CN110242497B - Flexible vane type Sabunius wind turbine - Google Patents
Flexible vane type Sabunius wind turbine Download PDFInfo
- Publication number
- CN110242497B CN110242497B CN201910680503.0A CN201910680503A CN110242497B CN 110242497 B CN110242497 B CN 110242497B CN 201910680503 A CN201910680503 A CN 201910680503A CN 110242497 B CN110242497 B CN 110242497B
- Authority
- CN
- China
- Prior art keywords
- blade
- positioning rod
- flexible
- outer positioning
- wind turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
- F03D3/061—Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
- F03D3/062—Rotors characterised by their construction elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
一种柔性叶片式萨布纽斯风轮机,包括四张矩形柔性叶片、四根叶片外定位杆、两根叶片内定位杆、圆盘形叶片安装顶板、圆盘形叶片安装底板及转动轴;柔性叶片每两张为一组,每组柔性叶片均通过两根外定位杆和一根内定位杆固定,两组柔性叶片之间相差180°相位角;顶板和底板半径设为R0,四根叶片外定位杆位于同一条半径为R1的圆周线上,两根叶片内定位杆位于同一条半径为R2的圆周线上,R1=0.9R0~0.95R0,R2=0.1R0~0.15R0,四张矩形柔性叶片展开后的长度为1.1R0~1.4R0,柔性叶片式萨布纽斯风轮机采用三层串联式结构,第一层与第二层之间相差60°的相位角,第一层与第三层之间相差120°的相位角;在三层串联式结构的柔性叶片式萨布纽斯风轮机的外侧套装有导流罩。
A flexible blade Sabnius wind turbine includes four rectangular flexible blades, four blade outer positioning rods, two blade inner positioning rods, a disc-shaped blade mounting top plate, a disc-shaped blade mounting bottom plate and a rotating shaft; There are two sets of flexible blades, and each set of flexible blades is fixed by two outer positioning rods and one inner positioning rod. The phase angle difference between the two sets of flexible blades is 180°; the radius of the top plate and the bottom plate is set to R 0 , and the four The outer positioning rod of the root blade is located on the same circumferential line with a radius of R 1 , and the inner positioning rods of the two blades are located on the same circumferential line with a radius of R 2. R 1 =0.9R 0 ~ 0.95R 0 , R 2 =0.1 R 0 ~ 0.15R 0 , the length of the four rectangular flexible blades after expansion is 1.1R 0 ~ 1.4R 0 , the flexible blade Sabnius wind turbine adopts a three-layer series structure, between the first layer and the second layer There is a phase angle difference of 60°, and a phase angle difference of 120° between the first layer and the third layer; a deflector is installed on the outside of the flexible blade Sabnius wind turbine with a three-layer series structure.
Description
技术领域Technical field
本发明属于萨布纽斯风轮机技术领域,特别是涉及一种柔性叶片式萨布纽斯风轮机。The invention belongs to the technical field of Sabnius wind turbines, and in particular relates to a flexible blade Sabnius wind turbine.
背景技术Background technique
萨布纽斯风轮机是于1925年由芬兰工程师发明,并以其名字命名的阻力型垂直轴风轮机,其通常由两枚半圆筒形的刚性叶片构成,且两枚半圆筒形的刚性叶片整体呈现S型,因此萨布纽斯风轮机也被称为S型风轮机,虽然萨布纽斯风轮机的转数不高,却能产生很大的扭矩,而且不受风向限制,其常被用于提水和风力发电等。The Sabnius wind turbine is a drag-type vertical axis wind turbine invented by a Finnish engineer in 1925 and named after him. It is usually composed of two semi-cylindrical rigid blades, and two semi-cylindrical rigid blades. The overall shape is S-shaped, so the Sabnius wind turbine is also called an S-type wind turbine. Although the number of revolutions of the Sabnius wind turbine is not high, it can generate a large torque and is not limited by the wind direction. It is often It is used for water lifting and wind power generation.
但是,传统的萨布纽斯风轮机一直存在一个明显的不足,即风能利用率较低,最大也不会超过10%,其主要原因为:当来流冲击风轮机叶片时,在迎风侧,其中一枚叶片受到的是有效推力,则另一枚叶片受到的就是阻力,两枚叶片承受的合力才是推动风轮机旋转做功的有效力。However, the traditional Sabnius wind turbine has always had an obvious shortcoming, that is, the wind energy utilization rate is low, and the maximum does not exceed 10%. The main reason is that when the incoming flow impacts the wind turbine blades, on the windward side, One of the blades receives effective thrust, while the other blade receives resistance. The combined force endured by the two blades is the effective force that drives the wind turbine to rotate and do work.
因此,想要进一步提高萨布纽斯风轮机的风能利用率,必须想办法提高推动风轮机旋转做功的有效力,但现阶段并没有有效的解决办法。Therefore, if we want to further improve the wind energy utilization rate of the Sabnius wind turbine, we must find ways to improve the effectiveness of driving the wind turbine to rotate and do work, but there is no effective solution at this stage.
发明内容Contents of the invention
针对现有技术存在的问题,本发明提供一种柔性叶片式萨布纽斯风轮机,首次将柔性叶片引入萨布纽斯风轮机的设计中,有效提高了推动风轮机旋转做功的有效力,最终进一步提高了风能利用率。In view of the problems existing in the existing technology, the present invention provides a flexible blade type Sabnius wind turbine. For the first time, flexible blades are introduced into the design of the Sabnius wind turbine, which effectively improves the effectiveness of promoting the rotation of the wind turbine to produce work. Ultimately, wind energy utilization is further improved.
为了实现上述目的,本发明采用如下技术方案:一种柔性叶片式萨布纽斯风轮机,包括第一柔性叶片、第二柔性叶片、第三柔性叶片、第四柔性叶片、叶片安装顶板、叶片安装底板及转动轴;所述叶片安装顶板和叶片安装底板尺寸相同且均采用圆盘形结构,叶片安装顶板和叶片安装底板均水平设置,所述转动轴竖直固连在叶片安装顶板与叶片安装底板圆心之间;在所述叶片安装顶板和叶片安装底板外圆周侧竖直固装有四根叶片外定位杆,分别为第一叶片外定位杆、第二叶片外定位杆、第三叶片外定位杆及第四叶片外定位杆;在所述叶片安装顶板和叶片安装底板圆心侧竖直固装有两根叶片内定位杆,分别为第一叶片内定位杆和第二叶片内定位杆;所述第一柔性叶片、第二柔性叶片、第三柔性叶片及第四柔性叶片尺寸相同且均采用矩形结构,第一柔性叶片一端固连在第一叶片外定位杆上,第一柔性叶片另一端固连在第二叶片外定位杆上,所述第二柔性叶片一端固连在第二叶片外定位杆上,第二柔性叶片另一端固连在第一叶片内定位杆上,所述第三柔性叶片一端固连在第三叶片外定位杆上,第三柔性叶片另一端固连在第四叶片外定位杆上,所述第四柔性叶片一端固连在第四叶片外定位杆上,第四柔性叶片另一端固连在第二叶片内定位杆上;所述第一叶片外定位杆、第三叶片外定位杆及转动轴位于同一个竖直平面内,所述第二叶片外定位杆、第四叶片外定位杆及转动轴位于同一个竖直平面内,所述第一叶片内定位杆、第二叶片内定位杆及转动轴位于同一个竖直平面内;所述第一叶片外定位杆、第三叶片外定位杆及转动轴所在竖直平面与第二叶片外定位杆、第四叶片外定位杆及转动轴所在竖直平面具有60°夹角;所述第二叶片外定位杆、第四叶片外定位杆及转动轴所在竖直平面与第一叶片内定位杆、第二叶片内定位杆及转动轴所在竖直平面相垂直。In order to achieve the above object, the present invention adopts the following technical solution: a flexible blade Sabnius wind turbine, including a first flexible blade, a second flexible blade, a third flexible blade, a fourth flexible blade, a blade mounting top plate, a blade Install the bottom plate and the rotation shaft; the blade installation top plate and the blade installation bottom plate have the same size and adopt a disc-shaped structure. The blade installation top plate and the blade installation bottom plate are both horizontally arranged. The rotation shaft is vertically connected between the blade installation top plate and the blade. Between the center of the installation bottom plate; four blade outer positioning rods are vertically fixed on the outer circumferential side of the blade installation top plate and the blade installation bottom plate, which are the first blade outer positioning rod, the second blade outer positioning rod, and the third blade outer positioning rod. The outer positioning rod and the fourth blade outer positioning rod; two blade inner positioning rods are vertically fixed on the central side of the blade installation top plate and the blade installation bottom plate, which are the first blade inner positioning rod and the second blade inner positioning rod respectively. ; The first flexible blade, the second flexible blade, the third flexible blade and the fourth flexible blade are of the same size and adopt a rectangular structure. One end of the first flexible blade is fixedly connected to the outer positioning rod of the first blade. The first flexible blade The other end is fixed on the outer positioning rod of the second blade, one end of the second flexible blade is fixed on the outer positioning rod of the second blade, and the other end of the second flexible blade is fixed on the inner positioning rod of the first blade. One end of the third flexible blade is fixed on the outer positioning rod of the third blade, the other end of the third flexible blade is fixed on the outer positioning rod of the fourth blade, and one end of the fourth flexible blade is fixed on the outer positioning rod of the fourth blade. , the other end of the fourth flexible blade is fixedly connected to the inner positioning rod of the second blade; the outer positioning rod of the first blade, the outer positioning rod of the third blade and the rotation axis are located in the same vertical plane, and the outer positioning rod of the second blade The positioning rod, the fourth blade outer positioning rod and the rotation axis are located in the same vertical plane, the first blade inner positioning rod, the second blade inner positioning rod and the rotation axis are located in the same vertical plane; the first blade inner positioning rod, the second blade inner positioning rod and the rotation axis are located in the same vertical plane; The vertical plane where the blade outer positioning rod, the third blade outer positioning rod and the rotation axis are located has an included angle of 60° with the vertical plane where the second blade outer positioning rod, the fourth blade outer positioning rod and the rotation axis are located; the second blade The vertical plane where the outer positioning rod, the fourth blade outer positioning rod and the rotation axis are located is perpendicular to the vertical plane where the first blade inner positioning rod, the second blade inner positioning rod and the rotation axis are located.
所述叶片安装顶板和叶片安装底板的半径设为R0;所述第一叶片外定位杆、第二叶片外定位杆、第三叶片外定位杆及第四叶片外定位杆位于同一条圆周线上,且该圆周线的半径设为R1;所述第一叶片内定位杆和第二叶片内定位杆位于同一条圆周线上,且该圆周线的半径设为R2;其中,R1=0.9R0~0.95R0,R2=0.1R0~0.15R0。The radius of the blade mounting top plate and the blade mounting bottom plate is set to R 0 ; the first blade outer positioning rod, the second blade outer positioning rod, the third blade outer positioning rod and the fourth blade outer positioning rod are located on the same circumferential line on the same circumferential line, and the radius of the circumferential line is set to R 1 ; the first blade inner positioning rod and the second blade inner positioning rod are located on the same circumferential line, and the radius of the circumferential line is set to R 2 ; where, R 1 =0.9R 0 ~0.95R 0 , R 2 =0.1R 0 ~0.15R 0 .
当所述第一柔性叶片、第二柔性叶片、第三柔性叶片及第四柔性叶片展开成为平面时,叶片的长度为1.1R0~1.4R0。When the first flexible blade, the second flexible blade, the third flexible blade and the fourth flexible blade are unfolded into a plane, the length of the blade is 1.1R 0 to 1.4R 0 .
所述的柔性叶片式萨布纽斯风轮机采用三层串联式结构,第一层与第二层之间相差60°的相位角,第一层与第三层之间相差120°的相位角。The flexible blade Sabnius wind turbine adopts a three-layer series structure. The phase angle difference between the first layer and the second layer is 60°, and the phase angle difference between the first layer and the third layer is 120°. .
在三层串联式结构的柔性叶片式萨布纽斯风轮机的外侧套装有导流罩。A deflector is installed on the outside of the flexible blade Sabnius wind turbine with a three-layer tandem structure.
本发明的有益效果:Beneficial effects of the present invention:
本发明的柔性叶片式萨布纽斯风轮机,首次将柔性叶片引入萨布纽斯风轮机的设计中,有效提高了推动风轮机旋转做功的有效力,最终进一步提高了风能利用率。The flexible blade Sabnius wind turbine of the present invention introduces flexible blades into the design of the Sabnius wind turbine for the first time, which effectively improves the effectiveness of driving the wind turbine to rotate and do work, and ultimately further improves the wind energy utilization rate.
附图说明Description of drawings
图1为本发明的一种柔性叶片式萨布纽斯风轮机的立体图;Figure 1 is a perspective view of a flexible blade Sabnius wind turbine of the present invention;
图2为本发明的一种柔性叶片式萨布纽斯风轮机(叶片安装顶板未示出)的俯视图;Figure 2 is a top view of a flexible blade Sabnius wind turbine of the present invention (the blade mounting top plate is not shown);
图3为本发明的一种柔性叶片式萨布纽斯风轮机(第一叶片外定位杆、第三叶片外定位杆及转动轴所在竖直平面与来流方向呈90°夹角)的运行状态图;Figure 3 shows the operation of a flexible blade Sabnius wind turbine according to the present invention (the vertical plane where the first blade outer positioning rod, the third blade outer positioning rod and the rotation axis are located forms an angle of 90° with the incoming flow direction) State diagram;
图4为本发明的一种柔性叶片式萨布纽斯风轮机(第一叶片外定位杆、第三叶片外定位杆及转动轴所在竖直平面与来流方向呈30°夹角)的运行状态图;Figure 4 shows the operation of a flexible blade Sabnius wind turbine according to the present invention (the vertical plane where the first blade outer positioning rod, the third blade outer positioning rod and the rotation axis are located forms an angle of 30° with the incoming flow direction) State diagram;
图5为本发明的一种柔性叶片式萨布纽斯风轮机(第一叶片外定位杆、第三叶片外定位杆及转动轴所在竖直平面与来流方向呈-30°夹角)的运行状态图;Figure 5 shows a flexible blade Sabnius wind turbine of the present invention (the vertical plane where the first blade outer positioning rod, the third blade outer positioning rod and the rotation axis are located forms an angle of -30° with the incoming flow direction) Operation status diagram;
图6为本发明的一种柔性叶片式萨布纽斯风轮机与导流罩进行配装后的示意图;Figure 6 is a schematic diagram of a flexible blade Sabnius wind turbine assembled with a deflector according to the present invention;
图中,1—第一柔性叶片,2—第二柔性叶片,3—第三柔性叶片,4—第四柔性叶片,5—叶片安装顶板,6—叶片安装底板,7—转动轴,8—第一叶片外定位杆,9—第二叶片外定位杆,10—第三叶片外定位杆,11—第四叶片外定位杆,12—第一叶片内定位杆,13—第二叶片内定位杆,14—柔性叶片式萨布纽斯风轮机,15—导流罩。In the figure, 1 - first flexible blade, 2 - second flexible blade, 3 - third flexible blade, 4 - fourth flexible blade, 5 - blade mounting top plate, 6 - blade mounting bottom plate, 7 - rotating shaft, 8 - The first blade outer positioning rod, 9-the second blade outer positioning rod, 10-the third blade outer positioning rod, 11-the fourth blade outer positioning rod, 12-the first blade inner positioning rod, 13-the second blade inner positioning rod Rod, 14—Flexible blade Sabnius wind turbine, 15—Shroud.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1~6所示,一种柔性叶片式萨布纽斯风轮机,包括第一柔性叶片1、第二柔性叶片2、第三柔性叶片3、第四柔性叶片4、叶片安装顶板5、叶片安装底板6及转动轴7;所述叶片安装顶板5和叶片安装底板6尺寸相同且均采用圆盘形结构,叶片安装顶板5和叶片安装底板6均水平设置,所述转动轴7竖直固连在叶片安装顶板5与叶片安装底板6圆心之间;在所述叶片安装顶板5和叶片安装底板6外圆周侧竖直固装有四根叶片外定位杆,分别为第一叶片外定位杆8、第二叶片外定位杆9、第三叶片外定位杆10及第四叶片外定位杆11;在所述叶片安装顶板5和叶片安装底板6圆心侧竖直固装有两根叶片内定位杆,分别为第一叶片内定位杆12和第二叶片内定位杆13;所述第一柔性叶片1、第二柔性叶片2、第三柔性叶片3及第四柔性叶片4尺寸相同且均采用矩形结构,第一柔性叶片1一端固连在第一叶片外定位杆8上,第一柔性叶片1另一端固连在第二叶片外定位杆9上,所述第二柔性叶片2一端固连在第二叶片外定位杆9上,第二柔性叶片2另一端固连在第一叶片内定位杆12上,所述第三柔性叶片3一端固连在第三叶片外定位杆10上,第三柔性叶片3另一端固连在第四叶片外定位杆11上,所述第四柔性叶片4一端固连在第四叶片外定位杆11上,第四柔性叶片4另一端固连在第二叶片内定位杆13上;所述第一叶片外定位杆8、第三叶片外定位杆10及转动轴7位于同一个竖直平面内,所述第二叶片外定位杆9、第四叶片外定位杆11及转动轴7位于同一个竖直平面内,所述第一叶片内定位杆12、第二叶片内定位杆13及转动轴7位于同一个竖直平面内;所述第一叶片外定位杆8、第三叶片外定位杆10及转动轴7所在竖直平面与第二叶片外定位杆9、第四叶片外定位杆11及转动轴7所在竖直平面具有60°夹角;所述第二叶片外定位杆9、第四叶片外定位杆11及转动轴7所在竖直平面与第一叶片内定位杆12、第二叶片内定位杆13及转动轴7所在竖直平面相垂直。As shown in Figures 1 to 6, a flexible blade Sabnius wind turbine includes a first flexible blade 1, a second flexible blade 2, a third flexible blade 3, a fourth flexible blade 4, a blade mounting top plate 5, The blade mounting bottom plate 6 and the rotating shaft 7; the blade mounting top plate 5 and the blade mounting bottom plate 6 are of the same size and adopt a disk-shaped structure. The blade mounting top plate 5 and the blade mounting bottom plate 6 are both arranged horizontally, and the rotating shaft 7 is vertical. Fixed between the center of the blade installation top plate 5 and the blade installation bottom plate 6; four blade outer positioning rods are vertically fixed on the outer circumferential sides of the blade installation top plate 5 and blade installation bottom plate 6, respectively for the first blade outer positioning Rod 8, the second blade outer positioning rod 9, the third blade outer positioning rod 10 and the fourth blade outer positioning rod 11; two blade inner blades are vertically fixed on the central sides of the blade mounting top plate 5 and the blade mounting bottom plate 6 The positioning rods are respectively the first blade inner positioning rod 12 and the second blade inner positioning rod 13; the first flexible blade 1, the second flexible blade 2, the third flexible blade 3 and the fourth flexible blade 4 are the same and uniform in size. Adopting a rectangular structure, one end of the first flexible blade 1 is fixed to the first blade outer positioning rod 8, the other end of the first flexible blade 1 is fixed to the second blade outer positioning rod 9, and one end of the second flexible blade 2 is fixed to the first blade outer positioning rod 8. Connected to the second blade outer positioning rod 9, the other end of the second flexible blade 2 is fixed to the first blade inner positioning rod 12, and one end of the third flexible blade 3 is fixed to the third blade outer positioning rod 10, The other end of the third flexible blade 3 is fixed on the fourth blade outer positioning rod 11. One end of the fourth flexible blade 4 is fixed on the fourth blade outer positioning rod 11. The other end of the fourth flexible blade 4 is fixed on the fourth blade outer positioning rod 11. On the two blade inner positioning rods 13; the first blade outer positioning rod 8, the third blade outer positioning rod 10 and the rotation axis 7 are located in the same vertical plane, the second blade outer positioning rod 9, the fourth blade outer positioning rod 9 The outer positioning rod 11 and the rotating shaft 7 are located in the same vertical plane, and the first blade inner positioning rod 12, the second blade inner positioning rod 13 and the rotating shaft 7 are located in the same vertical plane; the first blade The vertical plane where the outer positioning rod 8, the third blade outer positioning rod 10 and the rotation axis 7 are located has an included angle of 60° with the vertical plane where the second blade outer positioning rod 9, the fourth blade outer positioning rod 11 and the rotation axis 7 are located; The vertical plane where the second blade outer positioning rod 9, the fourth blade outer positioning rod 11 and the rotation axis 7 are located is opposite to the vertical plane where the first blade inner positioning rod 12, the second blade inner positioning rod 13 and the rotation axis 7 are located. vertical.
所述叶片安装顶板5和叶片安装底板6的半径设为R0;所述第一叶片外定位杆8、第二叶片外定位杆9、第三叶片外定位杆10及第四叶片外定位杆11位于同一条圆周线上,且该圆周线的半径设为R1;所述第一叶片内定位杆12和第二叶片内定位杆13位于同一条圆周线上,且该圆周线的半径设为R2;其中,R1=0.9R0~0.95R0,R2=0.1R0~0.15R0。The radius of the blade mounting top plate 5 and the blade mounting bottom plate 6 is set to R 0 ; the first blade outer positioning rod 8 , the second blade outer positioning rod 9 , the third blade outer positioning rod 10 and the fourth blade outer positioning rod 11 is located on the same circumferential line, and the radius of the circumferential line is set to R 1 ; the first blade inner positioning rod 12 and the second blade inner positioning rod 13 are located on the same circumferential line, and the radius of the circumferential line is set to R 1 is R 2 ; among them, R 1 =0.9R 0 ~0.95R 0 , R 2 =0.1R 0 ~0.15R 0 .
当所述第一柔性叶片1、第二柔性叶片2、第三柔性叶片3及第四柔性叶片4展开成为平面时,叶片的长度为1.1R0~1.4R0。When the first flexible blade 1, the second flexible blade 2, the third flexible blade 3 and the fourth flexible blade 4 are unfolded into a plane, the length of the blade is 1.1R 0 to 1.4R 0 .
所述的柔性叶片式萨布纽斯风轮机采用三层串联式结构,第一层与第二层之间相差60°的相位角,第一层与第三层之间相差120°的相位角。The flexible blade Sabnius wind turbine adopts a three-layer series structure. The phase angle difference between the first layer and the second layer is 60°, and the phase angle difference between the first layer and the third layer is 120°. .
在三层串联式结构的柔性叶片式萨布纽斯风轮机14的外侧套装有导流罩15。A deflector 15 is installed on the outside of the flexible blade Sabnius wind turbine 14 with a three-layer series structure.
在图1所示的运行状态下,通过第一柔性叶片1和第二柔性叶片2配合承受最大有效推力,其作用与传统刚性叶片相同,通过第三柔性叶片3及第四柔性叶片4配合承受阻力,此时在来流作用下,第三柔性叶片3和第四柔性叶片4会同步内凹,在内凹状态下,其承受的阻力要明显低于传统刚性叶片,此时用于推动风轮机旋转做功的有效力实现增大,在此运行状态下,风轮机的风能利用率得到提高。In the operating state shown in Figure 1, the maximum effective thrust is borne by the cooperation of the first flexible blade 1 and the second flexible blade 2. Its function is the same as that of the traditional rigid blade. The maximum effective thrust is borne by the cooperation of the third flexible blade 3 and the fourth flexible blade 4. At this time, under the action of the incoming flow, the third flexible blade 3 and the fourth flexible blade 4 will be concave simultaneously. In the concave state, the resistance they bear is significantly lower than the traditional rigid blade. At this time, they are used to push the wind. The effective effectiveness of turbine rotation is increased, and in this operating state, the wind energy utilization rate of the wind turbine is improved.
在图2所示的运行状态下,四个柔性叶片处于同一条直线上,且四个柔性叶片的排列方向与来流方向平行,此时呈直线排列的四个柔性叶片所受到的推力和阻力大致处于平衡状态,风轮机的转动完全依靠惯性,在该运行状态下,本发明的风能利用率与采用传统刚性叶片的风轮机大体相当。In the operating state shown in Figure 2, the four flexible blades are on the same straight line, and the arrangement direction of the four flexible blades is parallel to the direction of the incoming flow. At this time, the thrust and resistance of the four flexible blades arranged in a straight line are It is roughly in a balanced state, and the rotation of the wind turbine completely relies on inertia. In this operating state, the wind energy utilization rate of the present invention is roughly equivalent to that of a wind turbine using traditional rigid blades.
在图3所示的运行状态下,通过第三柔性叶片3及第四柔性叶片4配合承受有效推力,通过第一柔性叶片1和第二柔性叶片2配合承受阻力,此时在来流作用下,第三柔性叶片3及第四柔性叶片4同时承受来流推力,而另一侧仅由第一柔性叶片1承受来流阻力,此时的推力与阻力的合力用来推动风轮机旋转做功,与采用传统刚性叶片的风轮机相比,该合力得到明显提升。In the operating state shown in Figure 3, the third flexible blade 3 and the fourth flexible blade 4 cooperate to bear the effective thrust, and the first flexible blade 1 and the second flexible blade 2 cooperate to bear the resistance. At this time, under the action of the incoming flow , the third flexible blade 3 and the fourth flexible blade 4 simultaneously bear the incoming flow thrust, while only the first flexible blade 1 on the other side bears the incoming flow resistance. At this time, the combined force of thrust and resistance is used to push the wind turbine to rotate and perform work. This resultant force is significantly improved compared to wind turbines with traditional rigid blades.
随着本发明风轮机的连续转动,本发明风轮机会在图1~图3中的运行状态下连续转换,最终使风能利用率得到进一步提高。With the continuous rotation of the wind turbine of the present invention, the wind turbine of the present invention will continuously switch between the operating states in Figures 1 to 3, ultimately further improving the wind energy utilization rate.
另外,当在本发明的风轮机外侧加装导流罩后,通过导流罩进一步改变来流的方向,使来流更多的作用在推力侧,同时降低阻力侧的来流,进而使风能利用率再次得到提高。In addition, when a deflector is installed outside the wind turbine of the present invention, the direction of the incoming flow is further changed through the deflector, so that the incoming flow acts more on the thrust side, while reducing the incoming flow on the resistance side, thereby making the wind energy more efficient. Utilization is improved again.
实施例中的方案并非用以限制本发明的专利保护范围,凡未脱离本发明所为的等效实施或变更,均包含于本案的专利范围中。The solutions in the examples are not intended to limit the scope of patent protection of the present invention. Any equivalent implementation or modification that does not depart from the scope of the present invention is included in the patent scope of this case.
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910680503.0A CN110242497B (en) | 2019-07-26 | 2019-07-26 | Flexible vane type Sabunius wind turbine |
PCT/CN2019/100370 WO2021017036A1 (en) | 2019-07-26 | 2019-08-13 | Savonius wind turbine having flexible blades |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910680503.0A CN110242497B (en) | 2019-07-26 | 2019-07-26 | Flexible vane type Sabunius wind turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110242497A CN110242497A (en) | 2019-09-17 |
CN110242497B true CN110242497B (en) | 2023-12-05 |
Family
ID=67893596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910680503.0A Active CN110242497B (en) | 2019-07-26 | 2019-07-26 | Flexible vane type Sabunius wind turbine |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110242497B (en) |
WO (1) | WO2021017036A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111486050B (en) * | 2020-03-05 | 2022-04-15 | 天津大学 | Deformable power generation sail and unmanned exploration ship carrying same |
CN114439679B (en) * | 2022-01-18 | 2024-03-22 | 北京航空航天大学 | Vertical axis wind turbine with self-adaptive telescopic adjustment of blades |
CN114396355B (en) * | 2022-01-18 | 2024-04-19 | 北京航空航天大学 | Self-adaptive-regulation efficient vertical axis Savonius wind turbine |
CN118346510B (en) * | 2024-06-07 | 2024-11-08 | 广东海洋大学 | Lift-drag composite self-adaptive vertical axis wind turbine |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3231337A1 (en) * | 1982-08-24 | 1984-03-01 | Christoph Dipl.-Phys. 2283 Wenningstedt Schlobies | Flexible gyromill wind vane |
RU2045681C1 (en) * | 1991-09-05 | 1995-10-10 | Вадим Федорович Копосов | Wind motor |
US7241105B1 (en) * | 2002-06-07 | 2007-07-10 | Vanderhye Robert A | Watercraft with vertically collapsible vertical axis wind turbine and propeller flexible drive shaft |
CN101813058A (en) * | 2009-02-19 | 2010-08-25 | 陈谦 | Sail type wind wheel |
KR20110016655A (en) * | 2009-08-12 | 2011-02-18 | 창원대학교 산학협력단 | Sabonius rotors for vertical axis wind turbines |
FR2969224A1 (en) * | 2010-12-17 | 2012-06-22 | Peugeot Citroen Automobiles Sa | Wind device for use with vehicle for converting wind energy into mechanical or electrical energy, has reinforcing elements fixed on mast, where flexible blades are wound up or take place depending on height exhibited by mast |
WO2012127239A2 (en) * | 2011-03-22 | 2012-09-27 | John Marshall | Wind turbine |
KR20120123799A (en) * | 2011-05-02 | 2012-11-12 | 전유헌 | Wind turbine and aerogenerator having the same |
KR20130085769A (en) * | 2012-01-20 | 2013-07-30 | 부산대학교 산학협력단 | Blade structure of savonius wind generator having vortex-generating element |
CN203161437U (en) * | 2013-03-01 | 2013-08-28 | 内蒙古工业大学 | Vertical shaft wind turbine |
CN104595104A (en) * | 2014-11-21 | 2015-05-06 | 西北工业大学 | Vertical shaft fan impeller with flexible vanes |
CN105545585A (en) * | 2016-01-07 | 2016-05-04 | 南通大学 | Vertical axis wind turbine with flexible blades |
CN106640518A (en) * | 2016-10-13 | 2017-05-10 | 上海理工大学 | Resistance type vertical-axis wind turbine |
WO2017191492A1 (en) * | 2016-05-04 | 2017-11-09 | Turbosaam Sarl | Savonius rotor, rotor module, installation and applications thereof |
CN109931215A (en) * | 2019-04-26 | 2019-06-25 | 东北大学 | A kind of sail cloth formula vertical-axis wind turbine with permanent magnetism limit function |
CN109973295A (en) * | 2019-04-26 | 2019-07-05 | 东北大学 | A flexible swinging shroud suitable for vertical axis wind turbines |
CN210317599U (en) * | 2019-07-26 | 2020-04-14 | 东北大学 | Flexible blade type Sambucus wind turbine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101769231B (en) * | 2008-12-29 | 2012-01-11 | 中国海洋大学 | Flexible blade rotor supporting device |
US9482204B2 (en) * | 2010-05-27 | 2016-11-01 | Windstrip Llc | Rotor blade for vertical axis wind turbine |
FR3019237B1 (en) * | 2014-03-31 | 2019-03-29 | Universite D'aix-Marseille | ROTOR TYPE SAVONIUS |
US20170234302A1 (en) * | 2015-11-25 | 2017-08-17 | Hattar Tanin LLC | Innovative wind turbine construction for 100% energy independence or even being energy positive |
-
2019
- 2019-07-26 CN CN201910680503.0A patent/CN110242497B/en active Active
- 2019-08-13 WO PCT/CN2019/100370 patent/WO2021017036A1/en active Application Filing
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3231337A1 (en) * | 1982-08-24 | 1984-03-01 | Christoph Dipl.-Phys. 2283 Wenningstedt Schlobies | Flexible gyromill wind vane |
RU2045681C1 (en) * | 1991-09-05 | 1995-10-10 | Вадим Федорович Копосов | Wind motor |
US7241105B1 (en) * | 2002-06-07 | 2007-07-10 | Vanderhye Robert A | Watercraft with vertically collapsible vertical axis wind turbine and propeller flexible drive shaft |
CN101813058A (en) * | 2009-02-19 | 2010-08-25 | 陈谦 | Sail type wind wheel |
KR20110016655A (en) * | 2009-08-12 | 2011-02-18 | 창원대학교 산학협력단 | Sabonius rotors for vertical axis wind turbines |
FR2969224A1 (en) * | 2010-12-17 | 2012-06-22 | Peugeot Citroen Automobiles Sa | Wind device for use with vehicle for converting wind energy into mechanical or electrical energy, has reinforcing elements fixed on mast, where flexible blades are wound up or take place depending on height exhibited by mast |
WO2012127239A2 (en) * | 2011-03-22 | 2012-09-27 | John Marshall | Wind turbine |
KR20120123799A (en) * | 2011-05-02 | 2012-11-12 | 전유헌 | Wind turbine and aerogenerator having the same |
KR20130085769A (en) * | 2012-01-20 | 2013-07-30 | 부산대학교 산학협력단 | Blade structure of savonius wind generator having vortex-generating element |
CN203161437U (en) * | 2013-03-01 | 2013-08-28 | 内蒙古工业大学 | Vertical shaft wind turbine |
CN104595104A (en) * | 2014-11-21 | 2015-05-06 | 西北工业大学 | Vertical shaft fan impeller with flexible vanes |
CN105545585A (en) * | 2016-01-07 | 2016-05-04 | 南通大学 | Vertical axis wind turbine with flexible blades |
WO2017191492A1 (en) * | 2016-05-04 | 2017-11-09 | Turbosaam Sarl | Savonius rotor, rotor module, installation and applications thereof |
CN106640518A (en) * | 2016-10-13 | 2017-05-10 | 上海理工大学 | Resistance type vertical-axis wind turbine |
CN109931215A (en) * | 2019-04-26 | 2019-06-25 | 东北大学 | A kind of sail cloth formula vertical-axis wind turbine with permanent magnetism limit function |
CN109973295A (en) * | 2019-04-26 | 2019-07-05 | 东北大学 | A flexible swinging shroud suitable for vertical axis wind turbines |
CN210317599U (en) * | 2019-07-26 | 2020-04-14 | 东北大学 | Flexible blade type Sambucus wind turbine |
Non-Patent Citations (4)
Title |
---|
动力柔化直板叶片动力学相似关系;赵晓宇;黄海;曲涛;郭健;罗忠;;噪声与振动控制(05);全文 * |
基于非线性气弹耦合模型的风力机柔性叶片随机响应分析;徐磊;李德源;莫文威;吕文阁;刘雄;;振动与冲击(10);全文 * |
海流能柔性叶片水轮机获能区的分析与研究;王树杰;尹克金;袁鹏;王俭超;李冬;单忠德;;太阳能学报(08);全文 * |
风力发电软翼风力机捕风能力结构设计研究;古亮;蒋新;赵阿琴;刘肖光;;计算机仿真(02);全文 * |
Also Published As
Publication number | Publication date |
---|---|
WO2021017036A1 (en) | 2021-02-04 |
CN110242497A (en) | 2019-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110242497B (en) | Flexible vane type Sabunius wind turbine | |
CN201526413U (en) | Composite Blades of Drag Type Vertical Axis Wind Turbine | |
CN109931215B (en) | Sailwing type vertical axis wind turbine with permanent magnet limiting function | |
WO2014194831A1 (en) | Vertical shaft hydraulic power generation device | |
CN108361145B (en) | Self-pitching control blade type turbine optimized based on traditional Wils type turbine | |
CN109931214B (en) | Flexible swing type diversion wind turbine | |
CN110296050B (en) | a wind power plant | |
WO2011095054A1 (en) | High-efficiency high-power vertical axis wind generator | |
JP2001065446A (en) | Cascade structure for vertical shaft type windmill and vertical shaft type windmill | |
CN210317599U (en) | Flexible blade type Sambucus wind turbine | |
CN203835619U (en) | Impeller, blade of impeller and vertical axis wind turbine using impeller | |
CN106640518A (en) | Resistance type vertical-axis wind turbine | |
CN201011334Y (en) | A vertical axis wind generator and wind turbine impeller | |
CN210317579U (en) | A oscillating vane horizontal axis turbine | |
CN118745972A (en) | A lift-drag composite wind turbine with a separation mechanism | |
CN110242496B (en) | Swing vane type diversion vertical axis wind turbine | |
CN201521388U (en) | Swinging vane-type turbine machine | |
CN204493077U (en) | Novel vertical axis wind power generation device | |
JP6312284B1 (en) | Sail equipment | |
WO2014135073A1 (en) | Hydroturbine | |
CN109973295A (en) | A flexible swinging shroud suitable for vertical axis wind turbines | |
CN209761626U (en) | A flexible swing guide type wind turbine | |
CN114542390A (en) | A coaxial counter-rotating vertical axis wind turbine using bionic blades | |
CN108716450A (en) | A kind of vertical-axis tide energy impeller unit based on helical blades | |
CN207080315U (en) | A combination of lift and drag vertical axis wind turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |