CN110095441A - A kind of fluorescence nano scale member and its preparation and application - Google Patents
A kind of fluorescence nano scale member and its preparation and application Download PDFInfo
- Publication number
- CN110095441A CN110095441A CN201910318120.9A CN201910318120A CN110095441A CN 110095441 A CN110095441 A CN 110095441A CN 201910318120 A CN201910318120 A CN 201910318120A CN 110095441 A CN110095441 A CN 110095441A
- Authority
- CN
- China
- Prior art keywords
- photoresist
- mask layer
- fluorescent
- substrate
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 229920002120 photoresistant polymer Polymers 0.000 claims description 94
- 239000000758 substrate Substances 0.000 claims description 60
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 238000000206 photolithography Methods 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 20
- 238000012546 transfer Methods 0.000 claims description 17
- 238000005530 etching Methods 0.000 claims description 13
- 239000010931 gold Substances 0.000 claims description 13
- 239000002070 nanowire Substances 0.000 claims description 13
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 12
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 7
- 229920001940 conductive polymer Polymers 0.000 claims description 6
- 238000000609 electron-beam lithography Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 238000001039 wet etching Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 238000005566 electron beam evaporation Methods 0.000 claims description 2
- 238000012921 fluorescence analysis Methods 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000003870 refractory metal Substances 0.000 claims 3
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 6
- 238000003384 imaging method Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 117
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- 238000010894 electron beam technology Methods 0.000 description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 239000006059 cover glass Substances 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- 239000008367 deionised water Substances 0.000 description 15
- 229910021641 deionized water Inorganic materials 0.000 description 15
- 239000000243 solution Substances 0.000 description 11
- 238000001020 plasma etching Methods 0.000 description 9
- MPDDTAJMJCESGV-CTUHWIOQSA-N (3r,5r)-7-[2-(4-fluorophenyl)-5-[methyl-[(1r)-1-phenylethyl]carbamoyl]-4-propan-2-ylpyrazol-3-yl]-3,5-dihydroxyheptanoic acid Chemical compound C1([C@@H](C)N(C)C(=O)C2=NN(C(CC[C@@H](O)C[C@@H](O)CC(O)=O)=C2C(C)C)C=2C=CC(F)=CC=2)=CC=CC=C1 MPDDTAJMJCESGV-CTUHWIOQSA-N 0.000 description 7
- 239000003292 glue Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000000799 fluorescence microscopy Methods 0.000 description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000000386 microscopy Methods 0.000 description 5
- 239000002096 quantum dot Substances 0.000 description 5
- 239000012790 adhesive layer Substances 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 239000012114 Alexa Fluor 647 Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000010870 STED microscopy Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012632 fluorescent imaging Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0035—Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Micromachines (AREA)
Abstract
本发明涉及超高分辨率荧光显微成像技术领域,具体涉及一种荧光纳米标尺部件及其制备和应用;本发明所述荧光纳米标尺部件包括基底层和掩模层,所述掩模层的对应位置上间隔设置沟槽,所述沟槽的截面宽度为10‑200nm,掩模沟槽尺寸(宽度)小,从而保证采用所述荧光纳米标尺部件组装的荧光纳米标尺精确,可以满足对超高分辨荧光显微镜的分辨率进行标定测量的要求。
The present invention relates to the technical field of ultra-high resolution fluorescent microscopic imaging, in particular to a fluorescent nanoscale component and its preparation and application; the fluorescent nanoscale component of the present invention includes a base layer and a mask layer, and the mask layer Grooves are arranged at intervals on the corresponding positions, the cross-sectional width of the grooves is 10-200nm, and the size (width) of the mask grooves is small, so as to ensure that the fluorescent nanoscales assembled by the fluorescent nanoscale components are accurate and can meet the requirements for ultra- The resolution of a high-resolution fluorescence microscope is required for calibration measurements.
Description
技术领域technical field
本发明涉及超高分辨率荧光显微成像技术领域,具体涉及一种荧光纳米标尺部件及其制备和应用。The invention relates to the technical field of ultra-high resolution fluorescent microscopic imaging, in particular to a fluorescent nano scale component and its preparation and application.
背景技术Background technique
荧光显微成像技术在生命科学领域的研究中具有重要作用,能在亚细胞水平研究细胞内的生命过程与机理,然而,由于传统光学中阿贝衍射极限的限制,其成像分辨率无法突破200nm以下。随着超高分辨荧光显微技术的兴起,如光敏定位显微技术(PALM)、荧光光敏定位显微技术(FPALM)、随机光学重建显微技术(STORM)等、受激发射损耗显微技术(STED)、结构光照明显微技术(SIM)和单分子定位显微成像技术等,这些技术使荧光显微镜可以观察到20nm至100nm的极微细结构。Fluorescence microscopy plays an important role in the research of life sciences. It can study the life process and mechanism in the cell at the subcellular level. However, due to the limitation of the Abbe diffraction limit in traditional optics, its imaging resolution cannot exceed 200nm. the following. With the rise of ultra-high resolution fluorescence microscopy techniques, such as photosensitive localization microscopy (PALM), fluorescence photosensitive localization microscopy (FPALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion microscopy, etc. (STED), Structured Illumination Microscopy (SIM) and Single Molecule Positioning Microscopy, etc. These techniques enable fluorescence microscopy to observe extremely fine structures from 20nm to 100nm.
随着超高分辨荧光显微技术的不断进步和商业化推广,越来越多的大学、研究所和公司开始自主研发或直接购买超高分辨荧光显微仪器用于生命科学研究。在仪器日常使用和维护过程中,经常需要对荧光显微镜的分辨率进行标定测量,因此需要使用具有确定尺寸的荧光标准结构。对此,中国专利文献CN103712965A首先提出了一种基于纳米沟槽填充荧光量子点的等间距式荧光纳米标准板,虽然其等间距的结构形式较为符合分辨率测定的要求,但其加工方法较为繁琐,如其中介绍的第一种方法的制备步骤过多,尤其是制备的纳米线条结构不能一次成型,需要多次组装量子点纳米线条结构才能获得一定深宽比的量子点纳米线条结构,其制备步骤具体如下:第一步在基底100上旋涂光刻胶层104,第二步电子束光刻形成等间距的光刻胶线条结构,使基底100暴露出来,第三步在暴露的基底100上吸附带电聚电解质聚合物形成109层,第四步利用Laber-by-layber组装技术在109层表面形成多层量子点纳米线条结构107,量子点纳米线条结构107需要在3-10层之间,第五步去除光刻胶线条结构,第六步在107层表面旋涂聚合物层或其他保护层108。With the continuous advancement and commercialization of ultra-high-resolution fluorescence microscopy technology, more and more universities, research institutes and companies have begun to independently develop or directly purchase ultra-high-resolution fluorescence microscopy instruments for life science research. During the daily use and maintenance of the instrument, it is often necessary to calibrate the resolution of the fluorescence microscope, so it is necessary to use a fluorescent standard structure with a defined size. In this regard, the Chinese patent document CN103712965A firstly proposed an equidistant fluorescent nano standard plate based on nano-grooves filled with fluorescent quantum dots. Although its equidistant structural form is more in line with the requirements of resolution measurement, its processing method is relatively cumbersome. , such as the first method described therein has too many preparation steps, especially the prepared nanowire structure cannot be formed at one time, and the quantum dot nanowire structure needs to be assembled multiple times to obtain a quantum dot nanowire structure with a certain aspect ratio. The steps are as follows: the first step is to spin-coat the photoresist layer 104 on the substrate 100, the second step is electron beam lithography to form an equidistant photoresist line structure, so that the substrate 100 is exposed, and the third step is to coat the exposed substrate 100 The charged polyelectrolyte polymer is adsorbed to form 109 layers. The fourth step is to use the Laber-by-layer assembly technology to form a multi-layer quantum dot nanowire structure 107 on the surface of the 109 layer. The quantum dot nanowire structure 107 needs to be between 3-10 layers , the fifth step is to remove the photoresist line structure, and the sixth step is to spin-coat a polymer layer or other protective layer 108 on the surface of layer 107 .
为了解决等间距式荧光纳米标准板制备步骤繁琐的问题,中国专利文献CN103954600A提出了一种基于沟槽内填充荧光染料的宽线条窄间隔式荧光纳米标尺结构,但是其宽线条窄间隔的结构形式不符合分辨率的测定标准,只能用于荧光显微镜的一般调试观察,而且其采用光刻胶为掩模,由于一般的光刻胶无法达到如30nm宽、100nm厚的这么高的宽高比,导致制备的沟槽尺寸受到限制,为解决上述问题,在其制备方案中,选择先在基底上保留非透明导电层,然后在其上镀上一层抗刻蚀能力强的Si3N4,随后再旋涂光刻胶,最后按照预定的图样曝光溶掉光刻胶并依次对Si3N4层和非透明导电层进行刻蚀,然而即使选择上述方案制备也难以刻蚀尺寸较小和深宽比较大的沟槽结构,导致其标尺结构尺寸较大,标尺不精确,掩模层厚度小挡光效果差,且由于掩模层下的非透明导电层熔点较低如铝膜,在高能量的激光条件下不稳定,容易发生变形,使用寿命短。In order to solve the problem of cumbersome preparation steps of equidistant fluorescent nano standard plates, Chinese patent document CN103954600A proposes a fluorescent nanoscale structure with wide lines and narrow intervals based on filling fluorescent dyes in the trenches, but the structural form of wide lines and narrow intervals It does not meet the measurement standard of resolution and can only be used for general debugging and observation of fluorescence microscopes, and it uses photoresist as a mask, because ordinary photoresist cannot achieve such a high aspect ratio as 30nm wide and 100nm thick , leading to the limitation of the size of the prepared trench. In order to solve the above problems, in the preparation scheme, the non-transparent conductive layer is firstly reserved on the substrate, and then a layer of Si 3 N 4 with strong etching resistance is plated on it. , then spin-coat the photoresist, and finally expose the photoresist according to the predetermined pattern to dissolve the photoresist and sequentially etch the Si 3 N 4 layer and the non-transparent conductive layer. Compared with the groove structure with a large depth-width ratio, the scale structure size is large, the scale is not accurate, the mask layer thickness is small, and the light-shielding effect is poor, and because the non-transparent conductive layer under the mask layer has a low melting point such as an aluminum film, It is unstable under high-energy laser conditions, prone to deformation, and has a short service life.
发明内容Contents of the invention
因此,本发明要解决的技术问题在于克服现有技术中荧光纳米标尺部件标尺不精确的缺陷,进而提供了一种高精度荧光纳米标尺部件和制备本发明所公开的荧光纳米标尺部件的方法和应用。Therefore, the technical problem to be solved by the present invention is to overcome the inaccurate defect of the fluorescent nano-scale parts in the prior art, and then provide a kind of high-precision fluorescent nano-scale parts and the method and method for preparing the fluorescent nano-scale parts disclosed in the present invention. application.
为此,本发明提供了一种荧光纳米标尺部件,包括基底和基底上形成的掩模层,所述掩模层包括间隔设置的沟槽,所述沟槽的截面宽度为10-200nm。To this end, the present invention provides a fluorescent nanoscale component, which includes a substrate and a mask layer formed on the substrate, the mask layer includes grooves arranged at intervals, and the cross-sectional width of the grooves is 10-200 nm.
优选的,所述沟槽呈等间距排列,所述沟槽的截面宽度为10-150nm;优选的,所述沟槽的深宽比为0.1-20。Preferably, the grooves are arranged at equal intervals, and the cross-sectional width of the grooves is 10-150 nm; preferably, the aspect ratio of the grooves is 0.1-20.
优选的,所述掩模层的材料选自高熔点金属或紫外可见光不能透射的非金属材料。Preferably, the material of the mask layer is selected from high melting point metals or non-metallic materials that cannot transmit ultraviolet and visible light.
优选的,所述高熔点金属选自Ta、Mo、Cr、Ti和Pd中的一种;所述紫外可见光不能透射的非金属材料为Si或高密度碳掺杂的聚合物。Preferably, the metal with a high melting point is selected from one of Ta, Mo, Cr, Ti and Pd; the non-metallic material that cannot transmit ultraviolet and visible light is Si or a high-density carbon-doped polymer.
优选的,所述掩模层的材料为高熔点金属时,所述掩模层的厚度为20-100nm;所述掩模层的材料为Si时,所述掩模层的厚度为100-200nm。Preferably, when the material of the mask layer is a high melting point metal, the thickness of the mask layer is 20-100nm; when the material of the mask layer is Si, the thickness of the mask layer is 100-200nm .
本发明还公开了一种所述荧光纳米标尺部件的制备方法,包括以下步骤:The present invention also discloses a preparation method of the fluorescent nano scale part, comprising the following steps:
处理基底:清洗基底表面;Treating the substrate: cleaning the surface of the substrate;
掩模层:形成于所述基底表面;Mask layer: formed on the surface of the substrate;
涂布光刻胶:将光刻胶涂布在掩模层上,形成光刻胶模层,厚度为20-500nm;Coating photoresist: coating the photoresist on the mask layer to form a photoresist mold layer with a thickness of 20-500nm;
光刻:对光刻胶模层进行图形化,在所述光刻胶模层上形成间隔设置的沟槽的光刻图案,所述沟槽的截面宽度为10-200nm;Photolithography: patterning the photoresist mold layer, forming photolithographic patterns of grooves arranged at intervals on the photoresist mold layer, and the cross-sectional width of the grooves is 10-200nm;
转移图案:将所述光刻胶模层的光刻图案转移到所述掩模层上,然后去除光刻胶。Transferring the pattern: transferring the photoresist pattern of the photoresist mold layer to the mask layer, and then removing the photoresist.
本发明还公开了一种所述荧光纳米标尺部件的制备方法,包括以下步骤:The present invention also discloses a preparation method of the fluorescent nano scale part, comprising the following steps:
处理基底:清洗基底表面;Treating the substrate: cleaning the surface of the substrate;
涂布光刻胶:将光刻胶涂布在基底上,形成光刻胶模层,厚度为20-500nm;Coating photoresist: coating the photoresist on the substrate to form a photoresist mold layer with a thickness of 20-500nm;
光刻:对所述光刻胶模层进行图形化,在所述基底上形成间隔设置的光刻胶纳米线条结构的光刻图案,所述光刻胶纳米线条结构的横切截面宽度为10-200nm;Photolithography: patterning the photoresist mold layer, forming a photoresist pattern of photoresist nanowire structures arranged at intervals on the substrate, the cross-sectional width of the photoresist nanowire structure is 10 -200nm;
转移图案:将掩模层材料沉积在所述基底上具有所述光刻图案的一面形成掩模层,然后去除光刻胶,将所述光刻图案转移到所述掩模层上。Transferring the pattern: depositing a mask layer material on the side of the substrate having the photoresist pattern to form a mask layer, then removing the photoresist, and transferring the photoresist pattern to the mask layer.
优选的,采用电子束光刻的方式对所述光刻胶模层进行图形化,所述电子束光刻的电压为30kV-100kV。Preferably, the photoresist mold layer is patterned by electron beam lithography, and the voltage of the electron beam lithography is 30kV-100kV.
优选的,将高熔点金属作为掩模层材料时,通过沉积、溅射或者电子束蒸发于基底上,沉积速度为0.1-0.5nm/s。Preferably, when the high melting point metal is used as the material of the mask layer, it is deposited on the substrate by deposition, sputtering or electron beam evaporation, and the deposition rate is 0.1-0.5 nm/s.
优选的,将Si作为掩模层材料时,在涂布光刻胶之前,将SOI基底通过HF腐蚀、Si膜水相转移,将Si附着于基底上作为掩模层材料。Preferably, when Si is used as the material of the mask layer, before coating the photoresist, the SOI substrate is etched with HF, and the Si film is transferred in water, and Si is attached to the substrate as the material of the mask layer.
优选的,在所述转移图案步骤中,采用RIE或湿法刻蚀技术将光刻胶图案转移到掩模层上。Preferably, in the step of transferring the pattern, the photoresist pattern is transferred to the mask layer by RIE or wet etching technology.
优选的,所述湿法刻蚀步骤包括金辅助腐蚀步骤。Preferably, the wet etching step includes a gold assisted etching step.
优选的,在所述光刻步骤前,所述光刻胶上还涂布一层导电聚合物层或者沉积导电金属层。Preferably, before the photolithography step, a conductive polymer layer or a conductive metal layer is deposited on the photoresist.
本发明还公开了一种所述荧光纳米标尺部件或所述荧光纳米标尺部件制备方法制备的荧光纳米标尺部件在显微荧光分析领域的应用。The invention also discloses an application of the fluorescent nanoscale part or the fluorescent nanoscale part prepared by the method for preparing the fluorescent nanoscale part in the field of microscopic fluorescence analysis.
本发明技术方案,具有如下优点:The technical solution of the present invention has the following advantages:
1.本发明所述荧光纳米标尺部件包括基底和基底上形成的掩模层,所述掩模层的对应位置上间隔设置沟槽,所述沟槽的截面宽度为10-200nm,掩模沟槽尺寸(宽度)小,从而保证采用所述荧光纳米标尺部件组装的荧光纳米标尺精确,可以满足对超高分辨荧光显微镜的分辨率进行标定测量的要求。1. The fluorescent nanoscale ruler part of the present invention comprises a substrate and a mask layer formed on the substrate, grooves are arranged at intervals on the corresponding positions of the mask layer, and the cross-sectional width of the groove is 10-200nm, and the mask groove The size (width) of the groove is small, so as to ensure the accuracy of the fluorescent nanoscale assembled by the fluorescent nanoscale component, which can meet the requirements for calibration and measurement of the resolution of the ultra-high resolution fluorescence microscope.
2.本发明所述荧光纳米标尺部件,所述沟槽呈等间距排列,所述沟槽的截面宽度为10-150nm;所述沟槽呈等间距排列,克服了现有的荧光纳米标尺部件中宽线条窄间隔的结构形式导致不符合显微镜的分辨率测量标准的缺陷,可以满足对超高分辨荧光显微镜的分辨率进行标定测量的要求;所述沟槽的截面宽度为10-150nm,进一步提高荧光纳米标尺精确度;2. The fluorescent nano-scale parts of the present invention, the grooves are arranged at equal intervals, and the cross-sectional width of the grooves is 10-150nm; the grooves are arranged at equal intervals, which overcomes the existing fluorescent nano-scale parts The structural form of medium-wide lines and narrow intervals leads to defects that do not meet the resolution measurement standard of the microscope, and can meet the requirements for calibration measurement of the resolution of the super-resolution fluorescence microscope; the cross-sectional width of the groove is 10-150nm, further Improve the accuracy of fluorescent nanoscale;
进一步的,所述沟槽的深宽比为0.1-20,进一步控制了所述沟槽掩模的厚度为20-200nm,深宽比最大可达200nm/10nm,挡光效果好,标尺精度高。Further, the aspect ratio of the trench is 0.1-20, the thickness of the trench mask is further controlled to be 20-200nm, and the aspect ratio can reach up to 200nm/10nm at most, the light blocking effect is good, and the scale accuracy is high .
3.本发明所述荧光纳米标尺部件的掩模层材料选自高熔点金属、Si、高密度碳掺杂的聚合物,在使用时,具有较好的稳定性,不会因为高能量的激光长时间照射而发生变形,从而延长使用寿命;由于高熔点金属是导体,Si、高密度碳掺杂的聚合物属于半导体,其工艺中不需要使用导电材料层,只有基底和掩模层,工艺简单。3. The material of the mask layer of the fluorescent nano scale part of the present invention is selected from high-melting point metals, Si, and high-density carbon-doped polymers. When in use, it has better stability and will not be affected by high-energy lasers. Deformation occurs due to long-term irradiation, thereby prolonging the service life; since high-melting point metals are conductors, Si and high-density carbon-doped polymers are semiconductors, and there is no need to use conductive material layers in the process, only the base and mask layers, the process Simple.
4.本发明所述荧光纳米标尺部件的制备方法采用电子束光刻的方式,在涂布光刻胶之前将高熔点金属掩模材料或者Si膜附加于基底上,光刻后采用RIE或湿法刻蚀技术将图案转移到掩模材料上,或者在光刻步骤之后将掩模层材料沉积在光刻胶上然后移除光刻胶,该制备方法,能根据掩模材料进行灵活调整,得到的掩模沟槽荧光线条可以为单线条、等间距线条、宽线条窄间隔,从而满足不同的使用需求,而且在制备过程中,能够避免导电层留在荧光纳米标尺部件上,改善掩模结构的功能。4. The preparation method of the fluorescent nano-scale part of the present invention adopts the mode of electron beam lithography, and before coating photoresist, high-melting point metal mask material or Si film are attached on the substrate, adopt RIE or wet after photolithography The pattern is transferred to the mask material by etching technology, or the mask layer material is deposited on the photoresist after the photolithography step and then the photoresist is removed. This preparation method can be flexibly adjusted according to the mask material. The obtained phosphor lines in the mask groove can be single lines, equidistant lines, wide lines and narrow intervals, so as to meet different usage requirements, and during the preparation process, it is possible to prevent the conductive layer from remaining on the fluorescent nanoscale parts and improve the mask The function of the structure.
附图说明Description of drawings
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the specific implementation or description of the prior art. Obviously, the accompanying drawings in the following description The drawings show some implementations of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
图1是本发明实施例1中所得荧光纳米标尺的结构示意图;Fig. 1 is the structural representation of fluorescent nano scale obtained in the embodiment 1 of the present invention;
图2是本发明实施例1中制备所述荧光纳米标尺的工艺流程图;Fig. 2 is a process flow diagram for preparing the fluorescent nanoscale in Example 1 of the present invention;
图3是本发明实施例4中制备所述荧光纳米标尺的工艺流程图;Fig. 3 is the process flow diagram of preparing described fluorescent nano scale in the embodiment of the present invention 4;
图4是本发明实施例7中制备所述荧光纳米标尺的工艺流程图;Fig. 4 is the process flow diagram of preparing described fluorescent nano scale in the embodiment of the present invention 7;
图5是本发明实施例8中制备所述荧光纳米标尺的工艺流程图;Figure 5 is a process flow diagram for preparing the fluorescent nanoscale in Example 8 of the present invention;
图6是本发明实验例1中实施例1所述荧光纳米标尺部件纳米线条结构的扫描电子显微镜图片;Fig. 6 is a scanning electron microscope picture of the nanowire structure of the fluorescent nanoscale member described in Example 1 in Experimental Example 1 of the present invention;
图7是本发明实验例2中实施例4所述荧光纳米标尺部件的荧光成像图;Fig. 7 is the fluorescent imaging diagram of the fluorescent nanoscale member described in Example 4 in Experimental Example 2 of the present invention;
图8是本发明实验例3中实施例6所述荧光纳米标尺部件的荧光成像图。Fig. 8 is a fluorescence imaging diagram of the fluorescent nanoscale member described in Example 6 in Experimental Example 3 of the present invention.
附图标记说明:Explanation of reference signs:
1-基底;2-掩模层;21-沟槽;31-HSQ胶膜;32-导电层(Espacer 300Z);33-掩模层(Cr);41-掩模层(Ti);42-ZEP 520A胶膜;51-Si膜;52-盖玻片;53-ZEP 520A胶膜层;54-Al导电层;61-Au(金);62-Si膜。1-substrate; 2-mask layer; 21-groove; 31-HSQ adhesive film; 32-conductive layer (Espacer 300Z); 33-mask layer (Cr); 41-mask layer (Ti); 42- ZEP 520A film; 51-Si film; 52-cover glass; 53-ZEP 520A film layer; 54-Al conductive layer; 61-Au (gold); 62-Si film.
具体实施方式Detailed ways
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。The following examples are provided in order to further understand the present invention better, are not limited to the best implementation mode, and do not limit the content and protection scope of the present invention, anyone under the inspiration of the present invention or use the present invention Any product identical or similar to the present invention obtained by combining features of other prior art falls within the protection scope of the present invention.
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。If no specific experimental steps or conditions are indicated in the examples, it can be carried out according to the operation or conditions of the conventional experimental steps described in the literature in this field. The reagents or instruments used were not indicated by the manufacturer, and they were all commercially available conventional products.
表1实施例所用的试剂和仪器Reagents and instruments used in the embodiment of table 1
实施例1Example 1
本实施例提供了一种荧光纳米标尺部件的制备方法,工艺流程如图2所示,包括以下步骤:This embodiment provides a method for preparing a fluorescent nanoscale member, the process flow is shown in Figure 2, including the following steps:
处理基底:将厚度为0.17mm的盖玻片依次用丙酮、乙醇、去离子水各超声(40KHz)5分钟,然后用100W功率下的氧等离子体处理5分钟;Treat the substrate: Sonicate (40KHz) the cover glass with a thickness of 0.17mm for 5 minutes with acetone, ethanol, and deionized water in sequence, and then treat it with oxygen plasma at 100W for 5 minutes;
涂布光刻胶:将质量分数为6%的HSQ胶以2000rpm在盖玻片上涂胶40秒,得到200nm厚的HSQ胶膜31,放在80℃热板烘烤30秒,得到粘附力适中的HSQ胶层;将导电聚合物Espacer 300Z以3000rpm的转速下旋涂30秒,然后放到80℃的热板上烘烤1分钟,得到导电层(Espacer 300Z)32;Coating photoresist: Apply HSQ glue with a mass fraction of 6% on the cover glass at 2000rpm for 40 seconds to obtain a 200nm thick HSQ film 31, and bake it on a hot plate at 80°C for 30 seconds to obtain adhesion Moderate HSQ adhesive layer; Spin-coat the conductive polymer Espacer 300Z at a speed of 3000rpm for 30 seconds, and then bake it on a hot plate at 80°C for 1 minute to obtain a conductive layer (Espacer 300Z) 32;
光刻:采用电压为100kV的电子束进行光刻,用含有质量分数为1%的NaOH和质量分数为4%的NaCl混合液显影1min,然后用去离子水和IPA冲洗30秒,随后用氮气吹干,在所述基底上形成间隔设置的HSQ胶纳米线条结构的光刻图案,所述光刻胶纳米线条结构的横切截面宽度为10nm;Photolithography: photolithography was carried out with an electron beam at a voltage of 100kV, developed with a mixed solution containing 1% NaOH and 4% NaCl for 1 min, then rinsed with deionized water and IPA for 30 seconds, and then flushed with nitrogen gas Blow dry to form photolithographic patterns of HSQ glue nanowire structures arranged at intervals on the substrate, the cross-sectional width of the photoresist nanowire structure is 10nm;
转移图案:在所述基底上具有所述光刻图案的一面以0.2nm/s的速度沉积厚度为100nm的Cr作为掩模层(Cr)33;将样品浸入到质量分数为1%的HF水溶液中处理20秒,将HSQ胶纳米线条结构腐蚀去除,得到荧光纳米标尺部件。Transfer pattern: Depositing Cr with a thickness of 100 nm as a mask layer (Cr) 33 at a speed of 0.2 nm/s on the side with the photolithography pattern on the substrate; immersing the sample into 1% HF aqueous solution by mass fraction After 20 seconds of medium treatment, the HSQ glue nanowire structure was etched and removed to obtain a fluorescent nanoscale component.
所述荧光纳米标尺部件的结构示意图如图1所示,包括基底1和基底上形成的掩模层2,所述掩模层2的厚度为100nm,所述掩模层2上包括间隔设置的沟槽21,所述沟槽21的掩模尺寸为10nm,深宽比为10。The schematic structural view of the fluorescent nanometer scale part is shown in Figure 1, including a substrate 1 and a mask layer 2 formed on the substrate, the thickness of the mask layer 2 is 100nm, and the mask layer 2 includes intervals. A groove 21, the mask size of the groove 21 is 10 nm, and the aspect ratio is 10.
实施例2Example 2
本实施例提供了一种荧光纳米标尺部件的具体实施方式,包括以下步骤:The present embodiment provides a specific implementation of the fluorescent nano scale part, comprising the following steps:
处理基底:将厚度为0.17mm的盖玻片依次用丙酮、乙醇、去离子水各超声(40KHz)10分钟,然后用50W功率下的氧等离子体处理2分钟;Treat the substrate: Sonicate (40KHz) the cover glass with a thickness of 0.17mm for 10 minutes with acetone, ethanol, and deionized water in sequence, and then treat it with oxygen plasma at 50W for 2 minutes;
涂布光刻胶:将浓度为1%的电子束光刻胶HSQ以4000rpm的转速在基底上涂胶,得到厚度为100nm的HSQ胶膜,然后放到温度为150℃的热板上烘烤20秒,得到粘附力适中的HSQ胶层;沉积一层20nm金属Al作为导电层;Coating photoresist: apply electron beam photoresist HSQ with a concentration of 1% on the substrate at a speed of 4000rpm to obtain a HSQ film with a thickness of 100nm, and then bake it on a hot plate at a temperature of 150°C 20 seconds to get a HSQ adhesive layer with moderate adhesion; deposit a layer of 20nm metal Al as a conductive layer;
光刻:采用电压为50kV的电子束进行光刻,用浓度为25%的TMAH显影1分钟,然后用去离子水和IPA冲洗30秒,随后用氮气吹干;Photolithography: use an electron beam with a voltage of 50kV for photolithography, develop with TMAH with a concentration of 25% for 1 minute, then rinse with deionized water and IPA for 30 seconds, and then blow dry with nitrogen;
转移图案:以0.1nm/s的速度沉积厚度为20nm的金属Ta为掩模层;将样品浸入到浓度为0.1%HF水溶液中处理10秒,将HSQ胶层结构腐蚀去除,得到的荧光纳米标尺部件所述掩模层厚度为20nm,所述沟槽的截面宽度为50nm,深宽比为0.4。Transfer pattern: Deposit metal Ta with a thickness of 20nm at a rate of 0.1nm/s as a mask layer; immerse the sample in a 0.1% HF aqueous solution for 10 seconds, and remove the HSQ adhesive layer structure by etching to obtain a fluorescent nanoscale The thickness of the mask layer of the component is 20nm, the section width of the groove is 50nm, and the aspect ratio is 0.4.
实施例3Example 3
本实施例提供了一种荧光纳米标尺部件的具体实施方式,包括以下步骤:The present embodiment provides a specific implementation of the fluorescent nano scale part, comprising the following steps:
处理基底:将厚度为0.17mm的盖玻片依次用丙酮、乙醇、去离子水各超声(40KHz)8分钟,然后用80W的氧等离子体处理5分钟;Treat the substrate: Sonicate (40KHz) each of acetone, ethanol, and deionized water for 8 minutes on the cover glass with a thickness of 0.17mm, and then treat it with 80W oxygen plasma for 5 minutes;
涂布光刻胶:将浓度为12%的电子束光刻胶HSQ以5000rpm的转速在基底上涂胶,得到厚度为20nm的HSQ胶膜,然后放到温度为50℃的热板上烘烤5分钟;得到粘附力适中的HSQ胶层;沉积一层20nm金属Cr作为导电层;Coating photoresist: apply electron beam photoresist HSQ with a concentration of 12% on the substrate at a speed of 5000rpm to obtain a HSQ film with a thickness of 20nm, and then bake it on a hot plate at a temperature of 50°C 5 minutes; obtain a HSQ adhesive layer with moderate adhesion; deposit a layer of 20nm metal Cr as a conductive layer;
光刻:采用电压为30kV的电子束进行光刻,采用浓度为25%的TMAH对样品进行显影1分钟;Photolithography: use an electron beam with a voltage of 30kV for photolithography, and use TMAH with a concentration of 25% to develop the sample for 1 minute;
转移图案:以0.5nm/s的速度沉积厚度为50nm的金属Mo作为掩模层;将样品浸入到浓度为0.2%HF水溶液中处理60秒,将HSQ胶层结构腐蚀去除,得到的荧光纳米标尺部件,所述掩模层厚度为50nm,所述沟槽的截面宽度为150nm,深宽比为0.33。Transfer pattern: Deposit metal Mo with a thickness of 50nm at a rate of 0.5nm/s as a mask layer; immerse the sample in a 0.2% HF aqueous solution for 60 seconds, and remove the HSQ glue layer structure by etching to obtain a fluorescent nanoscale For the component, the thickness of the mask layer is 50nm, the section width of the trench is 150nm, and the aspect ratio is 0.33.
实施例4Example 4
本实施例提供了一种荧光纳米标尺部件的具体实施方式,如图3所示,包括以下步骤:The present embodiment provides a specific embodiment of a fluorescent nanometer scale part, as shown in Figure 3, comprising the following steps:
处理基底:将厚度为0.17mm的盖玻片依次用丙酮、乙醇、去离子水各超声8分钟,然后用80W的氧等离子体处理3分钟;Treat the substrate: Sonicate the cover glass with a thickness of 0.17mm for 8 minutes with acetone, ethanol, and deionized water in sequence, and then treat it with 80W oxygen plasma for 3 minutes;
掩模层:在所述基底上以0.3nm/s的速度沉积厚度为20nm的金属Ti作为掩模层(Ti)41;Mask layer: metal Ti with a thickness of 20 nm is deposited on the substrate at a rate of 0.3 nm/s as a mask layer (Ti) 41;
涂布光刻胶:将电子束光刻胶ZEP 520A 42以4000rpm的转速在掩模层上涂胶,得到厚度为200nm的ZEP 520A胶膜42,然后放到温度为120℃的热板上烘烤5分钟;Coating photoresist: Apply electron beam photoresist ZEP 520A 42 on the mask layer at a speed of 4000rpm to obtain a ZEP 520A film 42 with a thickness of 200nm, and then place it on a hot plate at a temperature of 120°C for baking Bake for 5 minutes;
光刻:采用电压为100kV的电子束进行光刻,用ZEP 520A专用显影液ZED-N50显影1分钟,随后用氮气吹干,在所述光刻胶模层上形成间隔设置的沟槽的光刻图案,所述沟槽的截面宽度为200nm;Photolithography: use an electron beam with a voltage of 100kV to carry out photolithography, develop with ZED-N50, a special developer solution for ZEP 520A, for 1 minute, and then blow dry with nitrogen to form the photoresist pattern of grooves arranged at intervals on the photoresist mold layer. Engraving patterns, the cross-sectional width of the trench is 200nm;
转移图案:利用反应离子刻蚀法(RIE,氯气,四氟化碳)将光刻图案转移至掩模层(Ti),形成金属纳米沟槽结构;利用NMP或者氧等离子体将ZEP残胶去除,得到荧光纳米标尺部件,所述掩模层厚度为20nm,所述沟槽的截面宽度为200nm,深宽比为0.1。Transfer pattern: use reactive ion etching (RIE, chlorine, carbon tetrafluoride) to transfer the photolithographic pattern to the mask layer (Ti) to form a metal nano-groove structure; use NMP or oxygen plasma to remove ZEP residue , to obtain a fluorescent nanoscale member, the thickness of the mask layer is 20nm, the cross-sectional width of the groove is 200nm, and the aspect ratio is 0.1.
实施例5Example 5
本实施例提供了一种荧光纳米标尺部件的具体实施方式,包括以下步骤:The present embodiment provides a specific implementation of the fluorescent nano scale part, comprising the following steps:
处理基底:将厚度为0.17mm的盖玻片依次用丙酮、乙醇、去离子水各超声8分钟,然后用100W的氧等离子体处理3分钟;Treat the substrate: Sonicate the cover glass with a thickness of 0.17mm for 8 minutes each in acetone, ethanol, and deionized water, and then treat it with 100W oxygen plasma for 3 minutes;
掩模层:在所述基底上以0.5nm/s的速度沉积厚度为100nm的金属Pd作为掩模层(Pd);Mask layer: metal Pd with a thickness of 100 nm is deposited on the substrate at a rate of 0.5 nm/s as a mask layer (Pd);
涂布光刻胶:将电子束光刻胶ZEP 520A以6000rpm的转速在掩模层上涂胶,得到厚度为300nm的光刻胶膜层(ZEP 520A),然后放到温度为120℃的热板上烘烤5分钟;Coating photoresist: apply electron beam photoresist ZEP 520A on the mask layer at a speed of 6000rpm to obtain a photoresist film layer (ZEP 520A) with a thickness of 300nm, and then put it in a hot water at a temperature of 120°C Bake on board for 5 minutes;
光刻:采用电压为100kV的电子束进行光刻,用ZEP 520A专用显影液ZED-N50显影1分钟,随后用氮气吹干,在所述光刻胶模层上形成间隔设置的沟槽的光刻图案,所述沟槽的截面宽度为20nm;Photolithography: use an electron beam with a voltage of 100kV to carry out photolithography, develop with ZED-N50, a special developer solution for ZEP 520A, for 1 minute, and then blow dry with nitrogen to form the photoresist pattern of grooves arranged at intervals on the photoresist mold layer. Engraving patterns, the cross-sectional width of the trench is 20nm;
转移图案:利用RIE将电子束光刻胶图形转移至掩模层(Pd),形成金属纳米沟槽结构;利用NMP或者氧等离子体将ZEP残胶去除,得到荧光纳米标尺部件,所述掩模层厚度为100nm,所述沟槽截面宽度为20nm,深宽比为5。Transfer pattern: Use RIE to transfer the electron beam photoresist pattern to the mask layer (Pd) to form a metal nano-groove structure; use NMP or oxygen plasma to remove the ZEP residue to obtain a fluorescent nanoscale part, the mask The layer thickness is 100 nm, the groove cross-sectional width is 20 nm, and the aspect ratio is 5.
实施例6Example 6
本实施例提供了一种荧光纳米标尺部件的具体实施方式,包括以下步骤:The present embodiment provides a specific implementation of the fluorescent nano scale part, comprising the following steps:
处理基底:将厚度为0.17mm的盖玻片依次用丙酮、乙醇、去离子水各超声8分钟,然后用50W的氧等离子体处理3分钟;Treat the substrate: Sonicate the cover glass with a thickness of 0.17mm for 8 minutes each in acetone, ethanol, and deionized water, and then treat it with 50W oxygen plasma for 3 minutes;
掩模层:在所述基底上以0.2nm/s的速度沉积厚度为80nm的金属Cr作为掩模层(Cr);Mask layer: metal Cr with a thickness of 80 nm is deposited on the substrate at a rate of 0.2 nm/s as a mask layer (Cr);
涂布光刻胶:将电子束光刻胶ZEP 520A以6000rpm的转速在掩模层上涂胶,得到厚度为500nm的光刻胶膜层(ZEP 520A),然后放到温度为120℃的热板上烘烤5分钟;Coating photoresist: apply electron beam photoresist ZEP 520A on the mask layer at a speed of 6000rpm to obtain a photoresist film layer (ZEP 520A) with a thickness of 500nm, and then put it in a hot water at a temperature of 120°C Bake on board for 5 minutes;
光刻:采用电压为100kV的电子束进行光刻,用ZEP 520A专用显影液ZED-N50显影1分钟,随后用氮气吹干,在所述光刻胶膜层上形成间隔设置的沟槽的光刻图案,所述沟槽的截面宽度为20nm;Photolithography: use an electron beam with a voltage of 100kV to carry out photolithography, use ZEP 520A special developer ZED-N50 to develop for 1 minute, and then blow dry with nitrogen to form the photoresist of grooves arranged at intervals on the photoresist film layer. Engraving patterns, the cross-sectional width of the trench is 20nm;
转移图案:利用RIE将电子束光刻胶图形转移至金属层,形成金属纳米沟槽结构;利用NMP或者氧等离子体将ZEP残胶去除,得到荧光纳米标尺部件,所述掩模层厚度为80nm,所述沟槽截面宽度为20nm,深宽比为4。Transfer pattern: use RIE to transfer the electron beam photoresist pattern to the metal layer to form a metal nano-groove structure; use NMP or oxygen plasma to remove the ZEP residual glue to obtain fluorescent nanoscale components, and the thickness of the mask layer is 80nm , the cross-sectional width of the trench is 20 nm, and the aspect ratio is 4.
实施例7Example 7
本实施例提供了一种荧光纳米标尺部件的具体实施方式,如图4所示,包括以下步骤:This embodiment provides a specific implementation of a fluorescent nanometer scale part, as shown in Figure 4, comprising the following steps:
处理基底:将厚度为0.17mm的盖玻片依次用丙酮、乙醇、去离子水各超声10分钟,然后用100W的氧等离子体处理5分钟,备用;Treat the substrate: Sonicate the cover glass with a thickness of 0.17mm with acetone, ethanol, and deionized water for 10 minutes, and then treat it with 100W oxygen plasma for 5 minutes, and set aside;
掩模层:采用顶层Si膜51厚度为100nm的SOI基片,依次用丙酮、乙醇、去离子水各超声5分钟,然后用100W的氧等离子体处理2分钟;将SOI片子浸入到20%HF的水溶液中处理16小时,然后用去离子水充分清洗,将处理的盖玻片52插入至Si膜51底部,Si膜51作为掩模层;用盖玻片52将Si膜51从水中捞出,干燥固化;Mask layer: adopt the SOI substrate with the top Si film 51 thickness of 100nm, use acetone, ethanol, and deionized water to sonicate for 5 minutes each, and then treat it with 100W oxygen plasma for 2 minutes; immerse the SOI sheet in 20% HF treated in an aqueous solution for 16 hours, then fully cleaned with deionized water, and the treated cover glass 52 was inserted into the bottom of the Si film 51, and the Si film 51 was used as a mask layer; the Si film 51 was pulled out from the water with the cover glass 52 , dry and solidify;
涂布光刻胶:将电子束光刻胶ZEP 520A以4000rpm的转速在掩模层上涂胶,得到厚度为250nm的ZEP 520A胶膜层53,然后放到温度为120℃的热板上烘烤5分钟;在所述ZEP520A胶膜层53上沉积一层20nm金属Al作为Al导电层54;Coating photoresist: Apply electron beam photoresist ZEP 520A on the mask layer at a speed of 4000rpm to obtain a ZEP 520A film layer 53 with a thickness of 250nm, and then place it on a hot plate at a temperature of 120°C for baking Bake for 5 minutes; deposit a layer of 20nm metal Al on the ZEP520A film layer 53 as the Al conductive layer 54;
光刻:采用电压为100kV的电子束进行光刻,用ZEP 520A专用显影液ZED-N50显影1分钟,随后用氮气吹干,在所述光刻胶模层上形成间隔设置的沟槽的光刻图案,所述沟槽的截面宽度为150nm;Photolithography: use an electron beam with a voltage of 100kV to carry out photolithography, develop with ZED-N50, a special developer solution for ZEP 520A, for 1 minute, and then blow dry with nitrogen to form the photoresist pattern of grooves arranged at intervals on the photoresist mold layer. Engraving patterns, the cross-sectional width of the trench is 150nm;
图案转移:利用RIE将电子束光刻胶图形转移至硅膜,形成基于Si膜的纳米沟槽结构;利用NMP或者氧等离子体将ZEP 520A残胶去除,得到荧光纳米标尺部件,所述Si掩模层厚度为100nm,所述沟槽的截面宽度为150nm,深宽比为0.66。Pattern transfer: Use RIE to transfer the electron beam photoresist pattern to the silicon film to form a nano-groove structure based on the Si film; use NMP or oxygen plasma to remove the ZEP 520A residual glue to obtain a fluorescent nanoscale part. The Si mask The thickness of the mold layer is 100 nm, the section width of the trench is 150 nm, and the aspect ratio is 0.66.
实施例8Example 8
本实施例提供了一种荧光纳米标尺部件的具体实施方式,如图5所示,包括以下步骤:The present embodiment provides a specific implementation of the fluorescent nano-ruler component, as shown in Figure 5, comprising the following steps:
处理基底:将厚度为0.17mm的盖玻片依次用丙酮、乙醇、去离子水各超声10分钟,然后用100W的氧等离子体处理5分钟,备用;Treat the substrate: Sonicate the cover glass with a thickness of 0.17mm with acetone, ethanol, and deionized water for 10 minutes, and then treat it with 100W oxygen plasma for 5 minutes, and set aside;
掩模层:采用顶层Si厚度为200nm的SOI基片,依次用丙酮、乙醇、去离子水各超声10分钟,然后用50W的氧等离子体处理5分钟;将SOI片子浸入到20%HF的水溶液中处理16小时,然后用去离子水充分清洗,然后将盖玻片插入至Si膜62底部,Si膜62作为掩模层;用盖玻片将Si膜从水中捞出,干燥固化;Mask layer: use an SOI substrate with a thickness of 200nm on the top layer of Si, ultrasonically use acetone, ethanol, and deionized water for 10 minutes each, and then treat it with 50W oxygen plasma for 5 minutes; immerse the SOI sheet in an aqueous solution of 20% HF Treat in medium for 16 hours, then fully wash with deionized water, then insert the cover glass into the bottom of the Si film 62, and the Si film 62 is used as a mask layer; use the cover glass to remove the Si film from the water, dry and solidify;
涂布光刻胶:将电子束光刻胶ZEP 520A以6000rpm的转速在掩模层上涂胶,得到厚度为300nm的ZEP 520A膜层,然后放到温度为120℃的热板上烘烤5分钟;将导电聚合物Espacer以3000rpm的转速下在光刻胶膜层上旋涂30秒,然后放到80℃的热板上烘烤1分钟;Coating photoresist: apply electron beam photoresist ZEP 520A on the mask layer at a speed of 6000rpm to obtain a ZEP 520A film layer with a thickness of 300nm, and then bake it on a hot plate at a temperature of 120°C for 5 Minutes; Spin-coat the conductive polymer Espacer on the photoresist film layer at a speed of 3000rpm for 30 seconds, and then bake it on a hot plate at 80°C for 1 minute;
光刻:采用电压为30kV的电子束进行光刻,用ZEP 520A专用显影液显影1分钟,随后用氮气吹干,在所述光刻胶模层上形成间隔设置的沟槽的光刻图案,所述沟槽的截面宽度为10nm;Photolithography: use an electron beam with a voltage of 30kV to carry out photolithography, develop with ZEP 520A special developer for 1 minute, and then blow dry with nitrogen to form a photolithographic pattern of grooves arranged at intervals on the photoresist mold layer, The cross-sectional width of the trench is 10nm;
图案转移:以0.5nm/s的速度沉积厚度为40nm的Au(金)61,然后浸入60℃的NMP中处理6小时进行剥离(lift-off)除胶;再浸入包括浓度为2M的HF和浓度为0.1M的H2O2的混合液中处理30分钟进行金属辅助腐蚀,最后将基片浸入金腐蚀液中处理10分钟除去金属金结构,得到荧光纳米标尺部件,所述Si膜掩模层厚度为200nm,所述沟槽的截面宽度为10m,深宽比为20。Pattern transfer: Deposit Au (gold) 61 with a thickness of 40nm at a speed of 0.5nm/s, and then immerse in NMP at 60°C for 6 hours for lift-off removal; then immerse in 2M HF and Concentration is 0.1M H 2 O 2 in the mixed solution processing 30 minutes to carry out metal-assisted etching, finally immerse the substrate in the gold corrosion solution and treat for 10 minutes to remove the metal gold structure, obtain the fluorescent nano scale part, the Si film mask The layer thickness is 200 nm, the cross-sectional width of the trench is 10 m, and the aspect ratio is 20.
实施例9Example 9
本实施例提供了一种荧光纳米标尺部件的具体实施方式,包括以下步骤:The present embodiment provides a specific implementation of the fluorescent nano scale part, comprising the following steps:
处理基底:将厚度为0.17mm的盖玻片依次用丙酮、乙醇、去离子水各超声8分钟,然后用80W的氧等离子体处理3分钟;Treat the substrate: Sonicate the cover glass with a thickness of 0.17mm for 8 minutes with acetone, ethanol, and deionized water in sequence, and then treat it with 80W oxygen plasma for 3 minutes;
掩模层:将2g石墨粉分散于10g聚乙烯醇溶液中,将其以3000rpm的转速在基底上旋涂,然后放到温度为120℃的热板上烘烤5分钟,在基底上得到厚度为150nm的碳掺杂聚合物膜。Mask layer: Disperse 2g of graphite powder in 10g of polyvinyl alcohol solution, spin-coat it on the substrate at a speed of 3000rpm, and bake it on a hot plate at 120°C for 5 minutes to obtain a thickness on the substrate 150nm carbon-doped polymer film.
涂布光刻胶:在碳掺杂聚合物膜上,将电子束光刻胶ZEP 520A以3000rpm的转速涂胶,得到厚度为300nm的光刻胶膜层,然后放到温度为120℃的热板上烘烤5分钟;将导电聚合物Espacer 300Z以3000rpm的转速下在光刻胶膜层上旋涂30秒,然后放到80℃的热板上烘烤1分钟,得到导电层。Coating photoresist: On the carbon-doped polymer film, apply the electron beam photoresist ZEP 520A at a speed of 3000rpm to obtain a photoresist film layer with a thickness of 300nm, and then put it in a hot water at a temperature of 120°C The board was baked for 5 minutes; the conductive polymer Espacer 300Z was spin-coated on the photoresist film layer at a speed of 3000 rpm for 30 seconds, and then placed on a hot plate at 80° C. for 1 minute to obtain a conductive layer.
光刻:采用电压为100kV的电子束进行光刻,用ZEP 520A专用显影液ZED-N50显影1分钟,随后用氮气吹干,在所述光刻胶模层上形成间隔设置的沟槽的光刻图案,所述沟槽的截面宽度为100nm;Photolithography: use an electron beam with a voltage of 100kV to carry out photolithography, develop with ZED-N50, a special developer solution for ZEP 520A, for 1 minute, and then blow dry with nitrogen to form the photoresist pattern of grooves arranged at intervals on the photoresist mold layer. Engraving patterns, the cross-sectional width of the trench is 100nm;
转移图案:利用反应离子刻蚀法(RIE,氧气)将电子束光刻胶图形转移至碳掺杂聚合物膜,形成碳掺杂聚合物纳米沟槽结构,得到荧光纳米标尺部件,所述掩模层厚度为150nm,所述沟槽的截面宽度为100nm,深宽比为1.5。Transfer pattern: use reactive ion etching method (RIE, oxygen) to transfer the electron beam photoresist pattern to the carbon-doped polymer film, form the carbon-doped polymer nano-groove structure, and obtain the fluorescent nanoscale part, the mask The thickness of the mold layer is 150nm, the section width of the trench is 100nm, and the aspect ratio is 1.5.
实施例10Example 10
本实施例提供了一种荧光纳米标尺部件的具体实施方式,与实施例8所述实施方式基本相同,区别在于,以0.1nm/s的速度沉积厚度为10nm的金,浸入包括浓度为2M的HF和浓度为0.1M的H2O2的混合液中处理10分钟进行金属辅助腐蚀,最后将基片浸入金腐蚀液中处理1分钟,即得。This embodiment provides a specific implementation of a fluorescent nanometer scale component, which is basically the same as the implementation described in Example 8, the difference is that gold with a thickness of 10 nm is deposited at a speed of 0.1 nm/s, and gold with a concentration of 2M is immersed in Treat in a mixed solution of HF and 0.1M H 2 O 2 for 10 minutes to carry out metal-assisted etching, and finally immerse the substrate in a gold etching solution for 1 minute to obtain the finished product.
实施例11Example 11
本实施例提供了一种荧光纳米标尺部件的具体实施方式,与实施例8所述实施方式基本相同,区别在于,以0.2nm/s的速度沉积厚度为20nm的金,浸入包括浓度为2M的HF和浓度为0.1M的H2O2的混合液中处理15分钟进行金属辅助腐蚀,最后将基片浸入金腐蚀液中处理3分钟,即得。This embodiment provides a specific implementation of a fluorescent nanoscale member, which is basically the same as the implementation described in Example 8, the difference is that gold with a thickness of 20 nm is deposited at a speed of 0.2 nm/s, and the immersion includes gold with a concentration of 2M. Treat in a mixed solution of HF and 0.1M H 2 O 2 for 15 minutes to carry out metal-assisted etching, and finally immerse the substrate in a gold etching solution for 3 minutes to obtain the finished product.
对比例1Comparative example 1
本对比例提供了一种荧光纳米标尺部件的具体实施方式,包括以下步骤:This comparative example provides a kind of specific embodiment of fluorescent nano scale part, comprises the following steps:
采用18mm×18mm的透明盖玻片作为基底,依次用浓铬酸洗液和等离子体清洗机对玻璃片表面进行清洗;在清洗好的玻璃片表面用磁控溅射的方式镀一层100nm厚的金属铝膜;在非透明导电层上镀一层60nm厚的Si3N4掩模层;在掩模层表面用每分钟4000转的转速旋涂一层90nm厚的ZEP520(ZEON,Tokyo,JAPAN)光刻胶,然后安装到电子束曝光平台(Vistec EBPG5000+ES,Jane,Germany)上,按预设定的图样曝光并用乙酸正戊酯进行显影;经等离子体刻蚀机(ICP-RIE SI500,Sentech,Berlin,Germany)两次用不同的气体刻蚀,其中第一次刻蚀采用(SF6,CHF3,O2)混合气体刻蚀Si3N4掩模层,第二次刻蚀采用(Cl2,BCl3和N2)混合气体刻蚀导电的铝膜层,得到掩模层厚度为60nm,沟槽截面宽度为200nm的荧光纳米标尺部件。A 18mm×18mm transparent cover glass is used as the substrate, and the surface of the glass sheet is cleaned with a concentrated chromic acid solution and a plasma cleaner in sequence; a layer of 100nm thick is coated on the surface of the cleaned glass sheet by magnetron sputtering A metal aluminum film; a 60nm thick Si 3 N 4 mask layer is plated on the non-transparent conductive layer; a 90nm thick ZEP520 (ZEON, Tokyo, JAPAN) photoresist, then installed on the electron beam exposure platform (Vistec EBPG5000+ES, Jane, Germany), exposed according to the preset pattern and developed with n-pentyl acetate; SI500, Sentech, Berlin, Germany) were etched twice with different gases, wherein the first etching used (SF 6 , CHF 3 , O 2 ) mixed gas to etch the Si 3 N 4 mask layer, and the second etching The conductive aluminum film layer was etched with (Cl 2 , BCl 3 and N 2 ) mixed gas to obtain a fluorescent nanoscale member with a mask layer thickness of 60 nm and a groove cross-sectional width of 200 nm.
实验例1Experimental example 1
本实验例将实施例1所得的荧光纳米标尺部件经扫描电子显微镜(HitachiS4800)扫描得到成像图如图6所示。In this experimental example, the fluorescent nanoscale component obtained in Example 1 was scanned by a scanning electron microscope (Hitachi S4800) to obtain an imaging image as shown in FIG. 6 .
实验例2Experimental example 2
本实验例采用荧光染料分子Alexa Fluor 488,取0.5mg该荧光素溶解到5mL PMMA(5%,乙酸乙酯)中,以3000rpm速度涂布到实施例4所述荧光纳米标尺部件上,使用莱卡荧光共聚焦显微镜(Leica TCS SP8)在488nm激发下得到的成像图,如图7所示。This experimental example uses the fluorescent dye molecule Alexa Fluor 488, takes 0.5 mg of the fluorescein and dissolves it in 5 mL of PMMA (5%, ethyl acetate), and coats it on the fluorescent nanoscale member described in Example 4 at a speed of 3000 rpm. The image obtained by fluorescence confocal microscope (Leica TCS SP8) under 488nm excitation is shown in Figure 7.
实验例3Experimental example 3
采用荧光染料分子Alexa Fluor 647,取0.5mg该荧光素溶解到5mL PMMA(5%,乙酸乙酯)中,以3000rpm速度涂布到实施例6所述荧光纳米标尺部件上,使用莱卡荧光共聚焦显微镜(Leica TCS SP8)在647nm激发下得到的成像图,如图8所示。Using fluorescent dye molecule Alexa Fluor 647, take 0.5 mg of the fluorescein and dissolve it in 5 mL of PMMA (5%, ethyl acetate), and apply it to the fluorescent nanoscale member described in Example 6 at a speed of 3000 rpm, and use Leica fluorescent confocal The image obtained by a microscope (Leica TCS SP8) under 647nm excitation is shown in Figure 8.
仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。It is merely an example for clear description, and does not limit the embodiment. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. And the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910318120.9A CN110095441B (en) | 2019-04-19 | 2019-04-19 | Fluorescent nanometer scale component and preparation and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910318120.9A CN110095441B (en) | 2019-04-19 | 2019-04-19 | Fluorescent nanometer scale component and preparation and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110095441A true CN110095441A (en) | 2019-08-06 |
CN110095441B CN110095441B (en) | 2021-12-10 |
Family
ID=67445335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910318120.9A Active CN110095441B (en) | 2019-04-19 | 2019-04-19 | Fluorescent nanometer scale component and preparation and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110095441B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111054185A (en) * | 2020-01-17 | 2020-04-24 | 广东工业大学 | A kind of poison gas adsorption device and preparation method thereof |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060110568A1 (en) * | 2004-11-23 | 2006-05-25 | Imation Corp. | Multi-layers optical data storage disk masters |
CN101147239A (en) * | 2003-12-19 | 2008-03-19 | 北卡罗来纳大学查珀尔希尔分校 | Method for preparing isolated micro- and nano-structures using soft or imprint lithography |
CN101734613A (en) * | 2009-12-03 | 2010-06-16 | 西北工业大学 | SOI wafer-based MEMS structure manufacturing and dicing method |
CN101907769A (en) * | 2010-07-01 | 2010-12-08 | 西北工业大学 | A vertical comb-driven micro-torsion mirror based on SOI wafer double-mask etching and its manufacturing method |
CN102879845A (en) * | 2012-10-10 | 2013-01-16 | 中北大学 | Method for manufacturing nanoscale grating based on polydimethylsiloxane (PDMS) |
CN103091747A (en) * | 2011-10-28 | 2013-05-08 | 清华大学 | Prepared method of optical grating |
CN103337575A (en) * | 2013-07-01 | 2013-10-02 | 哈尔滨工业大学深圳研究生院 | Efficient and low-cost preparing method for large-area graphical sapphire substrate |
CN103712965A (en) * | 2013-12-23 | 2014-04-09 | 中国科学院苏州生物医学工程技术研究所 | Resolution testing standard board manufacturing method for super-resolution fluorescence microscope system |
CN103954600A (en) * | 2014-05-12 | 2014-07-30 | 国家纳米科学中心 | Fluorescent nano-scale component and manufacturing method thereof |
CN105203508A (en) * | 2015-09-01 | 2015-12-30 | 中国科学院苏州生物医学工程技术研究所 | Preparation method of fluorescent nanometer standard board |
CN105241635A (en) * | 2015-09-01 | 2016-01-13 | 中国科学院苏州生物医学工程技术研究所 | Preparation method of fluorescent nanometer standard plate used for testing resolution |
CN204964393U (en) * | 2015-09-01 | 2016-01-13 | 中国科学院苏州生物医学工程技术研究所 | Fluorescence nanometer standard board |
CN106442468A (en) * | 2016-11-22 | 2017-02-22 | 深圳大学 | Raman spectrum imaging resolution target and preparation method thereof |
CN107210227A (en) * | 2015-02-06 | 2017-09-26 | 株式会社半导体能源研究所 | Semiconductor device and its manufacture method |
CN107356619A (en) * | 2017-07-12 | 2017-11-17 | 成都理工大学 | A kind of micro-beam X-ray fast positioning and calibrating installation and its application method |
CN108573873A (en) * | 2017-03-10 | 2018-09-25 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method of semiconductor device |
CN108663909A (en) * | 2017-03-27 | 2018-10-16 | 台湾积体电路制造股份有限公司 | Method for lithographic patterning |
CN208368516U (en) * | 2018-05-04 | 2019-01-11 | 天津大学 | Silicon nanometer film flexible flat grid single-groove road thin film transistor (TFT) |
CN208368517U (en) * | 2018-05-04 | 2019-01-11 | 天津大学 | Silicon nanometer film flexible flat grid double tunnel thin film transistor (TFT) |
-
2019
- 2019-04-19 CN CN201910318120.9A patent/CN110095441B/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101147239A (en) * | 2003-12-19 | 2008-03-19 | 北卡罗来纳大学查珀尔希尔分校 | Method for preparing isolated micro- and nano-structures using soft or imprint lithography |
US20060110568A1 (en) * | 2004-11-23 | 2006-05-25 | Imation Corp. | Multi-layers optical data storage disk masters |
CN101734613A (en) * | 2009-12-03 | 2010-06-16 | 西北工业大学 | SOI wafer-based MEMS structure manufacturing and dicing method |
CN101907769A (en) * | 2010-07-01 | 2010-12-08 | 西北工业大学 | A vertical comb-driven micro-torsion mirror based on SOI wafer double-mask etching and its manufacturing method |
CN103091747A (en) * | 2011-10-28 | 2013-05-08 | 清华大学 | Prepared method of optical grating |
CN102879845A (en) * | 2012-10-10 | 2013-01-16 | 中北大学 | Method for manufacturing nanoscale grating based on polydimethylsiloxane (PDMS) |
CN103337575A (en) * | 2013-07-01 | 2013-10-02 | 哈尔滨工业大学深圳研究生院 | Efficient and low-cost preparing method for large-area graphical sapphire substrate |
CN103712965A (en) * | 2013-12-23 | 2014-04-09 | 中国科学院苏州生物医学工程技术研究所 | Resolution testing standard board manufacturing method for super-resolution fluorescence microscope system |
CN103954600A (en) * | 2014-05-12 | 2014-07-30 | 国家纳米科学中心 | Fluorescent nano-scale component and manufacturing method thereof |
CN107210227A (en) * | 2015-02-06 | 2017-09-26 | 株式会社半导体能源研究所 | Semiconductor device and its manufacture method |
CN105203508A (en) * | 2015-09-01 | 2015-12-30 | 中国科学院苏州生物医学工程技术研究所 | Preparation method of fluorescent nanometer standard board |
CN105241635A (en) * | 2015-09-01 | 2016-01-13 | 中国科学院苏州生物医学工程技术研究所 | Preparation method of fluorescent nanometer standard plate used for testing resolution |
CN204964393U (en) * | 2015-09-01 | 2016-01-13 | 中国科学院苏州生物医学工程技术研究所 | Fluorescence nanometer standard board |
CN106442468A (en) * | 2016-11-22 | 2017-02-22 | 深圳大学 | Raman spectrum imaging resolution target and preparation method thereof |
CN108573873A (en) * | 2017-03-10 | 2018-09-25 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method of semiconductor device |
CN108663909A (en) * | 2017-03-27 | 2018-10-16 | 台湾积体电路制造股份有限公司 | Method for lithographic patterning |
CN107356619A (en) * | 2017-07-12 | 2017-11-17 | 成都理工大学 | A kind of micro-beam X-ray fast positioning and calibrating installation and its application method |
CN208368516U (en) * | 2018-05-04 | 2019-01-11 | 天津大学 | Silicon nanometer film flexible flat grid single-groove road thin film transistor (TFT) |
CN208368517U (en) * | 2018-05-04 | 2019-01-11 | 天津大学 | Silicon nanometer film flexible flat grid double tunnel thin film transistor (TFT) |
Non-Patent Citations (2)
Title |
---|
B. KAULICH 等: ""High-resolution lenses for sub-100 nm x-ray fluorescence microscopy"", 《APPILED PHYSICS LETTERS 》 * |
牛亚军 DQ: ""几种光学超分辨技术研究"", 《光电技术应用》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111054185A (en) * | 2020-01-17 | 2020-04-24 | 广东工业大学 | A kind of poison gas adsorption device and preparation method thereof |
CN111054185B (en) * | 2020-01-17 | 2024-01-23 | 广东工业大学 | Toxic gas adsorption device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110095441B (en) | 2021-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7691541B2 (en) | Methods for additive repair of phase shift masks by selectively depositing nanometer-scale engineered structures on defective phase shifters | |
US20080303187A1 (en) | Imprint Fluid Control | |
CN101520600B (en) | Method for manufacturing light-transmitting nano-imprint template based on X-ray exposure technology | |
TWI548507B (en) | Functional nanoparticles | |
CN101078874A (en) | Method for producing high-resolution nano-imprint masters | |
Black et al. | Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum | |
JP2011505066A (en) | Method for generating a template using a lift-off process | |
JPH0434818B2 (en) | ||
US7063919B2 (en) | Lithographic template having a repaired gap defect method of repair and use | |
CN104701146B (en) | Graphene nano electronic device and preparation method thereof | |
CN105259733A (en) | Preparation method for flexible mask plate used for patterning curved surface | |
CN102969302B (en) | Based on the electron beam overlay mark and preparation method thereof of hafnium oxide | |
CN107857236A (en) | A kind of preparation method of the high conformal nanoscale minus structure of high-aspect-ratio | |
CN103954600B (en) | Fluorescent nano-scale component and manufacturing method thereof | |
CN109668631B (en) | Preparation method of large-area and low-cost superconducting nanowire single photon detector | |
CN110114682B (en) | Liquid masks for microfabrication processes | |
CN110095441A (en) | A kind of fluorescence nano scale member and its preparation and application | |
CN101813884B (en) | A method for preparing nanostructure matrix on non-flat substrate surface | |
CN101825842B (en) | Method for manufacturing nano-imprinting seal | |
FR2641383A1 (en) | METHOD FOR OBTAINING MASKS FOR X-RAY LITHOGRAPHY | |
JP2007512702A (en) | Method for producing reflective multilayer thin film mirror for extreme ultraviolet exposure process using lithography technique of atomic force microscope | |
KR20140095102A (en) | Imprinting mold and manufacturing method therefor | |
CN101373734B (en) | Method for preparing nanometer dimension nickel-gold air bridge | |
CN108467011A (en) | A method of preparing metal Nano structure on flexible substrates | |
CN104464870A (en) | Method for manufacturing X-ray lens high in height-width ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |