CN110204911A - 一种固体微纳米粉料提高胶状材料软化点制粉的方法 - Google Patents

一种固体微纳米粉料提高胶状材料软化点制粉的方法 Download PDF

Info

Publication number
CN110204911A
CN110204911A CN201910480861.7A CN201910480861A CN110204911A CN 110204911 A CN110204911 A CN 110204911A CN 201910480861 A CN201910480861 A CN 201910480861A CN 110204911 A CN110204911 A CN 110204911A
Authority
CN
China
Prior art keywords
micro
powder
nano
colloidal material
softening point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910480861.7A
Other languages
English (en)
Inventor
李大鹏
何其慧
胡柏星
顾思云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Xuhua Cheng Energy Technology Co Ltd
Nanjing University
Original Assignee
Xi'an Xuhua Cheng Energy Technology Co Ltd
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Xuhua Cheng Energy Technology Co Ltd, Nanjing University filed Critical Xi'an Xuhua Cheng Energy Technology Co Ltd
Priority to CN201910480861.7A priority Critical patent/CN110204911A/zh
Publication of CN110204911A publication Critical patent/CN110204911A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic

Abstract

本发明公开了一种固体微纳米粉料提高胶状材料软化点制粉的方法,研磨固体微纳米粉料,研磨出平均粒径为研磨前后粒径之比为5:1~100:1的两个级分,按照质量比为2:8~8:2将研磨前后的固体微纳米粉料进行混合,得到进行级配的微纳米粉;先将粘度<300mPa.S的胶状材料置于混合加热装置中,加热使其熔融,再加入级配后的微纳米粉,同时加入表面改性剂,充分搅拌,使体系粘度升高至1000‑10000mPa.S;所述级配后的微纳米粉与胶状材料的质量比为1:9~3:7,所述表面改性剂的用量为胶状材料和级配的微纳米粉总质量的0.1‑0.5%,将上述产物采用成型装置制成块状物料;本发明工艺简单、效果显著,使油渣、沥青等材料的软化点大幅度上升,可以满足常温下干磨制粉的相关要求。

Description

一种固体微纳米粉料提高胶状材料软化点制粉的方法
技术领域
本发明属于新型复合材料和环保技术领域,特别涉及一种固体微纳米粉料提高胶状材料软化点制粉的方法。
背景技术
胶状材料如沥青、油渣等由于软化点较低,无法干磨制粉、难以有效处理和利用。前人为了改善这类材料的性状,做了大量工作。中国专利申请2012204769349提出了一种以通过萃取,蒸馏等利用油泥的方法,该方法通过蒸馏低沸点成分的方法提高了油泥的软化点,但工艺过于复杂,成本较高,而且分离过程存在安全隐患,可能污染环境,存在资源未能充分利用的问题。中国专利申请961095547提出了一种淤泥陶粒及其生产方法,该方法使用淤泥、油渣等加入黏土通过干馏制得陶瓷颗粒,但是由于该方法需要进行焙烧等,油渣里的可燃成分均被损失,造成资源不能有效利用,同时陶瓷粉体也无实际、有效的用途,因此实用性不强。中国专利申请200610048320X,提出了一种采用冷冻粉碎法制备煤沥青粉,首先将煤沥青冷冻至脆化温度,添加表面活性剂后将其粉碎至一定的粒径,该方法需要对沥青进行冷冻,并不能改变沥青的软化点和磨矿特性,无法对制备的沥青粉进行进一步的加工。如何在不损耗资源的前提下,将软化点较低的胶状材料转化为可利用的脆性材料,成为行业内亟待解决的问题。
如何经济、环保地改性沥青、油渣等胶状材料的软化点,在常温下能够方便地制粉,是行业亟待解决的问题。
发明内容
为了解决现有技术中的问题,本发明提供一种固体微纳米粉料提高胶状材料软化点制粉的方法,该方法采用级配、活化半焦、灰渣、活性炭粉、煤粉等多孔微纳米粉料来提高油渣、沥青等胶状材料的软化点,在常温下方便制粉并从而实现其资源化利用。
为实现上述目的,本发明采用的技术方案为:
一种固体微纳米粉料提高胶状材料软化点制粉的方法,包括以下步骤:
步骤1,先采用磨机,研磨固体微纳米粉料,研磨出平均粒径为研磨前后粒径之比为5:1~100:1的两个级分,按照质量比为2:8~8:2将研磨前后的固体微纳米粉料进行混合,得到进行级配的微纳米粉;
步骤2,先将粘度<300mPa.S的胶状材料置于混合加热装置中,加热使其熔融,再加入级配后的微纳米粉,同时加入表面改性剂,充分搅拌,使体系粘度升高至1000-10000mPa.S;所述级配后的微纳米粉与胶状材料的质量比为1:9~3:7,所述表面改性剂的用量为胶状材料和级配的微纳米粉总质量的0.1-0.5%,
步骤3,步骤2中的产物采用成型装置制成块状物料。
优选地,所述步骤1中,研磨时间为30-200min。
优选地,所述固体微纳米粉料为半焦、活性炭或灰渣。
优选地,所述固体微纳米粉料研磨前的平均粒径为50-200μm。
优选地,级配前后的微纳米粉的堆密度之比ρ21>1.2。
优选地,所述胶状材料为煤油共炼油渣、催化裂化油渣、油罐罐底油渣或沥青。
优选地,所述表面改性剂为NP8、NP10、SP40或SP80。
优选地,所述步骤2中,加热至150-240℃。
优选地,所述步骤2中,搅拌时间为5-30min。
优选地,所述磨机为球磨机、振动磨机或搅拌磨机,所述混合加热装置为密炼机或带有回流冷凝装置的反应釜,所述成型装置为单螺杆挤出机。
与现有技术相比,本发明具有以下有益效果:
本发明是涉及一种级配半焦、灰渣、活性炭粉等多孔微纳米粉料来提高油渣、沥青等胶状材料的软化点的方法,制得的固体可以在常用磨机中制粉,具有良好的工业应用前景。本发明将多孔微纳米粉通过调整粒度分布、表面改性后,加入熔融油渣、沥青等胶状材料中,通过浆体粘度控制最终产物的软化点,使其满足直接磨粉的要求。该方法工艺简单,能耗低,能显著改善油渣、沥青等胶状材料的性质,使其适用常温制粉,具有良好的工业应用前景。
本方法通过级配搭建骨架、吸附小分子,有效分割连续相等方式,提高了此类胶状材料的软化点,解决了以往此类胶状物质由于含油量高、连续相软化点低,难以加工制粉的难题。其特征是将半焦、灰渣、活性炭粉、纳米碳管等多孔微纳米材料研磨、级配制得一定粒度分布、表面活性和孔径分布的多孔微纳米粉料,将表面改性后的粉料加入油渣熔融体中,经搅拌、密炼等工艺过程混合均匀,粘度较高后、并冷却,使多孔微纳米粉体充分吸附胶状材料中的小分子,均匀地分散在体系中形成骨架,从而显著提高沥青和油渣等胶状材料的软化点,使其能够满足常温制粉的要求。本发明工艺简单、效果显著,使油渣、沥青等材料的软化点大幅度上升,可以满足常温下干磨制粉的相关要求。
附图说明
图1是本发明的工艺流程图。
具体实施方式
下面结合实施例对本发明作更进一步的说明。
实施例1
(1)将0.5kg半焦(平均粒径100μm)加入球磨机中磨30min,使其平均粒径降低至20μm;取研磨后的细半焦粉0.2kg与未磨半焦粉按1:4的质量比混合。
(2)将1(1)获得的级配半焦粉1kg边搅拌边缓慢加入装有熔融的煤油共炼油渣9kg的反应釜中(230℃,粘度200mPa.S),并在混合过程中加入0.1%的界面改性剂NP10。搅拌15min,获得粘度稳定的物料(230℃,3000mPa.S)。
(3)将(2)制备的油浆,趁热倒入模具中,并自然冷却,采用单螺杆挤出机制成块状物料,制得高软化点油渣,并进行制粉。
表1使用本方法和处理前后油渣的性能
软化点 哈氏可磨性指数
实施例1 122 80
未处理 82 软化,无法测量
实施例2
(1)将0.5kg灰渣(平均粒径50μm)加入搅拌磨机中磨25分钟,使其平均粒径降低至10μm;制得的细灰与未研磨灰按1:9的质量比混合。
(2)将(1)获得的级配灰渣5kg边搅拌边缓慢加入熔融的沥青15kg中(240℃,粘度210mPa.S),并在混合过程中加入1%的界面改性剂SP40,搅拌10分钟后,获得粘度稳定的物料(240℃,5020mPa.S)。
(3)将(2)制备的沥青,使用单螺杆挤出机进行造粒并空气冷却,使沥青不形成直粒径大于30mm的团块,制得高软化点沥青,并进行制粉。
表2使用本方法和处理前沥青的性能
软化点 哈氏可磨性指数
实施例2 142 92
未处理 91 软化,无法测量
实施例3
(1)将平均粒径为100μm的3kg活性炭粉(平均粒径200μm)加入振动磨机中磨200分钟,使其平均粒径降低至10μm,将制得的细粉2kg与未研磨活性炭粉按1:2的质量比混合。
(2)将(1)获得的级配活性炭粉4kg边搅拌边缓慢加入熔融的油罐罐底渣油6kg中(150℃,粘度80mPa.S),并在混合过程中加入0.5%的界面改性剂NP8,使用密炼机搅拌15分钟获得粘度稳定的物料(150℃,2000mPa.S)。
(3)将(2)制备的改性渣油,趁热使用双螺杆挤出机成型,并控制流速,使改性渣油形成粒径小于30mm的团块,制得高软化点改性渣由。
表3使用本方法和处理前罐底油渣的性能
软化点 哈氏可磨性指数
实施例3 132 65
未处理 77 软化,无法测定。
实施例4
(1)将平均粒径为100微米的2kg活性炭粉(平均粒径200μm)加入球磨机中磨150分钟,使其平均粒径降低至5μm。将制得的活性炭细粉1kg与煤粉(平均粒径为70μm)按7:1的质量比例混合。
(2)将(1)获得的级配活性炭-纳米碳管粉体0.5kg缓慢加入熔融的催化裂化渣油3kg中(180℃,粘度30mPa.S),并在混合过程中加入1%的界面改性剂NP8搅拌5分钟后,获得粘度的物料(180℃,820mPa.S)。
(3)将(2)制备的改性渣油,趁热倒入冷却模具,并以鼓风机进行空气冷却,使渣油形成形状规则的团块,制得高软化点改性渣油。
表4使用本方法和处理前催化裂化油渣的性能
软化点 哈氏可磨性指数
实施例4 123 71
未处理 62 软化,无法测定。
实施例5
(1)将1.5kg处理过废水的废活性炭粉(平均粒径200μm)加入球磨机中磨80分钟,使其平均粒径降低至30-40μm;将制得的细粉1kg与原有未研磨的活性炭按5:1的比例混合。
(2)将(1)获得的级配活性炭粉体0.6kg缓慢加入熔融的催化裂化渣油2kg中(180℃,粘度600mPa.S),并在混合过程中加入1%的界面改性剂SP80,在密炼机中混合15分钟后,获得粘度稳定0.5的物料(180℃,3000mPa.S)。
(3)将(2)制备的改性渣油,趁热倒入冷却模具,并以鼓风机进行空气冷却并控制流速,使渣油形成形状规则的团块,制得高软化点改性形焦。
表5使用本方法和处理催化裂化油渣的性能
软化点 哈氏可磨性指数
实施例5 118 71
未处理 62 软化,无法测定。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,包括以下步骤:
步骤1,先采用磨机,研磨固体微纳米粉料,研磨出平均粒径为研磨前后粒径之比为5:1~100:1的两个级分,按照质量比为2:8~8:2将研磨前后的固体微纳米粉料进行混合,得到进行级配的微纳米粉;
步骤2,先将粘度<300mPa.S的胶状材料置于混合加热装置中,加热使其熔融,再加入级配后的微纳米粉,同时加入表面改性剂,充分搅拌,使体系粘度升高至1000-10000mPa.S;所述级配后的微纳米粉与胶状材料的质量比为1:9~3:7,所述表面改性剂的用量为胶状材料和级配的微纳米粉总质量的0.1-0.5%,
步骤3,步骤2中的产物采用成型装置制成块状物料。
2.根据权利要求1所述的固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,所述步骤S1中,研磨时间为30-200min。
3.根据权利要求1所述的固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,所述固体微纳米粉料为半焦、活性炭或灰渣。
4.根据权利要求1所述的固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,所述固体微纳米粉料研磨前的平均粒径为50-200μm。
5.根据权利要求1所述的固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,级配前后的微纳米粉的堆密度之比ρ21>1.2。
6.根据权利要求1所述的固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,所述胶状材料为煤油共炼油渣、催化裂化油渣、油罐罐底油渣或沥青。
7.根据权利要求1所述的固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,所述表面改性剂为NP8、NP10、SP40或SP80。
8.根据权利要求1所述的固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,所述步骤2中,加热至150-240℃。
9.根据权利要求1所述的固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,所述步骤2中,搅拌时间为5-30min。
10.根据权利要求1所述的固体微纳米粉料提高胶状材料软化点制粉的方法,其特征在于,所述磨机为球磨机、振动磨机或搅拌磨机,所述混合加热装置为密炼机或带有回流冷凝装置的反应釜,所述成型装置为单螺杆挤出机。
CN201910480861.7A 2019-06-04 2019-06-04 一种固体微纳米粉料提高胶状材料软化点制粉的方法 Pending CN110204911A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910480861.7A CN110204911A (zh) 2019-06-04 2019-06-04 一种固体微纳米粉料提高胶状材料软化点制粉的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910480861.7A CN110204911A (zh) 2019-06-04 2019-06-04 一种固体微纳米粉料提高胶状材料软化点制粉的方法

Publications (1)

Publication Number Publication Date
CN110204911A true CN110204911A (zh) 2019-09-06

Family

ID=67790528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910480861.7A Pending CN110204911A (zh) 2019-06-04 2019-06-04 一种固体微纳米粉料提高胶状材料软化点制粉的方法

Country Status (1)

Country Link
CN (1) CN110204911A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765996A (zh) * 2004-10-29 2006-05-03 中国石油化工股份有限公司 一种开级配路面用的聚合物改性沥青胶结料及其制备方法
CN103738960A (zh) * 2013-12-17 2014-04-23 中国矿业大学 一种提高压块活性炭强度的颗粒级配配煤法
CN106367144A (zh) * 2016-08-31 2017-02-01 陕西延长石油(集团)有限责任公司 一种煤油共炼残渣改性资源化利用的方法
CN107434989A (zh) * 2017-09-13 2017-12-05 南京大学 一种煤粉填充改性半焦制备水煤/半焦浆的方法
CN109777131A (zh) * 2017-11-15 2019-05-21 神华集团有限责任公司 煤直接液化沥青的改性方法和改性煤直接液化沥青及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765996A (zh) * 2004-10-29 2006-05-03 中国石油化工股份有限公司 一种开级配路面用的聚合物改性沥青胶结料及其制备方法
CN103738960A (zh) * 2013-12-17 2014-04-23 中国矿业大学 一种提高压块活性炭强度的颗粒级配配煤法
CN106367144A (zh) * 2016-08-31 2017-02-01 陕西延长石油(集团)有限责任公司 一种煤油共炼残渣改性资源化利用的方法
CN107434989A (zh) * 2017-09-13 2017-12-05 南京大学 一种煤粉填充改性半焦制备水煤/半焦浆的方法
CN109777131A (zh) * 2017-11-15 2019-05-21 神华集团有限责任公司 煤直接液化沥青的改性方法和改性煤直接液化沥青及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
QIHUI HE 等: ""Effect of particle size distribution of petroleum coke on the properties of petroleum coke–oil slurry"", 《FUEL》 *
张宝光 等编: "《粉磨生产技术》", 31 December 2012, 北京理工大学出版社 *
芮勇勤 等: "《高等重交通半刚性基层典型沥青路面结构优化与抗车辙力学特性研究》", 30 November 2015, 东北大学出版社 *
黄传峰 等: ""煤加氢液化残渣的性质及应用研究进展"", 《现代化工》 *

Similar Documents

Publication Publication Date Title
CN102115334B (zh) 一种低成本镁质转炉用炉衬修补料及其制备方法
CN110104979B (zh) 一种采用带式烧结制备煤矸石轻骨料的方法
CN105036707B (zh) 生活垃圾焚烧底灰制备建筑陶粒的方法
CN110104975A (zh) 一种带式焙烧机球团法制备煤矸石轻骨料的工艺
CN105036659A (zh) 一种纳微米改性胶凝材料
CN104402471B (zh) 一种低成本铝铬锆捣打料及其制备方法
CN1827301A (zh) 一种颗粒整形方法及其装置
CN106630799A (zh) 一种板材及其制备方法
CN105107609B (zh) 一种碳化硼精磨助磨剂及其使用方法
CN110204911A (zh) 一种固体微纳米粉料提高胶状材料软化点制粉的方法
CN103436190B (zh) 一种提高洁净煤冷强度的粘合剂及其制备方法
CN104404849B (zh) 一种石灰稳定粘土回收粉混合料
KR100777143B1 (ko) 연탄재를 이용한 친환경 에코벽돌의 제조방법
CN103351900B (zh) 一种粉煤热解焦粉制备冶金型焦的工艺方法
CN115215571A (zh) 一种商混固体废弃物固碳处置及再生利用方法
CN113956682A (zh) 橡胶补强填料及利用煤矸石活化改性制备其的方法
CN210065189U (zh) 一种用于煤粉和生石灰粉成型的系统
TW200909377A (en) Method for preparing high performance sludge lightweight aggregate
CN106220918A (zh) 一种用于防治雾霾的耐撕裂纳米改性橡胶及其制备方法
CN112408818A (zh) 一种铜尾矿及渣土固化剂的制备方法及其应用
CN107416831A (zh) 一种长焰煤粉和生石灰粉制备电石冶炼原料的方法
CN112266805B (zh) 一种利用可燃固废制备工业型煤的方法
CN114477859B (zh) 一种工业烟气固废物资源化免烘干固化材料及应用
CN110194963A (zh) 一种采用活性半焦提高含较多沥青质油渣软化点的方法
CN109354474A (zh) 一种鞍山型铁尾矿加气混凝土砌块及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190906