CN110240386B - 一种秸秆与污泥协同处理的装置及其方法 - Google Patents

一种秸秆与污泥协同处理的装置及其方法 Download PDF

Info

Publication number
CN110240386B
CN110240386B CN201910624235.0A CN201910624235A CN110240386B CN 110240386 B CN110240386 B CN 110240386B CN 201910624235 A CN201910624235 A CN 201910624235A CN 110240386 B CN110240386 B CN 110240386B
Authority
CN
China
Prior art keywords
sludge
straw
pyrolysis
drying
communicated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910624235.0A
Other languages
English (en)
Other versions
CN110240386A (zh
Inventor
余广炜
邢贞娇
汪印
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Urban Environment of CAS
Original Assignee
Institute of Urban Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Urban Environment of CAS filed Critical Institute of Urban Environment of CAS
Priority to CN201910624235.0A priority Critical patent/CN110240386B/zh
Publication of CN110240386A publication Critical patent/CN110240386A/zh
Priority to PCT/CN2020/082863 priority patent/WO2021004103A1/zh
Application granted granted Critical
Publication of CN110240386B publication Critical patent/CN110240386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/008Sludge treatment by fixation or solidification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Materials Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明属于废弃物资源化利用领域,公开了一种秸秆与污泥协同处理的装置及其方法。所述秸秆与污泥协同处理的方法包括:(1)将秸秆依次进行破碎、烘干和无氧热解,冷却后得秸秆热解炭;(2)将秸秆热解炭与污泥进行混合调质,之后将所得混合调质产物进行固液分离;所得固相经烘干脱水后进行无氧热解,冷却后得改性污泥热解炭;所得液相进行污水处理以使其达标排放;(3)将干碎秸秆无氧热解产生的热解气燃烧后作为秸秆无氧热解、固相烘干以及固相无氧热解的能源,并将固相烘干和无氧热解产生的烟气作为秸秆烘干的能源。采用本发明提供的装置和方法可以改善污泥热解炭的性能指标,避免由于秸秆焚烧所产生的“雾霾”问题,实现能量梯级利用。

Description

一种秸秆与污泥协同处理的装置及其方法
技术领域
本发明属于废弃物资源化利用领域,尤其是一种秸秆与污泥协同处理的装置及其方法。
背景技术
我国的农作物秸秆产量大、分布广、种类多。据调查统计,秸秆可收集量超过7亿吨/年,利用率不到70%。长期以来秸秆是农民生活和农业发展的宝贵资源,但随着农业生产方式的转变和农村生活条件的改善,以家庭为单位耕作模式的农民对秸秆的依赖性逐渐降低,收集和使用秸秆的积极性下降,出现了地区性、季节性、结构性的秸秆过剩的现象,这些过剩的秸秆多数进行露天焚烧处理。研究表明,短期内秸秆的大面积集中焚烧对雾霾的贡献度较高,给周边区域环境带来很大不良影响;当地政府在禁烧秸秆的管理上往往面临很大的困难。因此,寻求更优越的农作物秸秆资源化利用技术将是治理“雾霾”的关键问题,最终发展趋势必将是减少露天焚烧,集中再利用。
关于秸秆处理,目前已经多有研究。CN106187453A公开了一种炭化秸秆生物有机肥及其制备方法,由生物有机肥和炭化秸秆有机肥按重量比1:1制成炭化秸秆生物有机肥,有机肥营养元素齐全,能改良土壤,不会造成土壤板结,提高产品品质和植物的抗病虫能力,充分利用了农村的废弃物秸秆和动物粪便。CN106905051A公开了一种利用秸秆炭化产物和养猪废水生产液体肥的方法,将秸秆炭粉加入到养猪废水中充分混合、静置2~3天后,取出上清液,在上清液内加入精制秸秆醋液,放置12~24小时,再加入秸秆炭粉和粉煤灰静置24小时后过滤,得过滤液,在过滤液内加入硫酸镁、硼酸、硫酸亚铁、硝酸钙和十二烷基苯磺酸混合均匀,得液体肥。CN107266196A公开了一种秸秆炭化还田土壤改良剂及制备方法,通过秸秆碳化,预先分离提取苯酚类、乙醇等,得到由秸秆碳、褐煤粉、吸附木醋液的沸石组成的土壤改良剂,可以促使分散的土壤颗粒团聚,形成团粒,增加土壤中水稳性团粒的含量和稳定性,改善通气透水性、保水性、保肥性。以上专利申请主要是将秸秆处理后作为生物肥料,以便进行土壤利用。
CN106179212A公开了一种秸秆炭化方法,涉及农业技术领域,包括秸秆去土处理、秸秆粉碎、混合、秸秆炭化、压缩成品,形成具有强大吸附能力的活性炭,可以避免秸秆焚烧引起的环境污染,也可以避免秸秆堆积占用大量的空间,最大限度地对秸秆进行再次利用。CN108753328A公开了一种玉米秸秆的炭化加工方法,首先对秸秆进行预处理,提高秸秆强度,降低灰分含量,然后采用阶梯式炭化升温方式,不仅能够使得炭化效果变好,还能够节省能源,最后进行活化处理,提高了气化反应和微孔形成速率,制备得到的生物质炭具有良好均匀的密度和空隙结构,比表面积大,可达1200m2/g,吸附能力强,在室温下的吸附量可达140mg/g。上述专利申请将秸秆制备成活性炭,工艺程复杂,成本高,应用性较差。
CN101967416A提供了一种作物秸秆炭化物载醇固体燃料及其制备方法。该固体燃料包括作物秸秆的炭化物、工业酒精、胶凝剂。首先将作物秸秆干燥、切段后,于250~500℃下炭化1~4h,得到作物秸秆的炭化物;然后将100重量份的工业酒精,与1~5重量份的胶凝剂混合得到含胶凝剂的酒精溶液;再用作物秸秆的炭化物吸载含有胶凝剂的酒精溶液,得到作物秸秆炭化物载醇固体燃料。CN106318418A公开了一种玉米秸秆低温炭化制备生物质炭燃料的方法,向炭化炉内通入氮气使炉内为无氧或低氧环境后,将玉米秸秆原料颗粒从炭化炉顶部进料,热气流从炭化炉底部进入,在炉内形成逆流反应区域;控制炭化炉底部的反应温度为200~280℃,炉内压力为1010~1200mbar,反应生成生物质炭燃料从炭化炉底部输出,所得生物质炭能量密度高,可作为燃料使用。上述专利申请主要将秸秆制备成固体燃料,而不涉及与污泥的协同处置。
此外,随着经济的快速发展,我国城镇化进程不断加快,城市污水处理厂的污水处理规模不断扩大,处理效率显著提升,城市污泥的产量也随之快速增加,导致城市污泥处理的压力越来越大,预计到2020年污泥年产量将达到6000万吨。污泥热解炭化技术随之发展起来并受到研究者的密切关注,因其能去除污泥中的病毒、寄生生物和有毒污染物,生产出可以资源化利用的生物炭。污泥热解炭化工艺确实能够良好实现污泥的无害化与减量化,并在一定程度上固化重金属。污泥生物炭,可用于土壤改良,因为其对土壤水分的富集和微生物的生长有利,同时其对Cd、Zn、Cu、Pb、Ni、As等重金属有固化作用。目前,由于污泥热值低,重金属等污染物含量复杂,污泥热解炭化研究的重点依然集中在降低污泥处理成本、减少能源消耗以及实现产物规模化安全利用等方面。
关于秸秆与污泥联合处置,也已经有一些专利文献报道。例如,CN108178484A公开了一种污泥联合秸秆粉进行生物预干化的方法,该方法包括将污泥浓缩脱水至含水率为75~85%,加入生长着有益微生物菌种的秸秆粉,通过微生物消耗污泥中的有机质产热进行预干化。然而,该方法主要是采用往秸秆中加入有益微生物菌种发酵的方式进行污泥干化脱水,而且效率较低。
CN108587719A公开了一种使用垃圾、秸秆和污泥制造环保再生煤的方法,该方法包括将预处理垃圾、预处理秸秆和预处理污泥按照配比在混料机中进行混合得到再生煤料,将再生煤料放入再生煤成型机制得环保再生煤,用作燃料。CN106635226A公开了一种利用污泥和秸秆作为处理原料,将秸秆和污泥以及惰性添加剂混合后压缩成型制作燃料块,所得燃料块的所含热值均匀并易于输送,可以减少大量的化学不完全燃烧热损失与排烟热损失,而且燃烧速度均匀适中,燃烧相对稳定,同时提高了污泥和秸秆燃烧的热值。CN102703155A公开了一种基于污泥-秸秆-原煤的生物质燃料及其制备方法,该方法包括向采用铝盐混凝剂应用后的脱水污泥中添加生石灰石,其中生石灰石占污泥的质量百分比为1~3%;将污泥和秸秆混合,进行好氧堆肥;将原煤与污泥-秸秆混合物进行混合,经压制成型,即得到生物质燃料。然而,上述方法虽然公开了可以将污泥与秸秆混合制备生物燃料,但是处理过程复杂,并且均需要添加无机添加剂,成本高。
CN104003384A公开了一种利用活性污泥混合芦苇秸秆制备活性炭的方法,该方法包括将污泥秸秆混合样品用一定浓度的氢氧化钾活化,活化完成后将污泥秸秆混合物离心,离心后所得固体样品在真空干燥箱中干燥,将干燥后的污泥秸秆混合物以氮气作为保护气热解,冷却,并将所得活性炭粗样品用盐酸浸泡后再用蒸馏水洗涤,最后干燥得到活性炭。CN108975330A公开了一种利用秸秆和污泥制备活性炭的方法,该方法包括先将污泥经过干燥和粉碎,得到污泥颗粒;再将秸秆粉碎和烘干,得到秸秆粉;然后将污泥颗粒与秸秆粉混合,得到混合物;再将羟丙基甲基纤维素溶于水中,得到水溶液;将水溶液加入前述混合物进行搅拌造粒,得到污泥颗粒与秸秆粉相结合的颗粒,然后进行炭化,得到炭化料,最后将炭化料进行酸洗和水洗,然后烘干,得到活性炭。然而,上述方法虽然公开了可以将污泥与秸秆混合制备活性炭,但是由于污泥中无机质含量较低,需要炭化与化学活化过程,因此,环保要求高,成本高,并不能得到广泛应用。
CN103540331A公开了一种城市污泥与作物秸秆联合固碳的方法,其是基于污泥、秸秆的性质互补,提出的一种高效低耗的碳固定简易方法,将污泥和秸秆混合物在无氧条件下中温炭化,至反应无气体生成时,冷却,取出产物,原料中的不稳定碳元素基本转化为产物生物炭中的稳定碳元素。该方法将秸秆与污泥混合后联合固碳,可以利用秸秆释放出的能量,弥补污泥单独炭化固碳时能量的不足,实现能量的自平衡。然而,上述方法虽然提到可以将秸秆与污泥混合热解炭化,但是污泥与秸秆仅是简单混合,没有利用秸秆热解炭作为污泥脱水调理剂,没有实现污泥与秸秆热解过程的能源梯级用。
污泥热解制备生物炭生产过程能耗较高、热解炭含灰量大、孔隙率较低、成本高等问题限制了污泥热解炭技术进一步推广应用,特别是要使污泥的含水率达到60%甚至50%以下,需要在污泥的调理技术和污泥的压榨技术上取得突破。污泥的压榨技术体现在板框压滤机的发展上,如高压隔膜板框压滤机、高压全钢板板框压滤机、弹性压滤机等。污泥的调理主要有两类技术:一类是用三氯化铁和石灰作调理剂,添加量是污泥干重的30%左右;另一类是以污泥固化剂为主要成分的无机调理剂,添加量是污泥干重的5-20%。这些污泥调理方法在使污泥含水率降低(即体积减小)的同时,由于化学物质的添加,又使得污泥重量增加。此外,所添加的无机盐类物质降低了污泥的热值,不利于热焚烧利用,加大了污泥中的铁铝盐类,也不利于土地利用。因此,实现污泥高效处理技术产业化的前提是解决目前污泥脱水以及热解炭化生产过程中存在的上述一系列问题,使其朝着降低污泥脱水成本、改善生物炭性能指标、扩大应用范围、减少环境污染等方向发展。
发明内容
当前的研究与应用中,污泥与秸秆都是单独热解处理,未充分通过两者协同处置,实现“资源”与“能源”互补。本发明的目的是为了克服现有的污泥与秸秆资源化处理技术和装置缺乏的问题,而提供一种秸秆与污泥协同处理的装置和方法,以最大程度实现多元有机固废协同处理。
本发明发明人经过深入研究之后发现,将农作物秸秆引入污泥处理领域,将秸秆热解炭用于污泥脱水调质,能够提高脱水效率,调控污泥活性炭孔隙和表面官能团,固化重金属,从而极大地提高了改性污泥生物炭的性能指标,显著降低污泥和秸秆的处理成本,增强市场竞争力。基于此,完成了本发明。
具体地,本发明提供了一种秸秆与污泥协同处理的装置,其中,该装置包括破碎装置、2#烘干脱水装置、2#热解装置、2#冷却装置、混合调质装置、压滤装置、1#烘干脱水装置、1#热解装置、1#冷却装置、污水处理装置、1#燃烧室、2#燃烧室和3#燃烧室;所述破碎装置出口经5#输送装置与所述2#烘干脱水装置入口连通,所述2#烘干脱水装置固相出口经6#输送装置与所述2#热解装置入口连通,所述2#热解装置固相出口与所述2#冷却装置连通,所述2#冷却装置出口经7#输送装置与所述混合调质装置入口连通,所述混合调质装置出口与所述压滤装置入口连通,所述压滤装置固相出口经2#输送装置与所述1#烘干脱水装置入口连通且液相出口与所述污水处理装置入口连通,所述1#烘干脱水装置固相出口经3#输送装置与所述1#热解装置入口连通,所述1#热解装置固相出口与所述1#冷却装置入口连通,所述1#烘干脱水装置烟气出口以及所述1#热解装置烟气出口均与所述2#烘干脱水装置燃料入口连通,所述2#热解装置气相出口分别与所述1#燃烧室、2#燃烧室和3#燃烧室燃气入口连通,所述1#燃烧室燃烧产生的能量用于所述1#烘干脱水装置,所述2#燃烧室燃烧产生的能量用于所述1#热解装置,所述3#燃烧室燃烧产生的能量用于所述2#热解装置。
进一步的,本发明提供的秸秆与污泥协同处理的装置还包括污泥储仓,所述污泥储仓出口经1#输送装置与所述混合调质装置入口连通;和/或,还包括1#冷凝装置,所述1#烘干脱水装置水蒸汽出口与所述1#冷凝装置入口连通,所述1#冷凝装置液体出口与所述污水处理装置入口连通且气体出口通过1#风机与所述1#燃烧室入口连通;和/或,还包括2#冷凝装置、尾气净化装置和烟囱,所述2#烘干脱水装置烟气出口与所述2#冷凝装置入口连通,所述2#冷凝装置出口经2#风机与所述尾气净化装置入口连通,所述尾气净化装置出口与所述烟囱入口连通;和/或,还包括成品储仓,所述1#冷却装置出口经4#输送装置与所述成品储仓入口连通。
进一步的,所述污泥储仓为普通钢仓或混凝土储泥池。
进一步的,所述混合调质装置为带搅拌装置的固液混合罐。
进一步的,所述压滤装置为板框压滤机或带式压滤机。
进一步的,所述1#烘干脱水装置为滚筒干燥设备、带式干燥设备或圆盘式干燥设备。
进一步的,所述1#热解装置与所述2#热解装置均为滚筒式间接热解炉。
进一步的,所述1#冷却装置与所述2#冷却装置各自独立地为滚筒式间接冷却设备或螺旋间接冷却设备。
进一步的,所述成品储仓为普通钢仓或混凝土仓。
进一步的,所述水处理装置为普通污水处理装置。
进一步的,所述1#冷凝装置与所述2#冷凝装置各自独立地为列管式间接冷却装置或直接喷淋冷却装置。
进一步的,所述1#风机和2#风机各自独立地为离心风机或轴流风机。
进一步的,所述破碎装置为剪切式破碎机。
所述2#烘干脱水装置为滚筒式干燥设备、流态化干燥设备或带式干燥设备,烘干方式为直接接触式烘干。
进一步的,所述1#燃烧室、2#燃烧室与3#燃烧室各自独立地为天然气焚烧炉或煤气焚烧炉。
进一步的,所述尾气净化装置为干法烟气净化装置或湿法烟气净化装置。
进一步的,所述烟囱为钢质烟囱、砖混结构烟囱或混凝土质烟囱。
进一步的,所述1#输送装置为普通泥浆泵。
进一步的,所述2#输送装置、3#输送装置、4#输送装置、5#输送装置、6#输送装置和7#输送装置各自独立地为大倾角皮带输送机、刮板输送机、斗提机、螺旋输送机或气力输送机。
本发明还提供了一种秸秆与污泥协同处理的方法,该方法包括以下步骤:
(1)将秸秆依次进行破碎和烘干以将其粒度控制在3cm以下且将含水量控制在1wt%以下,之后将所得干碎秸秆进行无氧热解,冷却后得到秸秆热解炭;
(2)将所述秸秆热解炭与污泥进行混合调质,之后将所得混合调质产物进行固液分离得到污泥固相和液相;所述污泥固相经烘干脱水后进行无氧热解,冷却后得到改性污泥热解炭;所述液相进行污水处理以使其达标排放;
(3)将所述干碎秸秆无氧热解产生的热解气燃烧后作为秸秆无氧热解、污泥固相烘干脱水以及污泥固相无氧热解的能源,并将所述污泥固相烘干脱水和无氧热解产生的烟气作为秸秆烘干的能源,实现能量梯级利用。
进一步的,所述秸秆为水稻秸秆和/或玉米秸秆。
进一步的,步骤(1)中,所述干碎秸秆进行无氧热解的方式为无氧间接加热热解,且热解温度为250~400℃,热解时间为5~20min。
进一步的,所述污泥为生活污水处理厂湿污泥,含水率为85wt%以上。
进一步的,步骤(2)中,所述秸秆热解炭与污泥的混合比例为(20~40)wt%:(60~80)wt%。
进一步的,步骤(2)中,将所述污泥固相进行烘干脱水的温度为80~120℃。
进一步的,步骤(2)中,所述污泥固相进行无氧热解的方式为无氧间接加热热解,且热解温度为400~700℃,热解时间为15~60min。
进一步的,本发明提供的秸秆与污泥协同处理的方法在上述秸秆与污泥协同处理的装置中进行。
本发明的有益效果如下:
(1)将农作物秸秆引入污泥处理领域,充分将农作物秸秆热解炭用于污泥脱水调质,提高脱水效率,调控污泥活性炭孔隙与表面官能团,固化重金属,从而极大地提高了改性污泥生物炭的性能指标,可以显著降低污泥与秸秆的处理成本,增强市场竞争力。
(2)充分实现农作物秸秆资源化与能源化高效利用,一方面,避免农作物秸秆简单焚烧所产生的“雾霾”等环境问题,同时,解决目前秸秆单独炭化处理能源无法合理有效利用问题。
(3)充分发挥秸秆高碳含量、高热值的优点,将秸秆无氧热解过程所产生的热解气燃烧后作为秸秆无氧热解、固相烘干以及固相无氧热解的能源,并将所述固相烘干脱水和无氧热解所产生的烟气作为秸秆烘干的能源,实现系统能源自供与高效利用,彻底实现工艺全过程的能源自给问题,充分体现清洁生产与循环经济理念,节能与降成本效益显著。
(4)采用本发明提供的方法得到的改性污泥热解炭可以用于改善土壤性能,同时实现了以“秸秆还田”与“污泥资源化”的目标,充分体现了“循环经济”理念。
附图说明
为了更清楚地说明本发明的技术方案,下面将对附图作简单的介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明提供的秸秆与污泥协同处理的装置的连接示意图;
图2为本发明提供的秸秆与污泥协同处理的方法的工艺流程图。
附图标记说明
1-污泥储仓,2-1#输送装置,3-混合调质装置,4-压滤装置,5-2#输送装置,6-1#烘干脱水装置,7-3#输送装置,8-1#热解装置,9-1#冷却装置,10-4#输送装置,11-成品储仓,12-污水处理装置,13-1#冷凝装置,14-1#风机,15-破碎装置,16-5#输送装置,17-2#烘干脱水装置,18-6#输送装置,19-2#热解装置,20-2#冷却装置,21-7#输送装置,22-1#燃烧室,23-2#燃烧室,24-3#燃烧室,25-2#冷凝装置,26-2#风机,27-尾气净化装置,28-烟囱。
具体实施方式
下面详细描述本发明。
所述秸秆主要由C、H、O组成,是制备生物炭材料的理想原料之一,引入秸秆热解炭与污泥混合调质脱水后再热解,不仅能够解决污泥热解制备生物炭过程能源自给不足的问题,而且还能够提升污泥生物炭品质,进一步深度固化重金属,通过优势互补,同时实现“秸秆还田”和“污泥资源化”,具有良好的应用前景。
如图1所示,本发明提供的秸秆与污泥协同处理的装置包括破碎装置15、2#烘干脱水装置17、2#热解装置19、2#冷却装置20、混合调质装置3、压滤装置4、1#烘干脱水装置6、1#热解装置8、1#冷却装置9、污水处理装置12、1#燃烧室22、2#燃烧室23和3#燃烧室24;所述破碎装置15出口经5#输送装置16与所述2#烘干脱水装置17入口连通,所述2#烘干脱水装置17固相出口经6#输送装置18与所述2#热解装置19入口连通,所述2#热解装置19固相出口与所述2#冷却装置20连通,所述2#冷却装置20出口经7#输送装置21与所述混合调质装置3入口连通,所述混合调质装置3出口与所述压滤装置4入口连通,所述压滤装置4固相出口经2#输送装置5与所述1#烘干脱水装置6入口连通且液相出口与所述污水处理装置12入口连通,所述1#烘干脱水装置6固相出口经3#输送装置7与所述1#热解装置8入口连通,所述1#热解装置8固相出口与所述1#冷却装置9入口连通,所述1#烘干脱水装置6烟气出口以及所述1#热解装置8烟气出口均与所述2#烘干脱水装置17燃料入口连通,所述2#热解装置19气相出口分别与所述1#燃烧室22、2#燃烧室23和3#燃烧室24燃气入口连通,所述1#燃烧室22燃烧产生的能量用于所述1#烘干脱水装置6,所述2#燃烧室23燃烧产生的能量用于所述1#热解装置8,所述3#燃烧室24燃烧产生的能量用于所述2#热解装置19。
进一步的,本发明提供的秸秆与污泥协同处理的装置还包括污泥储仓1,所述污泥储仓1出口经1#输送装置2与所述混合调质装置3入口连通;和/或,还包括1#冷凝装置13,所述1#烘干脱水装置6水蒸汽出口与所述1#冷凝装置13入口连通,所述1#冷凝装置13液体出口与所述污水处理装置12入口连通且气体出口通过1#风机14与所述1#燃烧室22入口连通;和/或,还包括2#冷凝装置25、尾气净化装置27和烟囱28,所述2#烘干脱水装置17烟气出口与所述2#冷凝装置25入口连通,所述2#冷凝装置25出口经2#风机26与所述尾气净化装置27入口连通,所述尾气净化装置27出口与所述烟囱28入口连通;和/或,还包括成品储仓11,所述1#冷却装置9出口经4#输送装置10与所述成品储仓11入口连通。
在本发明中,所述2#热解装置19热解气出口分别与1#燃烧室22、2#燃烧室23与3#燃烧室24的燃气入口连通;1#燃烧室22、2#燃烧室23与3#燃烧室24燃烧产生的能量分别用于1#烘干脱水装置6、1#热解装置8与2#热解装置19;1#烘干脱水装置6和1#热解装置8产生的烟气汇总后通入2#烘干脱水装置17。
当工作时,秸秆经破碎装置15破碎后,利用5#输送装置16输送进入2#烘干脱水装置17进行烟气直接烘干处理;2#烘干脱水装置17所产生的烟气在2#冷凝装置25中实现冷凝降温,回收水分;同时,冷凝后的烟气通过2#风机26输送进入尾气净化装置27中进行尾气净化处理,达标后的净化烟气尾气由烟囱28排放。烘干后的秸秆由6#输送装置18输送进入2#热解装置19中进行无氧热解炭化,所得秸秆热解炭进入2#冷却装置20冷却;冷却后的秸秆热解炭由7#输送装置21输送进入混合调质装置3中用于污泥调质脱水。污泥储仓1中的污泥由1#输送装置2输送进入混合调质装置3中,与7#输送装置21输送进入的秸秆热解炭混合调质后,进入压滤装置4中进行压滤;压滤得到的液体进入污水处理装置12中处理后达标排放;压滤得到的固体由2#输送装置5输入进入1#烘干脱水装置6中进行间接烘干脱水处理;间接烘干脱水产生的水蒸汽进入1#冷凝装置13,冷凝水进入污水处理装置12处理后达标排放,不凝气通过1#风机14输送进入1#燃烧室22作为燃烧补充空气,实现除臭处理;经烘干脱水后的泥饼由3#输送装置7输送进入1#热解装置8中进行热解处理,所得高温污泥热解炭进入1#冷却装置9中进行冷却,所得冷却后的污泥热解炭经4#输送装置10输送进入成品储仓11中储存,用于后续土壤改良等资源化利用。所述2#热解装置19中秸杆热解产生的高品质热解气一部分在3#燃烧室24中燃烧后自用于2#热解装置19中秸杆的无氧热解炭化;富裕的热解气一部分在1#燃烧室22中燃烧后用于1#烘干脱水装置6的污泥间接烘干,另一部分进入2#燃烧室23中燃烧用于1#热解装置8的污泥热解补充能源,从而解决污泥处理过程能源不足的问题。所述1#烘干脱水装置6以及1#热解装置8均为间接烟气加热,所产生的烟气尾气送入2#烘干脱水装置17中用于秸杆的直接烘干,一方面实现余热余能的进一步资源化利用,另一方面利用秸杆生物质特有的吸附净化能力,实现烟气的初步净化处理。
从物质循环上:秸杆经干燥热解产生的秸杆热解炭作为污泥脱水的调理剂,通过干燥脱水与热解炭化工序转化为高品质污泥生物炭,一方面提高污泥生物炭中碳含量,从而提高孔隙率;另一方面,进一步固化污泥中的重金属,显著降低污泥生物炭中重金属含量。污泥生物炭可作为土壤改良剂,从而实现秸杆与污泥协资源化利用。从能源上看:秸杆热值高,热解气除了可以供秸杆自身热解外,富裕的热解气一部分用于污泥间接烘干,另一部分用于污泥热解的补充能源,从而解决了污泥处理过程能源不足的问题,明显降低了污泥处理成本。同时,将烟气尾气作为秸杆烘干脱水的能源介质,一方面实现余热余能的进一步资源化利用,另一方面,利用秸杆生物质特有的吸附净化能力,实现烟气的初步净化处理,充分体现了节能环保理念。
在本发明中,所述污泥储仓1可以为普通钢仓或混凝土储泥池。
在本发明中,所述混合调质装置3可以为带搅拌装置的固液混合罐。
在本发明中,所述压滤装置4可以为板框压滤机或带式压滤机。
在本发明中,所述1#烘干脱水装置6可以为滚筒干燥设备、带式干燥设备或圆盘式干燥设备。
在本发明中,所述1#热解装置8与所述2#热解装置19均可以为滚筒式间接热解炉。
在本发明中,所述1#冷却装置9与所述2#冷却装置20可以各自独立地为滚筒式间接冷却设备或螺旋间接冷却设备。
在本发明中,所述成品储仓11可以为普通钢仓或混凝土仓。
在本发明中,所述水处理装置12可以为普通污水处理装置。
在本发明中,所述1#冷凝装置13与所述2#冷凝装置25可以各自独立地为列管式间接冷却装置或直接喷淋冷却装置。
在本发明中,所述1#风机14和2#风机26可以各自独立地为离心风机或轴流风机。
在本发明中,所述破碎装置15可以为剪切式破碎机。
在本发明中,所述2#烘干脱水装置17可以为滚筒式干燥设备、流态化干燥设备或带式干燥设备,烘干方式为直接接触式烘干。
在本发明中,所述1#燃烧室22、2#燃烧室23与3#燃烧室24可以各自独立地为天然气焚烧炉或煤气焚烧炉。
在本发明中,所述尾气净化装置27可以为干法或湿法烟气净化装置。
在本发明中,所述烟囱28可以为钢质烟囱、砖混结构烟囱或混凝土质烟囱。
在本发明中,所述1#输送装置2可以为普通泥浆泵。
在本发明中,所述2#输送装置5、3#输送装置7、4#输送装置10、5#输送装置16、6#输送装置18和7#输送装置21可以各自独立地为大倾角皮带输送机、刮板输送机、斗提机、螺旋输送机或气力输送机。
如图2所示,本发明提供的秸秆与污泥协同处理的方法包括以下步骤:
(1)将秸秆依次进行破碎和烘干以将其粒度控制在3cm以下且将含水量控制在1wt%以下,之后将所得干碎秸秆进行无氧热解,冷却后得到秸秆热解炭;
(2)将所述秸秆热解炭与污泥进行混合调质,之后将所得混合调质产物例如采用机械压滤的方式进行固液分离得到污泥固相和液相;所述污泥固相经烘干脱水后进行无氧热解,冷却后得到改性污泥热解炭,其可作为土壤改良剂使用;所述液相经污水处理装置进行污水处理以使其达标排放;
(3)将所述干碎秸秆无氧热解产生的热解气燃烧后作为秸秆无氧热解、污泥固相烘干脱水以及污泥固相无氧热解的能源,并将所述污泥固相烘干脱水和无氧热解产生的烟气作为秸秆烘干的能源(这部分烟气后续经冷凝和尾气净化后达标排放),实现能量梯级利用。
在本发明中,所述秸秆可以为水稻秸秆,也可以为玉米秸秆,还可以为两者的混合物。在将秸秆进行无氧热解之前,需要先将其进行破碎和烘干,以将其粒度控制在3cm以下且将含水量控制在1wt%以下。其中,秸秆经破碎之后所得的颗粒通常是不规则的,此时,术语“粒度”是指秸秆碎粒中任意两点之间的最大距离。所述烘干的方式优选为烟气直接干燥,且干燥温度可以为80~180℃。所述干碎秸秆进行无氧热解的方式优选为无氧间接加热热解,且热解温度优选为250~400℃,热解时间优选为5~20min。
本发明对所述污泥的来源没有特别的限定,例如,可以为生活污水处理厂湿污泥。所述污泥的含水率优选为85wt%以上。
在所述混合调质过程中,所述秸秆热解炭与污泥的混合比例优选为(20~40)wt%:(60~80)wt%。所述秸秆热解炭能够降低污泥颗粒间的静电排斥作用和水合作用,在与污泥混合脱水过程中形成渗透、牢固性的晶格结构,实现污泥水热过程的细胞快速破壁,快速释放毛细水、吸附水和内部水,大幅度降低污泥固相粘度,极大提高脱水性,从而保证了后续脱水过程中滤相的通透性,提高了固液分离阶段的脱水效率,同时脱水污泥的干燥效率也能够得到明显提高。
在本发明中,步骤(2)中,将所述污泥固相进行烘干脱水的温度可以为80~120℃,时间以将烘干脱水产物中的含水量控制在1wt%以下为准。所述污泥固相进行无氧热解的方式优选为无氧间接加热热解,且热解温度优选为400~700℃,热解时间优选为15~60min。此外,所述固相经烘干脱水后热解产生的可燃气可作为自身热解能源利用(污泥间接热解产生类似天然气组分的可燃气,可以燃烧后作为自身热解的能源使用;秸秆热解也是一样,但秸秆热解气热值更高,产量大,所以一部分供自身热解使用,另一部分可以供给污泥热解),实现能源协同利用(污泥热解产生的热解气燃烧后不足以100%满足自身热解所需能源)。
采用本发明提供的装置和方法不仅可以完全避免秸秆与污泥造成的环境污染问题,而且还可以解决当前因污泥填埋与秸秆焚烧所造成的资源浪费问题,同时还能够实现秸秆与污泥无害化处理过程优势互补,实现100%资源回收利用和100%能源自供,具有良好的经济效益与环境效益。
以下将通过实施例对本发明进行详细描述。
以下实施例和对比例中,如未明确说明,“%”均指重量百分比。
实施例1
一种秸秆与污泥协同处理的装置,包括污泥储仓1、1#输送装置2、混合调质装置3、压滤装置4、2#输送装置5、1#烘干脱水装置6、3#输送装置7、1#热解装置8、1#冷却装置9、4#输送装置10、成品储仓11、污水处理装置12、1#冷凝装置13、1#风机14、破碎装置15、5#输送装置16、2#烘干脱水装置17、6#输送装置18、2#热解装置19、2#冷却装置20、7#输送装置21、1#燃烧室22、2#燃烧室23、3#燃烧室24、2#冷凝装置25、2#风机26、尾气净化装置27以及烟囱28。
当工作时,污泥储仓1中的污泥由1#输送装置2输送进入混合调质装置3,与7#输送装置21输送进入的秸秆热解炭混合调质后,进入压滤装置4进行压滤;压滤得到的液体进入污水处理装置12中处理后达标排放;压滤得到的固体由2#输送装置5输入进入1#烘干脱水装置6中进行间接烘干脱水处理;间接烘干脱水产生的水蒸汽进入1#冷凝装置13,冷凝水进入污水处理装置12处理后达标排放,不凝气通过1#风机14输送进入1#燃烧室22作为燃烧补充空气,实现除臭处理;经烘干脱水后的泥饼由3#输送装置7输送进入1#热解装置8中进行热解处理,所得高温污泥热解炭进入1#冷却装置9中进行冷却,所得冷却后的污泥热解炭经4#输送装置10输送进入成品储仓11中储存,用于后续土壤改良等资源化利用。
秸秆经破碎装置15破碎后,利用5#输送装置16输送进入2#烘干脱水装置17进行烟气直接烘干处理;2#烘干脱水装置17所产生的烟气在2#冷凝装置25中实现冷凝降温,回收水份;同时,冷凝后的烟气通过2#风机26输送进入尾气净化装置27中进行尾气净化处理,达标后的净化烟气尾气由烟囱28排放。烘干后的秸秆由6#输送装置18输送进入2#热解装置19中进行无氧热解炭化,所得秸秆热解炭进入2#冷却装置20冷却;冷却后的秸秆热解炭由7#输送装置21输送进入混合调质装置3用于污泥调质脱水。
2#热解装置19中秸杆热解产生的高品质热解气一部分在3#燃烧室24中燃烧后自用于2#热解装置19中秸杆的无氧热解炭化;富裕的热解气一部分在1#燃烧室22中燃烧后用于1#烘干脱水装置6的污泥间接烘干,另一部分进入2#燃烧室23中燃烧用于1#热解装置8的污泥热解补充能源,从而解决污泥处理过程能源不足的问题。1#烘干脱水装置6以及1#热解装置8均为间接烟气加热,所产生的烟气尾气送入2#烘干脱水装置17用于秸杆的直接烘干,一方面实现余热余能的进一步资源化利用,另一方面利用秸杆生物质特有的吸附净化能力,实现烟气的初步净化处理。
从物质循环上:秸杆经干燥热解产生的秸杆热解炭作为污泥脱水的调理剂,通过干燥脱水与热解炭化工序转化为高品质污泥生物炭,一方面提高污泥生物炭中碳含量,从而提高孔隙率,另一方面,进一步固化污泥中的重金属,显著降低污泥生物炭重金属风险。污泥生物炭可做为土壤改良剂,从而实现秸杆与污泥协资源化利用。
从能源上看:秸杆热值高,热解气除了可以供秸杆自身热解外,富裕的热解气一部分用于污泥间接烘干,另一部分用于污泥热解的补充能源,从而解决了污泥处理过程能源不足的问题,明显降低了污泥处理成本。同时,将烟气尾气作为秸杆烘干脱水的能源介质,一方面实现余热余能的进一步资源化利用,另一方面,利用秸杆生物质特有的吸附净化能力,实现烟气的初步净化处理,充分体现了节能环保理念。
实施例2
(1)将水稻秸秆依次进行破碎和烘干以将其粒度控制在3cm以下且将含水量控制在1wt%以下,之后将所得干碎秸秆于400℃下无氧热解5min,冷却后得到秸秆热解炭。
(2)将所述秸秆热解炭与含水量为90wt%的生活污水处理厂湿污泥按照20wt%:80wt%的比例进行混合调质,之后将所得混合调质产物采用机械压滤的方式进行固液分离,得到污泥固相和液相;所述污泥固相于80℃下烘干脱水至水含量为1wt%之后于400℃下无氧热解60min,冷却后得到改性污泥热解炭,其可作为土壤改良剂使用;所述液相经污水处理系统进行污水处理以使其达标排放。结果表明,与污泥单独脱水并热解相比,污泥脱水效率提高了50%,改性污泥热解炭性能指标也能够得到明显提升,其中,改性污泥热解炭中的碳含量增加了23%,pH值从8.36增加至8.96;(N+P2O5+K)含量增加了18.6%,热解炭孔结构明显改善(见表1),典型重金属TCLP浸出浓度明显降低(见表2)。
表1热解炭的孔结构分析
样品 BET比表面积(m2/g) 总孔体积(cm3/g) 平均孔径(nm)
污泥单独脱水热解 44.7959 0.0822 7.3406
实施例2 74.2685 0.0955 5.1440
表2污泥和热解炭中重金属的浸出浓度分析
a阈值来自于USEPA:40CFR 261,1993ed;bND-代表未检出,下同。
(3)将所述干碎秸秆无氧热解产生的热解气燃烧后作为秸秆无氧热解、污泥固相烘干以及污泥固相无氧热解的能源,并将所述污泥固相烘干脱水和无氧热解产生的烟气作为秸秆烘干的能源(这部分烟气后续经冷凝和尾气净化之后达标排放),实现能量梯级利用。
实施例3
(1)将玉米秸秆依次进行破碎和烘干以将其粒度控制在3cm以下且将含水量控制在1wt%以下,之后将所得干碎秸秆于250℃下无氧热解20min,冷却后得到秸秆热解炭。
(2)将所述秸秆热解炭与含水量为90wt%的生活污水处理厂湿污泥按照40wt%:60wt%的比例进行混合调质,之后将所得混合调质产物采用机械压滤的方式进行固液分离,得到污泥固相和液相;所述污泥固相于120℃下烘干脱水至水含量为1wt%之后于700℃下无氧热解15min,冷却后得到改性污泥热解炭,其可作为土壤改良剂使用;所述液相经污水处理系统进行污水处理以使其达标排放。结果表明,与污泥单独脱水并热解相比,污泥脱水效率提高了70%,改性污泥热解炭性能指标也能够得到明显提升,其中,改性污泥热解炭中的碳含量增加了23%,pH值从8.36增加至8.93;(N+P2O5+K)含量增加了19.2%,热解炭孔结构明显改善(见表3),典型重金属TCLP浸出浓度明显降低(见表4)。
表3热解炭的孔结构分析
样品 BET比表面积(m2/g) 总孔体积(cm3/g) 平均孔径(nm)
污泥单独脱水热解 44.7959 0.0822 7.3406
实施例3 77.354 0.0885 5.2867
表4污泥和热解炭中重金属的浸出浓度分析
(3)将所述干碎秸秆无氧热解产生的热解气燃烧后作为秸秆无氧热解、污泥固相烘干以及污泥固相无氧热解的能源,并将所述污泥固相烘干脱水和无氧热解产生的烟气作为秸秆烘干的能源(这部分烟气后续经冷凝和尾气净化之后达标排放),实现能量梯级利用。
实施例4
(1)将水稻秸秆依次进行破碎和烘干以将其粒度控制在3cm以下且将含水量控制在1wt%以下,之后将所得干碎秸秆于320℃下无氧热解15min,冷却后得到秸秆热解炭。
(2)将所述秸秆热解炭与含水量为85wt%的生活污水处理厂湿污泥按照30wt%:70wt%的比例进行混合调质,之后将所得混合调质产物采用机械压滤的方式进行固液分离,得到污泥固相和液相;所述污泥固相于100℃下烘干脱水至水含量为1wt%之后于550℃下无氧热解35min,冷却后得到改性污泥热解炭,其可作为土壤改良剂使用;所述液相经污水处理系统进行污水处理以使其达标排放。结果表明,与污泥单独脱水并热解相比,污泥脱水效率提高了70%,改性污泥热解炭性能指标也能够得到明显提升,其中,改性污泥热解炭中的碳含量增加了23%,pH值从8.36增加至8.85;(N+P2O5+K)含量增加了28%,热解炭孔结构明显改善(见表5),典型重金属TCLP浸出浓度明显降低(见表6)。
表5热解炭的孔结构分析
样品 BET比表面积(m2/g) 总孔体积(cm3/g) 平均孔径(nm)
污泥单独脱水热解 44.7959 0.0822 7.3406
实施例4 117.2197 0.1168 3.9844
表6污泥和热解炭中重金属的浸出浓度分析
(3)将所述干碎秸秆无氧热解产生的热解气燃烧后作为秸秆无氧热解、污泥固相烘干以及污泥固相无氧热解的能源,并将所述污泥固相烘干脱水和无氧热解产生的烟气作为秸秆烘干的能源(这部分烟气后续经冷凝和尾气净化之后达标排放),实现能量梯级利用。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种秸秆与污泥协同处理的装置,其特征在于,该装置包括破碎装置(15)、2#烘干脱水装置(17)、2#热解装置(19)、2#冷却装置(20)、混合调质装置(3)、压滤装置(4)、1#烘干脱水装置(6)、1#热解装置(8)、1#冷却装置(9)、污水处理装置(12)、1#燃烧室(22)、2#燃烧室(23)和3#燃烧室(24);所述破碎装置(15)出口经5#输送装置(16)与所述2#烘干脱水装置(17)入口连通,所述2#烘干脱水装置(17)固相出口经6#输送装置(18)与所述2#热解装置(19)入口连通,所述2#热解装置(19)固相出口与所述2#冷却装置(20)连通,所述2#冷却装置(20)出口经7#输送装置(21)与所述混合调质装置(3)入口连通,所述混合调质装置(3)出口与所述压滤装置(4)入口连通,所述压滤装置(4)固相出口经2#输送装置(5)与所述1#烘干脱水装置(6)入口连通且液相出口与所述污水处理装置(12)入口连通,所述1#烘干脱水装置(6)固相出口经3#输送装置(7)与所述1#热解装置(8)入口连通,所述1#热解装置(8)固相出口与所述1#冷却装置(9)入口连通,所述1#烘干脱水装置(6)烟气出口以及所述1#热解装置(8)烟气出口均与所述2#烘干脱水装置(17)燃料入口连通,所述2#热解装置(19)气相出口分别与所述1#燃烧室(22)、2#燃烧室(23)和3#燃烧室(24)燃气入口连通,所述1#燃烧室(22)燃烧产生的能量用于所述1#烘干脱水装置(6),所述2#燃烧室(23)燃烧产生的能量用于所述1#热解装置(8),所述3#燃烧室(24)燃烧产生的能量用于所述2#热解装置(19)。
2.根据权利要求1所述的秸秆与污泥协同处理的装置,其特征在于,该装置还包括污泥储仓(1),所述污泥储仓(1)出口经1#输送装置(2)与所述混合调质装置(3)入口连通;和/或,还包括1#冷凝装置(13),所述1#烘干脱水装置(6)水蒸汽出口与所述1#冷凝装置(13)入口连通,所述1#冷凝装置(13)液体出口与所述污水处理装置(12)入口连通且气体出口通过1#风机(14)与所述1#燃烧室(22)入口连通;和/或,还包括2#冷凝装置(25)、尾气净化装置(27)和烟囱(28),所述2#烘干脱水装置(17)烟气出口与所述2#冷凝装置(25)入口连通,所述2#冷凝装置(25)出口经2#风机(26)与所述尾气净化装置(27)入口连通,所述尾气净化装置(27)出口与所述烟囱(28)入口连通;和/或,还包括成品储仓(11),所述1#冷却装置(9)出口经4#输送装置(10)与所述成品储仓(11)入口连通。
3.根据权利要求2所述的秸秆与污泥协同处理的装置,其特征在于,
所述污泥储仓(1)为普通钢仓或混凝土储泥池;
所述混合调质装置(3)为带搅拌装置的固液混合罐;
所述压滤装置(4)为板框压滤机或带式压滤机;
所述1#烘干脱水装置(6)为滚筒干燥设备、带式干燥设备或圆盘式干燥设备;
所述1#热解装置(8)与所述2#热解装置(19)均为滚筒式间接热解炉;
所述1#冷却装置(9)与所述2#冷却装置(20)各自独立地为滚筒式间接冷却设备或螺旋间接冷却设备;
所述成品储仓(11)为普通钢仓或混凝土仓;
所述污水处理装置(12)为普通污水处理装置;
所述1#冷凝装置(13)与所述2#冷凝装置(25)各自独立地为列管式间接冷却装置或直接喷淋冷却装置;
所述1#风机(14)和2#风机(26)各自独立地为离心风机或轴流风机;
所述破碎装置(15)为剪切式破碎机;
所述2#烘干脱水装置(17)为滚筒式干燥设备、流态化干燥设备或带式干燥设备,烘干方式为直接接触式烘干;
所述1#燃烧室(22)、2#燃烧室(23)与3#燃烧室(24)各自独立地为天然气焚烧炉或煤气焚烧炉;
所述尾气净化装置(27)为干法烟气净化装置或湿法烟气净化装置;
所述烟囱(28)为钢质烟囱、砖混结构烟囱或混凝土质烟囱;
所述1#输送装置(2)为普通泥浆泵;
所述2#输送装置(5)、3#输送装置(7)、4#输送装置(10)、5#输送装置(16)、6#输送装置(18)和7#输送装置(21)各自独立地为大倾角皮带输送机、刮板输送机、斗提机、螺旋输送机或气力输送机。
4.一种秸秆与污泥协同处理的方法,其特征在于,该方法包括以下步骤:
(1)将秸秆依次进行破碎和烘干以将其粒度控制在3cm以下且将含水量控制在1wt%以下,之后将所得干碎秸秆进行无氧热解,冷却后得到秸秆热解炭;
(2)将所述秸秆热解炭与污泥进行混合调质,之后将所得混合调质产物进行固液分离得到污泥固相和液相;所述污泥固相经烘干脱水后进行无氧热解,冷却后得到改性污泥热解炭;所述液相进行污水处理以使其达标排放;
(3)将所述干碎秸秆无氧热解产生的热解气燃烧后作为秸秆无氧热解、污泥固相烘干脱水以及污泥固相无氧热解的能源,并将所述污泥固相烘干脱水和无氧热解产生的烟气作为秸秆烘干的能源,实现能量梯级利用。
5.根据权利要求4所述的秸秆与污泥协同处理的方法,其特征在于,所述秸秆为水稻秸秆和/或玉米秸秆。
6.根据权利要求4或5所述的秸秆与污泥协同处理的方法,其特征在于,步骤(1)中,所述干碎秸秆进行无氧热解的方式为无氧间接加热热解,且热解温度为250~400℃,热解时间为5~20min。
7.根据权利要求4或5所述的秸秆与污泥协同处理的方法,其特征在于,所述污泥为生活污水处理厂湿污泥,含水率为85wt%以上。
8.根据权利要求4或5所述的秸秆与污泥协同处理的方法,其特征在于,步骤(2)中,所述秸秆热解炭与污泥的混合比例为(20~40)wt%:(60~80)wt%。
9.根据权利要求4或5所述的秸秆与污泥协同处理的方法,其特征在于,步骤(2)中,将所述污泥固相进行烘干脱水的温度为80~120℃;所述污泥固相进行无氧热解的方式为无氧间接加热热解,且热解温度为400~700℃,热解时间为15~60min。
10.根据权利要求4或5所述的秸秆与污泥协同处理的方法,其特征在于,该方法在权利要求1~3中任意一项所述的秸秆与污泥协同处理的装置中进行。
CN201910624235.0A 2019-07-11 2019-07-11 一种秸秆与污泥协同处理的装置及其方法 Active CN110240386B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910624235.0A CN110240386B (zh) 2019-07-11 2019-07-11 一种秸秆与污泥协同处理的装置及其方法
PCT/CN2020/082863 WO2021004103A1 (zh) 2019-07-11 2020-04-02 一种秸秆与污泥协同处理的装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910624235.0A CN110240386B (zh) 2019-07-11 2019-07-11 一种秸秆与污泥协同处理的装置及其方法

Publications (2)

Publication Number Publication Date
CN110240386A CN110240386A (zh) 2019-09-17
CN110240386B true CN110240386B (zh) 2023-11-17

Family

ID=67891837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910624235.0A Active CN110240386B (zh) 2019-07-11 2019-07-11 一种秸秆与污泥协同处理的装置及其方法

Country Status (2)

Country Link
CN (1) CN110240386B (zh)
WO (1) WO2021004103A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110240386B (zh) * 2019-07-11 2023-11-17 中国科学院城市环境研究所 一种秸秆与污泥协同处理的装置及其方法
CN110846056B (zh) * 2019-11-18 2024-07-09 武汉齐宇天下环境科技有限公司 一种污泥碳化协同技术成套装备
CN111423096A (zh) * 2020-03-23 2020-07-17 中国科学院城市环境研究所 一种利用畜禽粪污循环处理养殖废水和/或土壤改良的方法及装置
CN112938963B (zh) * 2021-02-09 2023-02-10 同济大学 一种利用秸秆和芬顿污泥制备磁性碳的方法与应用
CN113603334A (zh) * 2021-09-23 2021-11-05 合肥工业大学 一种采用富碳调理剂联合提高城市污泥脱水效率的方法
CN114088819B (zh) * 2021-11-16 2024-01-05 哈尔滨工业大学 一种基于分子模拟玉米秸秆纤维吸附沥青效果的评价方法
CN114477709A (zh) * 2022-02-25 2022-05-13 江苏碧诺环保科技有限公司 一种不易堵塞的重金属污泥炭化系统
CN114671589B (zh) * 2022-03-17 2023-09-29 中国科学院城市环境研究所 一种油泥与飞灰协同无害化资源化处置的方法
CN114634218B (zh) * 2022-04-18 2023-05-30 中国电建集团中南勘测设计研究院有限公司 一种河湖底泥的资源化利用方法及应用
CN115114766A (zh) * 2022-05-13 2022-09-27 中国联合工程有限公司 一种基于污泥协同焚烧的炉膛自持燃烧判定的计算方法
CN115231790B (zh) * 2022-08-05 2023-07-21 许国仁 一种污泥热解碳化耦合污泥处理的土壤改良工艺
CN115316138B (zh) * 2022-08-18 2023-12-29 重庆交通大学 一种可移动式热解技术处理农业秸秆设备
CN115716647A (zh) * 2022-10-31 2023-02-28 城康材料技术有限公司 一种污泥基活性炭及其制备方法和其在烟气吸附领域的应用
CN115806839B (zh) * 2022-11-29 2024-05-14 华中科技大学 一种基于污泥和生物质协同气化的固废处理系统
CN116002682A (zh) * 2022-12-21 2023-04-25 湖北省长江水生态研究院有限责任公司 一种以污泥为原料制备成型活性炭的方法
CN115949949B (zh) * 2022-12-29 2023-10-20 广东广业投资集团有限公司 一种生活垃圾协同干化焚烧污泥的系统及方法
CN115849938B (zh) * 2023-01-09 2023-06-30 哈尔滨福泰环保建材有限公司 一种使用工农业废弃物制作陶粒的工艺
CN116067163B (zh) * 2023-01-10 2024-05-10 中国中材国际工程股份有限公司 一种窑头中低温废气烘干含氯粉体除氯滤渣的系统与工艺
CN116162476B (zh) * 2023-03-27 2024-04-23 华中科技大学 一种利用污泥制备低灰有机炭的方法
CN116410762A (zh) * 2023-03-29 2023-07-11 时科生物科技(上海)有限公司 一种炭化烘干一体化的处理装置和处理方法
CN117310124B (zh) * 2023-10-07 2024-06-25 深圳碳中和生物燃气股份有限公司 基于生物炭负碳排放的土壤固碳量测算方法及相关装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101172899A (zh) * 2007-09-30 2008-05-07 浙江大学 一种以竹炭为重金属固定剂的污泥堆肥及其制备方法
AU2008221197A1 (en) * 2008-02-27 2008-09-04 Omni Conversion Technologies Inc. Gasification system with processed feedstock/Char conversion and gas reformulation
CN102093903A (zh) * 2009-12-15 2011-06-15 北京林业大学 一种热解反应装置热量循环利用的方法及其装置
CN102452781A (zh) * 2010-10-22 2012-05-16 宇星科技发展(深圳)有限公司 基于污泥焚烧的碳基污泥复合调理脱水剂
CN102698712A (zh) * 2012-05-14 2012-10-03 北京工业大学 一种处理染料废水的污泥活性炭的表面改性方法
CN102786967A (zh) * 2011-05-19 2012-11-21 中国科学院城市环境研究所 一种利用污泥制备生物碳的方法
CN103725304A (zh) * 2014-01-23 2014-04-16 杭州互惠环保科技有限公司 基于快速热解的污泥和农作物秸秆共同处理方法
CN105217916A (zh) * 2015-10-28 2016-01-06 苏州柏沃环保科技有限公司 一种无害化污泥炭化处理工艺及其工艺系统
CN105481221A (zh) * 2016-01-14 2016-04-13 上海交通大学 一种污泥干化抗收缩增碳方法
CN206955943U (zh) * 2017-07-11 2018-02-02 盐城工学院 秸秆热解系统及生物炭制造系统
CN207671989U (zh) * 2017-07-24 2018-07-31 大连中科源新能源科技开发有限公司 农业秸秆及林业废弃物的综合利用系统
CN108723074A (zh) * 2018-05-04 2018-11-02 浙江工业大学 一种利用污泥基炭灰稳定化修复重金属污染土壤的方法
CN109028079A (zh) * 2018-07-11 2018-12-18 清华大学 一种生物质废物热解气化及其余热梯级利用的系统
CN210419701U (zh) * 2019-07-11 2020-04-28 中国科学院城市环境研究所 一种秸秆与污泥协同处理的装置
WO2021004103A1 (zh) * 2019-07-11 2021-01-14 中国科学院城市环境研究所 一种秸秆与污泥协同处理的装置及其方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792881B2 (en) * 2002-06-26 2004-09-21 Peter W. Smith Method for cleaning salt impregnated hog fuel and other bio-mass, and for recovery of waste energy
KR100997522B1 (ko) * 2010-08-24 2010-12-01 한솔엔지니어링 주식회사 하수슬러지를 이용한 고체연료의 제조방법
US9758738B2 (en) * 2014-11-14 2017-09-12 Permanente Corporation Green renewable liquid fuel
CN105733734A (zh) * 2016-03-16 2016-07-06 中国科学院城市环境研究所 一种污水厂污泥与焦粉混合制备燃料的方法与装置
CN105925270B (zh) * 2016-05-03 2019-01-18 内蒙古科技大学 一种改善盐碱地肥力的土壤改良剂及其应用
KR101785558B1 (ko) * 2017-02-27 2017-10-17 주식회사 한기실업 폐기물의 가연성 건류가스를 이용하여 제조하는 유기성 슬러지의 고형화 연료 성형체의 제조방법

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101172899A (zh) * 2007-09-30 2008-05-07 浙江大学 一种以竹炭为重金属固定剂的污泥堆肥及其制备方法
AU2008221197A1 (en) * 2008-02-27 2008-09-04 Omni Conversion Technologies Inc. Gasification system with processed feedstock/Char conversion and gas reformulation
CN102093903A (zh) * 2009-12-15 2011-06-15 北京林业大学 一种热解反应装置热量循环利用的方法及其装置
CN102452781A (zh) * 2010-10-22 2012-05-16 宇星科技发展(深圳)有限公司 基于污泥焚烧的碳基污泥复合调理脱水剂
CN102786967A (zh) * 2011-05-19 2012-11-21 中国科学院城市环境研究所 一种利用污泥制备生物碳的方法
CN102698712A (zh) * 2012-05-14 2012-10-03 北京工业大学 一种处理染料废水的污泥活性炭的表面改性方法
CN103725304A (zh) * 2014-01-23 2014-04-16 杭州互惠环保科技有限公司 基于快速热解的污泥和农作物秸秆共同处理方法
CN105217916A (zh) * 2015-10-28 2016-01-06 苏州柏沃环保科技有限公司 一种无害化污泥炭化处理工艺及其工艺系统
CN105481221A (zh) * 2016-01-14 2016-04-13 上海交通大学 一种污泥干化抗收缩增碳方法
CN206955943U (zh) * 2017-07-11 2018-02-02 盐城工学院 秸秆热解系统及生物炭制造系统
CN207671989U (zh) * 2017-07-24 2018-07-31 大连中科源新能源科技开发有限公司 农业秸秆及林业废弃物的综合利用系统
CN108723074A (zh) * 2018-05-04 2018-11-02 浙江工业大学 一种利用污泥基炭灰稳定化修复重金属污染土壤的方法
CN109028079A (zh) * 2018-07-11 2018-12-18 清华大学 一种生物质废物热解气化及其余热梯级利用的系统
CN210419701U (zh) * 2019-07-11 2020-04-28 中国科学院城市环境研究所 一种秸秆与污泥协同处理的装置
WO2021004103A1 (zh) * 2019-07-11 2021-01-14 中国科学院城市环境研究所 一种秸秆与污泥协同处理的装置及其方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Jinjiao Zhu et al..Co-pyrolysis of textile dyeing sludge and four typical lignocellulosic biomasses: Thermal conversion characteristics, synergetic effects and reaction kinetics.《international journal of hydrogen energy》.2018,第43卷22135-22147. *
肖利萍.《常见水处理工艺及运行控制》.辽宁大学出版社,2008,(第1版),198-199. *
脱水污泥低温热解制备生物炭的研究;李刚;王格格;王忠科;陆江银;王建俊;;可再生能源(10);115-121 *
韩剑宏.玉米秸秆和污泥共热解制备的生物质炭及其 对盐碱土壤理化性质的影响.《水土保持通报》.2017,第37卷(第4期),92-105. *

Also Published As

Publication number Publication date
CN110240386A (zh) 2019-09-17
WO2021004103A1 (zh) 2021-01-14

Similar Documents

Publication Publication Date Title
CN110240386B (zh) 一种秸秆与污泥协同处理的装置及其方法
CN210419701U (zh) 一种秸秆与污泥协同处理的装置
CN110270310B (zh) 一种同步高效回收养殖场废液中氮和磷养分的富镁生物炭的制备方法及其应用
CN101746941B (zh) 一种城市污水厂脱水污泥生物干化处理方法
CN102765866B (zh) 一种城市污泥资源化处理方法
CN102161562B (zh) 一种利用粉煤灰处置剩余污泥的工艺方法
US11643350B2 (en) Method for reducing heavy metal content of sludge-based biocoke
CN112830821A (zh) 一种生物质与畜禽粪污耦合多联产的方法
CN106746468A (zh) 一种污泥处理系统及处理工艺
CN102336508A (zh) 城镇生活污泥的快速脱水及资源化处理方法及系统
CN112830656A (zh) 一种污泥与畜禽粪污协同处理的方法与装置
CN106221849A (zh) 含有生物质污泥的秸秆燃料及其制备方法
CN114988926A (zh) 一种用含水率百分之八十污泥生产有机复合肥及制造方法
CN112063493A (zh) 一种利用湿垃圾好氧发酵制备饲料的系统及方法
CN101074174A (zh) 城市垃圾为原料生产有机肥的方法
CN111269729A (zh) 一种利用污泥和废轮胎共热解制备生物炭的方法及系统
CN104556618B (zh) Ffds污泥处置工艺
CN211078842U (zh) 一种污泥资源化处理系统
CN110615587A (zh) 一种污泥资源化处理工艺及其系统
CN217798006U (zh) 一种餐厨垃圾综合处理的装置
CN110295077A (zh) 一种用含油污泥生产的再生清洁燃料及其制造方法
CN111774415B (zh) 一种基于污水污泥与垃圾、粪渣的协同处理方法和处理系统
CN114602934A (zh) 一种餐厨垃圾综合处理的方法和装置
CN211339484U (zh) 一种城市有机固废协同处理系统
CN114525146B (zh) 一种双内循环活性污泥资源化利用式处置方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant