CN110252385A - 一种催化裂化催化剂 - Google Patents

一种催化裂化催化剂 Download PDF

Info

Publication number
CN110252385A
CN110252385A CN201910520737.9A CN201910520737A CN110252385A CN 110252385 A CN110252385 A CN 110252385A CN 201910520737 A CN201910520737 A CN 201910520737A CN 110252385 A CN110252385 A CN 110252385A
Authority
CN
China
Prior art keywords
catalytic cracking
silicon powder
pore volume
cracking catalyst
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910520737.9A
Other languages
English (en)
Inventor
王婷
谭映临
石铁磐
高明军
王涛
赵博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Hui Cheng Environmental Technology Co Ltd
Original Assignee
Qingdao Hui Cheng Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Hui Cheng Environmental Technology Co Ltd filed Critical Qingdao Hui Cheng Environmental Technology Co Ltd
Priority to CN201910520737.9A priority Critical patent/CN110252385A/zh
Publication of CN110252385A publication Critical patent/CN110252385A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

一种催化裂化催化剂,含有作为载体的硅粉,氧化铝粘结剂及改性Y型分子筛,所述硅粉来源于废催化裂化催化剂,含氧化硅含量为80wt%~98wt%,氧化铝含量为1wt%~10wt%,粒径在0~5μm的粒子数占总粒子数的百分比不小于90%,用低温氮气吸脱附法测定的总比表面积不低于120m2/g,孔体积0.15ml/g~2.0ml/g,孔径分布为0.6nm~220nm,孔径为2nm~50nm的中孔孔体积占总孔体积的百分比为40%~60%。该催化裂化催化剂采用硅粉作为载体,有更高的重油裂解能力,转化率提高,总液收提高,轻质油收率提高,降低干气、液化气产率,焦炭选择性更好。

Description

一种催化裂化催化剂
技术领域
本发明涉及一种采用硅粉作为载体的重油催化裂化催化剂。
技术背景
流化催化裂化(FCC)是国内外重油深度加工的重要手段。随着原油的性质越来越差,催化裂化装置加工的原料也不断变重变差。为应对原油的重质化、劣质化以及环保对产品质量的要求越来越高,目前许多企业纷纷采用原油加氢、渣油加氢、加氢裂化、汽柴油加氢等多种手段,同时一些新的催化裂化工艺应运而生,如MIP、CGP、FDFCC等。但无论是原油加氢还是渣油加氢或者新的催化裂化工艺,都要求裂化催化剂既具有强的大分子裂解能力,达到降低油浆产率及较低的干气和焦炭选择性,并提高有价值产品收率的目的,这就给重油催化裂化催化剂的研发带来了新的挑战,不但要求沸石具有优良的催化性能,而且载体作用也显得日益重要。
催化裂化催化剂主要由载体(也称基质)、粘结剂、活性组分三部分组成。早期的FCC催化剂载体主要用于支持活性组分,使活性组分分散在其表面上,提高催化剂的反应性能则主要通过活性组分的改性或提高活性组分在催化剂中的比例来实现。但是随着原料油越来越重,重油大分子所占比例越来越大,而作为烃类分子裂化活性中心的分子筛其孔道直径只有0.6nm~0.8nm,重油大分子的直径为2.5nm~15nm,合适的孔大小是反应物分子直径的2~6倍,必须先将重油大分子先裂化成较小分子后才能进入分子筛孔道继续转化为有用的产品,此外重油大分子的裂解还需要合适的酸性。因此催化裂化载体具有更多的中大孔孔分布和相匹配的酸性,提高载体的活性,会有利于提高重油大分子的预裂解能力,提高轻质油产品收率及降低焦炭产率。
专利CN1210031A公开了一种催化裂化载体的改性方法,将高岭土与硫酸铵的混合物于高温下焙烧后水洗得到改性后的高岭土,但该方法制备的催化剂载体孔体积偏小,大孔分布比例偏低,由该载体制备的催化剂的活性偏低,油浆产率偏高。
专利CN1098130A公开了一种裂化催化剂及载体的制备方法,该方法包括将粘土与水混合打浆,用盐酸酸化,加入拟薄水铝石打浆,在老化后加入铝溶胶搅拌均匀再加入研磨好的分子筛,继续打浆,喷雾干燥、水洗、干燥。该方法采用铝溶胶和拟薄水铝石的复合铝基粘结剂,但该方法制备的催化剂及载体的孔体积偏小,中大孔分布比例偏低,不适于重油催化裂解。
专利CN104549541A公开了一种重油催化裂化催化剂载体的制备方法,该方法在催化剂载体的制备过程中加入至少两种硅源,将粘土、氧化铝和氧化硅按照一定的比例进行混合并经过一定的过程,得到催化剂载体,该载体的微孔分布比例较大,酸性弱,对于重油大分子的预裂解能力不强,所以由该载体制得的催化剂的微反活性很低。
专利CN1388213A、CN1690170A公开了一种硅铝基质石油烃裂化催化剂的制备方法,该方法无需单独制备无定形硅铝,并且缩短制备流程,主要是在催化剂的制备过程中引入水玻璃或者硅溶胶。但该方法制备的催化剂载体的活性不高,孔结构没有明显改善。
本发明中所使用的硅粉,是通过对催化裂化废催化剂进行改性分解得到的,不仅具有优异的孔结构性质,还具有适量的可裂化重油大分子的酸性位,所以本发明中的载体可以解决上述公开方法中存在的载体孔分布不合理及酸性不足导致的催化剂活性不高、产物分布差的问题。
发明内容
本发明的目的是为了解决现有技术的重油催化裂化催化剂载体不能适用于重油催化裂化的问题,提供一种采用特殊载体的重油催化裂化催化剂。
本发明提供一种催化裂化催化剂,以催化剂的重量为基准,含有以干基计5wt%~45wt%的硅粉,以氧化铝计10wt%~30wt%的氧化铝粘结剂和以干基计25wt%~40wt%的改性Y型分子筛,所述硅粉,是作为载体,其氧化硅含量为80wt%~98wt%,氧化铝含量为1wt%~10wt%,粒径在0~5μm的粒子数占总粒子数的百分比不小于90%,用低温氮气吸脱附法测定的总比表面积不低于120m2/g,孔体积0.15ml/g~2.0ml/g,孔径分布为0.6nm~220nm,孔径为2nm~50nm的中孔孔体积占总孔体积的百分比为40%~60%。
本发明提供的催化裂化催化剂中,所述的硅粉,粒径在0~5μm的粒子数占总粒子数的百分比为92%~98%。
本发明提供的催化裂化催化剂中,所述的硅粉,用低温氮气吸脱附法测定的总比表面积150m2/g~300m2/g,孔体积0.3ml/g~1.6ml/g。
本发明提供的催化裂化催化剂中,所述的硅粉,孔径分布为1nm~200nm,孔径为2nm~50nm的中孔孔体积占总孔体积的百分比为44%~56%。
本发明提供的催化裂化催化剂中,所述的硅粉,来源于废催化裂化催化剂。
与现有技术相比,本发明采用的载体具有以下优点:
1、硅粉来源于废催化裂化催化剂,既解决了废催化裂化催化剂的处理难题,又提供了一种优质的催化剂载体;
2、硅粉具有较高的比表面积,孔径分布范围广且中孔大孔分布合理,孔体积较大,有利于重油大分子进入载体孔道中进行预裂化,降低油浆的收率。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1
(1)称取240g铝溶胶,加入800g水,搅拌均匀;
(2)称取640g硅粉,加入步骤(1)中的浆液中,充分搅拌均匀;
(3)称取500gREY分子筛和300gREUSY分子筛,加入2200g水打浆,搅拌均匀后加入步骤(2)中的浆液中;
(4)称取320g酸溶拟薄水铝石,加入步骤(3)中的浆液中,再加入1250g水,充分搅拌均匀;
(5)用LX-15离心喷雾塔喷雾成型,然后经焙烧、洗涤、干燥,制备成催化裂化催化剂,记作Cat-1。
实施例2
(1)称取200g铝溶胶,加入1000g水,搅拌均匀;
(2)称取740g硅粉,加入步骤(1)中的浆液中,充分搅拌均匀;
(3)称取700gUSY分子筛,加入2000g水打浆,搅拌均匀后加入步骤(2)中的浆液中;
(4)称取360g酸溶拟薄水铝石,加入步骤(3)中的浆液中,再加入1250g水,充分搅拌均匀;
(5)用LX-15离心喷雾塔喷雾成型,然后经焙烧、洗涤、干燥,制备成催化裂化催化剂,记作Cat-2。
实施例3
(1)称取200g铝溶胶,加入1500g水,搅拌均匀;
(2)称取840g硅粉,加入步骤(1)中的浆液中,充分搅拌均匀;
(3)称取600gREY分子筛,加入1400g水打浆,搅拌均匀后加入步骤(2)中的浆液中;
(4)称取360g酸溶拟薄水铝石,加入步骤(3)中的浆液中,再加入1350g水,充分搅拌均匀;
(5)用LX-15离心喷雾塔喷雾成型,然后经焙烧、洗涤、干燥,制备成催化裂化催化剂,记作Cat-3。
实施例4
(1)称取200g铝溶胶,加入1600g水,搅拌均匀;
(2)称取900g硅粉,加入步骤(1)中的浆液中,充分搅拌均匀;
(3)称取640gREUSY分子筛,加入1800g水打浆,搅拌均匀后加入步骤(2)中的浆液中;
(4)称取260g酸溶拟薄水铝石,加入步骤(3)中的浆液中,再加入850g水,充分搅拌均匀;
(5)用LX-15离心喷雾塔喷雾成型,然后经焙烧、洗涤、干燥,制备成催化裂化催化剂,记作Cat-4。
对比例1
按照CN1210031A所述的实施例1制备。
(1)将高岭土与硫酸铵按照硫酸铵:高岭土=0.2~1的干基重量比混合均匀;
(2)将混合物放入马弗炉中于400℃焙烧2h,冷却后取出产物;
(3)将产物用10倍于原高岭土重量的去离子水于80℃下浆化洗涤30分钟,过滤后的产物经110℃干燥2小时,记作DB-1。
对比例2
按照CN1098130A所述的实施例1制备。
(1)载体制备。取56.3克高岭土,加脱离子水110毫升混合打浆半小时,加HCl2.5毫升酸化打浆半小时,加入含13克Al2O3的拟薄水铝石搅拌半小时,在55±5℃老化2小时,加入含5.7克Al2O3铝溶胶搅拌15分钟,得到载体浆液。
(2)催化剂制备。搅拌下,向步骤(1)得到的载体浆液中加入25克研磨好的、晶胞常数为2.450nm的REUSY分子筛,继续打浆半小时,然后转移到15cmX30cm的搪瓷盘中,置于110℃烘箱内干燥,干燥后的样品经粉碎、取20-40目的颗粒,经600℃焙烧1小时即得样品,记作DB-2。
实施例和对比例中催化剂的理化性质分析结果如下:
表1催化剂分析数据
实施例及对比例中的催化剂评价结果如下:
五种催化剂采用北京威肯杜科技股份有限公司生产的MAT-1重油微反装置进行微反活性测定,反应原料为大港直馏轻柴油(馏分235℃~337℃),反应温度为460℃,反应时间70s,催化剂装量5g,进油量1.50g,微反结果见下表。
表2催化剂微反活性结果
五种催化剂的反应性能采用FCC固定流化床进行评价,选取FCC装置所用的原料油作为评价用原料油,原料油性质见表3,反应温度510℃,质量空速20h-1,剂油重量比4.6,评价结果见表4。
表3原料油基本性质
表4催化剂评价结果
从表1数据可以发现,实施例1~4中制备的催化裂化催化剂的物理指标都优于对比例1和2,实施例的催化剂不仅具有较低的磨损指数,而且因为采用硅粉作为载体,比表面积和孔体积的数值均得到明显提高,远远高于对比例的催化剂,硅粉的加入使得催化剂的孔分布更合理,理论上更有利于重油的裂解反应。
从表2数据来看,采用硅粉作为载体可明显提高催化剂的微反活性,从固定床评价数据分析,采用硅粉作为载体不仅可以明显降低重油的收率,还可以在提高转化率的同时,使得干气和焦炭产率不升高,产物分布得到了明显改善,更符合炼厂对高目的产物收率的需求。

Claims (5)

1.一种催化裂化催化剂,含有以干基计5wt%~45wt%的硅粉,以氧化铝计10wt%~30wt%的氧化铝粘结剂和以干基计25wt%~40wt%的改性Y型分子筛,所述硅粉,是作为载体,其氧化硅含量为80wt%~98wt%,氧化铝含量为1wt%~10wt%,粒径在0~5μm的粒子数占总粒子数的百分比不小于90%,用低温氮气吸脱附法测定的总比表面积不低于120m2/g,孔体积0.15ml/g~2.0ml/g,孔径分布为0.6nm~220nm,孔径为2nm~50nm的中孔孔体积占总孔体积的百分比为40%~60%。
2.按照权利要求1所述的催化裂化催化剂,其特征在于,所述的硅粉粒径在0~5μm的粒子数占总粒子数的百分比为92%~98%。
3.按照权利要求1所述的催化裂化催化剂,其特征在于,所述的硅粉用低温氮气吸脱附法测定的总比表面积150m2/g~300m2/g,孔体积0.3ml/g~1.6ml/g。
4.按照权利要求1所述的催化裂化催化剂,其特征在于,所述的硅粉孔径分布为1nm~200nm,孔径为2nm~50nm的中孔孔体积占总孔体积的百分比为44%~56%。
5.按照权利要求1所述的催化裂化催化剂,其特征在于,所述的硅粉来源于废催化裂化催化剂。
CN201910520737.9A 2019-06-17 2019-06-17 一种催化裂化催化剂 Pending CN110252385A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910520737.9A CN110252385A (zh) 2019-06-17 2019-06-17 一种催化裂化催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910520737.9A CN110252385A (zh) 2019-06-17 2019-06-17 一种催化裂化催化剂

Publications (1)

Publication Number Publication Date
CN110252385A true CN110252385A (zh) 2019-09-20

Family

ID=67918717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910520737.9A Pending CN110252385A (zh) 2019-06-17 2019-06-17 一种催化裂化催化剂

Country Status (1)

Country Link
CN (1) CN110252385A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420696A (zh) * 2020-04-29 2020-07-17 青岛惠城环保科技股份有限公司 一种催化裂化催化剂的制备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093735A (zh) * 1993-01-27 1994-10-19 格雷斯公司 降低流化催化裂化所得汽油中的硫含量
CN101745373A (zh) * 2008-11-28 2010-06-23 中国石油化工股份有限公司 一种催化裂化助剂
CN101745417A (zh) * 2008-11-28 2010-06-23 中国石油化工股份有限公司 一种催化裂化催化剂
CN104030300A (zh) * 2014-07-09 2014-09-10 中国海洋石油总公司 一种催化裂化催化剂粘结剂用硅溶胶的制备方法
CN107321351A (zh) * 2017-07-18 2017-11-07 沈阳化工大学 一种甲烷/二氧化碳重整反应的高效催化剂制备方法
CN108452829A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂
CN108452827A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093735A (zh) * 1993-01-27 1994-10-19 格雷斯公司 降低流化催化裂化所得汽油中的硫含量
CN101745373A (zh) * 2008-11-28 2010-06-23 中国石油化工股份有限公司 一种催化裂化助剂
CN101745417A (zh) * 2008-11-28 2010-06-23 中国石油化工股份有限公司 一种催化裂化催化剂
CN104030300A (zh) * 2014-07-09 2014-09-10 中国海洋石油总公司 一种催化裂化催化剂粘结剂用硅溶胶的制备方法
CN108452829A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂
CN108452827A (zh) * 2017-02-21 2018-08-28 中国石油化工股份有限公司 一种催化裂化催化剂
CN107321351A (zh) * 2017-07-18 2017-11-07 沈阳化工大学 一种甲烷/二氧化碳重整反应的高效催化剂制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
WENQIAN JIAO ET AL.: "Core-Shell Zeolite Y@γ-Al2O3 Nanorod Composites:Optimized Fluid Catalytic Cracking Catalyst Assembly for Processing Heavy Oil", 《CHEMCATCHEM》 *
孙履厚主编: "《精细化工新材料与技术》", 30 April 1998, 中国石化出版社 *
李强等: "不同硅铝比β沸石的理化性质及烃类催化裂化活性", 《物理化学学报》 *
郑发元主编: "《煤焦油加氢技术》", 31 July 2016, 东北师范大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420696A (zh) * 2020-04-29 2020-07-17 青岛惠城环保科技股份有限公司 一种催化裂化催化剂的制备

Similar Documents

Publication Publication Date Title
CN101829592B (zh) 一种高固体含量流化催化裂化催化剂制备方法
EP2617797B1 (en) Aromatic hydrocarbon production process
CN105688977B (zh) 一种含拟薄水铝石的催化裂化催化剂制备方法
CN101745417B (zh) 一种催化裂化催化剂
GB2474119A (en) A catalytic conversion process for producing more diesel and propylene
CN102125870B (zh) 一种重质油催化裂化催化剂的制备方法
AU2014239739B2 (en) Method for manufacturing catalytic cracking catalyst for hydrocarbon oil
CN105813740A (zh) 含磷fcc催化剂
CN101767029B (zh) 一种重油裂化催化剂及其应用
CN105983400B (zh) 一种中孔氧化铝粘结剂的制备方法及其在重油催化裂化催化剂中的应用
CN105312078B (zh) 一种烃油脱硫催化剂及其制备方法和烃油脱硫的方法
TW201425565A (zh) 烴油之催化裂解觸媒及烴油之催化裂解方法
CN104549541B (zh) 一种重油催化裂化催化剂载体和催化剂及其制备方法
CN110252385A (zh) 一种催化裂化催化剂
CN110479361A (zh) 一种降油浆和多产低碳烯烃的助剂及其制备方法与应用
CN106040217A (zh) 一种含拟薄水铝石的催化裂化助剂的制备方法
CN101745373B (zh) 一种催化裂化助剂
JP2020520798A (ja) ボトムアップグレーディングおよび低コークス流動接触分解触媒
JP7046763B2 (ja) 炭化水素油用流動接触分解触媒
CN104549419A (zh) 重油催化裂化催化剂及其制备方法和重油催化裂化的方法
CN107286987A (zh) 一种处理劣质柴油的组合工艺
CN107345154B (zh) 一种劣质柴油的加氢裂化方法
TW201829754A (zh) 一種汽油的處理方法
JP4773420B2 (ja) 炭化水素油の接触分解触媒及び炭化水素油の接触分解方法
CN105983414B (zh) 活性基质的制备方法、含活性基质的催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190920