glutathione with metabolic engineering bacteria | |
CN103849639B (en) | A kind of method improving halfcystine utilization ratio biosynthesis of glutathione | |
CN112410353B (en) | A kind of fkbS gene, genetically engineered bacteria containing it and its preparation method and application | |
CN114672525A (en) | Biosynthesis method and application of N-acetyl-5-methoxytryptamine | |
CN111349644A (en) | Bacterial strain and method for biosynthesis of isoprene glycol | |
CN117363549A (en) | Genetically engineered bacterium for producing 5-hydroxytryptamine and construction method and application thereof | |
CN117511831A (en) | Construction method of ergothioneine-producing escherichia coli |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20190927 Assignee: Shenzhen Xintianhe Biotechnology Co.,Ltd. Assignor: TIANJIN INSTITUTE OF INDUSTRIAL BIOTECHNOLOGY, CHINESE ACADEMY OF SCIENCES Contract record no.: X2025980005526 Denomination of invention: Glutamate oxidase mutants, dual enzyme co expression vectors, and their applications Granted publication date: 20191105 License type: Exclusive License Record date: 20250318 |