CN110080944A - 风力发电系统及其控制方法 - Google Patents

风力发电系统及其控制方法 Download PDF

Info

Publication number
CN110080944A
CN110080944A CN201810076827.9A CN201810076827A CN110080944A CN 110080944 A CN110080944 A CN 110080944A CN 201810076827 A CN201810076827 A CN 201810076827A CN 110080944 A CN110080944 A CN 110080944A
Authority
CN
China
Prior art keywords
rotor
voltage
net
target
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810076827.9A
Other languages
English (en)
Inventor
谭卓辉
刘杨
潘文光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to CN201810076827.9A priority Critical patent/CN110080944A/zh
Publication of CN110080944A publication Critical patent/CN110080944A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors
    • F03D7/02Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to an electrical general supply grid; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • H02J3/382Dispersed generators the generators exploiting renewable energy
    • H02J3/386Wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/327Rotor or generator speeds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/18The network being internal to a power source or plant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明公开了一种风力发电系统,包括用于产生机械能的风力涡轮机;用于将所述机械能转换成电能的发电机;用于将所述电能转换成期望的电能用于供应至电网的变换器,其中所述发电机的转子连接至变换器,所述发电机的定子的输出和变换器的输出都连接到所述电网;控制器,用于当转子转速小于预定值时,控制变换器在转子侧吸收无功功率,并增加线路侧的无功功率送出,以满足电网的无功功率需求。

Description

风力发电系统及其控制方法
背景技术
随着全球能源资源的日益短缺及环境污染的日益严峻,清洁可再生能源,特别是风能已经得到快速发展。风力涡轮机在该方面备受关注。
已知风力涡轮机的运行与风速有关。例如,风力涡轮机具有用于确定风力发电系统的运行状态的预定的风速阈值。其中一个这样的阈值为切入风速,其被定义为风力发电系统开始发电的风速。另一个阈值为切出风速,其被定义为风力涡轮机能够运行而传递电力的最高风速。通常,在风速高于切出风速时,将停止发电。
基于国际电工技术委员会(International Electro-technical Commission,IEC)标准,将风区划分为四类:一类风区(在该风区的平均风速在8.5米/秒到10米/秒的范围内)、二类风区(在该风区的平均风速在7.5米/秒到8.5米/秒的范围内)、三类风区(在该风区的平均风速在6.0米/秒到7.5米/秒的范围内)、以及四类风区(在该风区的平均风速低于6.0米/秒)。在过去,大部分的技术开发都集中在中高速风区。
发明内容
在一个实施例中,本公开提供了一种风力发电系统,其特征在于,包括:用于产生机械能的风力涡轮机;用于将所述机械能转换成电能的发电机;用于将所述电能转换成期望的电能用于供应至电网的变换器,其中所述发电机的转子连接至变换器,所述发电机的定子的输出和变换器的输出都连接到所述电网;控制器,用于当转子转速小于预定值时,控制所述变换器在转子侧吸收无功功率,并增加线路侧的无功功率送出,以满足电网的无功功率需求。
在另一个实施例中,本公开提供了一种控制风力发电系统的方法,其中,所述风力发电系统包括用于产生机械能的风力涡轮机、用于将所述机械能转换成电能的发电机、用于将所述电能转换成期望的电能用于供应至电网的变换器,其中所述发电机的转子连接至变换器,所述发电机的定子的输出和变换器的输出都连接到所述电网,其特征在于,包括:当转子转速小于预定值时,控制所述变换器在转子侧吸收无功功率,并增加线路侧提供的无功功率送出,以满足电网的无功功率需求。
附图说明
当参照附图阅读以下详细描述时,本发明的这些和其它特征、方面及优点将能够更好理解,其中:
图1是根据本发明的一个具体实施方式的示意性风力发电系统的示意图;
图2是根据本发明的一个具体实施方式的控制器示意图;
图3是根据本发明的一个具体实施方式的控制器的无功功率调节器,电压调节器的示意图;
图4是根据本发明的一个具体实施方式的控制器的管理模块示意图;
图5是根据本发明的一个具体实施方式的风力发电系统控制流程图;
具体实施方式
为帮助本领域的技术人员能够确切地理解本发明所要求保护的主题,下面结合附图详细描述本发明的具体实施方式。在以下对这些具体实施方式的详细描述中,本说明书对一些公知的功能或构造不做详细描述以避免不必要的细节而影响到本发明的披露。
除非另作定义,本权利要求书和说明书中所使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本说明书以及权利要求书中所使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“包括”或者“具有”等类似的词语意指出现在“包括”或者“具有”前面的元件或者物件涵盖出现在“包括”或者“具有”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
本发明的实施例可以用功能组件和各种处理步骤方面来描述。应当理解,这样的功能组件可通过任意数量的硬件、软件和/或固件组件来实现,其被配置来执行特定功能。例如,本发明的实施例可以采用各种集成电路部件,如存储器元件、数字信号处理元件、逻辑元件等,其在一个或多个微处理器或其它控制装置的控制下,可以执行“控制器”的各种功能。此外,这里描述的系统仅示出一个典型实施例。
图1示出根据本发明的一个具体实施方式的示意性风力发电系统的示意图。如图1所示,示意性风力发电系统100可以包括风力涡轮机1、双馈感应发电机2(Doubly FedInduction Generator,DFIG)、变换器(Converter)3及控制器4。风力涡轮机1接收风能并且产生机械能。在一些具体实施方式中,风力发电系统100还可以包括位于风力涡轮机1与DFIG之间的变速箱5。变速箱5能够将机械能传输成更合适的机械力以驱动转子轴20。
DFIG 2能够将机械能转换成电能,并包括转子21和定子22。DFIG 2的转子21可以连接到转子轴20,并且能够通过转子轴20在机械力的作用下被旋转。DFIG 2的定子22可以机械地连接到转子21,并且可以通过变压器7连接到电网6。
变换器3用于将电能转换成期望的电能用于供应至电网6,并且可以包括转子侧变换器31、线路侧变换器32以及用于连接转子侧变换器31和线路侧变换器32的直流母线(DCLink)33。转子侧变换器31可以包括AC-DC变换器,其用于将来自DFIG 2的转子21的交流(Alternating Current,AC)电压转换成直流母线33上的直流(Direct Current,DC)母线电压。直流母线33可以包括串联或并联连接的一个或多个电容,其用于将直流母线电压维持在一定水平,因此,能够管理从直流母线33至电网6的电能。线路侧变换器32可以包括DC-AC逆变器,其用于将直流母线33上的直流母线电压转换成具有合适的频率、相位及幅值用于馈入到电网6的交流电压。
变压器7用于提供来自变换器3的功率及来自DFIG 2的定子22的功率的电压或电流变换,并且提供在变换器3和电网6之间以及在DFIG 2和电网6之间的隔离。变压器7用于将从线路侧变换器31及DFIG 2的定子22输出的交流电压幅值升高以匹配电网6。变压器7可以包括连接到电网6的原边绕组71和与定子22及线路侧变换器32连接的副边绕组72。在一个可选的具体实施方式中,变压器7可以为有载调压变压器。有载调压变压器7的变压比被定义为原边绕组71与副边绕组72的变压比,有载调压变压器7的变压比可以被改变。
切入风速是指风力发电机组开始并网发电的最低风速,即风速需要大于最低风速才能才能使风力发电机组开始工作。风力发电机组在低风速的区域时,风力发电机组或长时间无法启动工作状态,或当风速降低到低于切入风速的时候,风力发电机组将停机。风力发电机组反复启动也会需要很长的时间。
如果想要在低风速下捕获得更多风能有两个关键的因素,第一是将切入风速降低,第二是优化在低风速(如3~5m/s)下的叶尖速比,这两个因素都导致电路系统(DFIG+Converter)工作在较高的滑差率(Slip Ratio)。
Vrotor=S*N*Vstator
在这个公式中,Vrotor表示转子侧电压,S表示滑差率,N表示转子和定子的匝数比,一般是不变的,Vstator为定子侧电压。根据上式分析得到,在现有的控制系统下,较高的滑差率会进一步导致转子侧的电压升高,并超过极限值,使风力发电机组无法正常工作。
请继续参见图1,通过本技术方案,在低风速下,如转子的转速小于预定值的时候,如小于1000rmp时,在网侧无功功率为预设值Q*的时候,控制器4使变换器在转子侧吸收无功功率Qrotor,并控制变换器在线路侧增加无功功率Qline送出,以满足电网网侧的无功功率需求Q*。转子侧的无功功率降低,从而Vrotor也就降低了,避免了Vrotor超过电压限额使风力发电机组而无法正常工作。同时在低转子转速下,叶尖速比也能够更接近理想的最佳值,而在高转子转速下,由于转子转速和转子侧电压的关系限制,叶尖速比需要被迫提高。既然在低转子转速下,有功功率也很低,线路侧额外的无功功率需求也很小,所以线路侧变换器的额外损耗也并不多。
在高风速下,当转子转速大于或等于预定值的时候,如大于或等于1000rmp时,风力发电系统的控制器可以在原有的控制模式下正常工作,即除非无功需求超出转子侧变流器能力,不需要线路侧负担无功功率,产生的无功功率和有功功率正常输入电网。
本申请的具体实施方式的风力发电系统100可以降低Vrotor在极限值内,因此可以降低DFIG 2的转子21的切入转速ωcutin以在低风速工况下捕获更多的风能。这个切入延伸的好处不仅可以提前启动风力涡轮机1,而且还可以降低在低风速下由于高湍流所造成的风力涡轮机1的停机与重新切入之间的死区。即,可以降低年发电量的损失。实际上,年发电量(annual electricity production,AEP)的增加量在平均风速在7m/s以下比较显著,在平均风速在5.5m/s到6.5m/s之间时,AEP的增加量可达到0.28~0.46%,有显著的经济效益。
如图2所示,控制器4包括无功功率调节器42,电压调节器43,管理模块44和无功电流加法器41。其中,无功功率调节器42的根据输入的网侧无功功率的预定值Q*,以及网侧无功功率的反馈值Qfbk得到网侧目标电压V*。电压调节器43根据输入的网侧目标电压V*和以及网侧电压反馈值Vfbk得到网侧目标无功电流Iy0 *
在转子转速小于预定值的时候,如小于1000rmp时,控制器4的管理模块44根据输入的转子侧所能承受的电压最大值Vrotor-max与转子电压值R-Vfbk,以及网侧目标无功电流Iy0 *,得到定子侧目标无功电流值Iy *
由于Iy0 *=Iy *+Iyline *
网侧无功电流预定值Iy0 *为定子侧目标无功电流值Iy *与线路侧目标无功电流值Iyline *的和。通过输入网侧无功电流预定值Iy0 *和定子侧目标无功电流值Iy *到无功电流加法器41就可以得到与线路侧目标无功电流值Iyline *,由此产生相应的控制信号,控制线路侧无功电流值达到Iyline *,从而使满足转子侧电压小于所能承受的最大值Vrotor-max,使风力发电机可以正常工作。
在转子转速不小于预定值的时候,如不小于1000rmp时,控制器4直接设定Iy0 *=Iy *,即Iyline *=0。线路侧不承担无功功率。
如图3所示,在一个实际例子中,无功功率调节器42包括无功功率加法器421和比例积分器(Proportion Integrator)422,网侧无功功率的预定值Q*和网侧无功功率反馈值Qfbk经过无功功率加法器421运算后的信号输入比例积分器422,经过运算后得到网侧目标电压V*。电压调节器43包括电压加法器431和比例积分器(Proportion Integrator)432,网侧目标电压V*和网侧电压反馈值Vfbk经过电压加法器431运算后的信号输入比例积分器432,经过运算后得到网侧目标无功电流Iy0 *。在其它例子中,无功功率调节器42和电压调节器43也可以为能够达到同样目的的其它结构。
进一步请参见图4,首先判断转子转速是否小于预定值,当转子转速小于预定值,如1000rmp的时候,输入信号给管理模块44,管理模块正常工作;当转子转速不小于预定值,如1000rmp的时候,不使用管理模块44,这时Iy0 *=Iy *
在一个具体例子中,管理模块44包括依次连接的转子侧加法器441,积分器442,限幅器443和运算器444。转子侧加法器441的输入为转子侧所能承受的电压最大值Vrotor-max与转子电压采样值R_Vfbk,经转子侧加法器运算后经过积分器442,限幅器443,以及输入网侧目标无功电流Iy0 *的运算器444,得到定子侧目标无功电流值Iy *。在其它例子中,管理模块44也可以为能够达到同样目的的其它结构。
进一步,请参见图2,控制器4还包括无功电流加法器41,求得输入无功电流预定值Iy0 *与定子侧目标无功电流值Iy *的差值,即为线路侧目标无功电流值Iyline *
其中,控制器4还包括转子侧无功电流调节器46,接收定子侧目标无功电流值Iy*,从而获得转子侧的电压控制信号R_Vcmd;和线路侧无功电流调节器45,接收即为线路侧目标无功电流值Iyline *,从而获得线路侧电压控制值L_Vcmd。
在转子转速小于预定值的时候,通过控制器4根据得到的转子侧的电压控制值R_Vcmd和线路侧电压控制值L_Vcmd分别控制转子侧电压和线路侧电压,可使在转子转速小于预定值的时候,输入电网的无功功率达到预定值,并且转子侧电压不会超过安全工作的极限值。
本申请的具体实施方式还提供了一种用于控制风力发电系统100的方法。该风力发电系统结构如前所述。图5示出根据本发明的一种具体实施方式的用于控制风力发电系统100的示意性方法的流程图。一种用于控制风力发电系统100的方法200包括,210)当转子转速小于预定值时,如小于1000rmp,控制变换器在转子侧吸收无功功率Qrotor,并增加线路侧的无功功率送出Qline,以满足电网的无功功率需求Q*。转子侧的无功功率降低,从而Vrotor也就降低了,避免了Vrotor超过电压限额使风力发电机组而无法正常工作。同时在低转子转速下,叶尖速比也能够更接近理想的最佳值,而在高转子转速下,由于转子转速和转子侧电压的关系限制,叶尖速比需要被迫提高。既然在低转子转速下,有功功率也很低,线路侧额外的无功功率需求也很小,所以线路侧变换器的额外损耗也并不多。
在高风速下,当转子转速大于或等于预定值的时候,如大于或等于1000rmp时,风力发电系统的控制器可以在原有的控制模式下正常工作,即除非无功需求超出转子侧变流器能力,不需要线路侧负担无功功率,产生的无功功率和有功功率正常输入电网。
210)当转子转速小于预定值时,控制变换器在转子侧吸收无功功率Qrotor,并增加线路侧的无功功率Qline送出的步骤包括220)通过网侧无功功率预设值Q*和网侧无功功率反馈值Qfbk得到网侧目标电压V*,以及通过网侧目标电压V*和网侧电压反馈值Vfbk得到网侧目标无功电流Iy0 *
如图3所示,在一个例子中,网侧无功功率预设值Q*和网侧无功功率反馈值Qfbk通过加法器421运算后,再通过调节器,具体可以为比例积分器422运算后得到网侧目标电压V*。以及通过网侧目标电压V*和网侧电压反馈值Vfbk通过加法器431运算后,再通过调节器,具体可以为比例积分器432运算后得到网侧目标无功电流Iy0 *
210)当转子转速小于预定值时,控制变换器在转子侧吸收无功功率Qrotor,并增加线路侧的无功功率Qline送出的步骤包括230)当转子转速小于预定值时,根据转子侧电压的最大承受电压值Vrotor-max,转子侧电压采样值R-Vfbk,以及网侧目标无功电流Iy0 *得到定子侧目标无功电流Iy *
在转子转速小于预定值的时候,如小于1000rmp时,转子侧电压的最大承受电压值Vrotor-max和转子侧电压采样值R-Vfbk通过加法器,积分器,以及限幅器得到的值与网侧目标无功电流Iy0 *经运算器运算后得到定子侧目标无功电流值Iy *
210)当转子转速小于预定值时,控制变换器在转子侧吸收无功功率Qrotor,并增加线路侧的无功功率Qline送出的步骤包括240)通过定子侧目标无功电流Iy *以及网侧目标无功电流得到线路侧的无功电流Iy0 *
由于Iy0 *=Iy *+Iyline *,通过定子侧目标无功电流Iy *和网侧目标无功电流在加法器444进行减法运算得到线路侧的无功电流Iy0 *
210)当转子转速小于预定值时,控制变换器在转子侧吸收无功功率Qrotor,并增加线路侧的无功功率Qline送出的步骤包括250)根据所述定子侧目标无功电流Iy *生成转子侧电压控制信号R_Vcmd,以及根据线路侧的目标无功电流Iyline *生成线路侧的电压控制信号L_Vcmd。所述转子侧电压控制信号R_Vcmd是通过转子侧无功电流调节器46根据定子侧目标无功电流Iy *生成;所述线路侧的电压控制信号L_Vcmd是通过和线路侧无功电流调节器45根据线路侧的目标无功电流Iyline *生成的。
在转子转速小于预定值的时候,通过控制器4根据得到的转子侧的电压控制值R_Vcmd和线路侧电压控制值L_Vcmd分别控制转子侧电压和线路侧电压,可使在转子转速小于预定值的时候,输入电网的无功功率达到预定值,并且转子侧电压不会超过安全工作的极限值。
本书面描述使用了示例来描述本公开,其包括最佳模式,并使本领域任何技术人员能够实践本公开,包括制造和使用任何装置或系统以及实行任何结合的方法。本公开的可给予专利权的范围由权利要求限定,并可包括本领域技术人员涉及的其他示例。如果该其它示例具有与权利要求的字面语言相同的结构元件,或如果它们包括与权利要求的字面语言无实质差异的等同结构元件,则这些其它示例被规定在权利要求的范围内。

Claims (10)

1.一种风力发电系统,其特征在于,包括:
用于产生机械能的风力涡轮机;
用于将所述机械能转换成电能的发电机;
连接在所述发电机和电网间的变换器,其中所述发电机的转子连接至所述变换器,所述发电机的定子的输出和所述变换器的输出都连接到所述电网;
控制器,用于当转子转速小于预定值时,控制所述变换器吸收转子侧的无功功率,并控制所述变换器增加线路侧的无功功率送出,以满足电网的无功功率需求。
2.如权利要求1所述的方法,其特征在于:所述控制器包括管理模块,用于当转子转速小于预定值时,根据转子侧电压的最大承受电压值,转子侧电压采样值,以及网侧目标无功电流,得到定子侧目标无功电流,所述控制器根据所述定子侧目标无功电流管理转子侧无功功率和线路侧无功功率。
3.如权利要求2所述的方法,其特征在于:所述管理模块包括依次连接的转子侧加法器,积分器,限幅器和运算器,其中转子侧加法器根据转子侧电压的最大承受电压值和转子侧电压采样值计算得到的结果,进一步通过积分器和限幅器,再通过运算器对网侧目标无功电流和限幅器得到的结果进行运算,得到定子侧目标无功电流。
4.如权利要求2所述的方法,其特征在于:所述控制器包括无功功率调节器和电压调节器,其中所述无功功率调节器将网侧无功功率预设值以及网侧无功功率反馈值得到网侧目标电压,并将其输入所述的电压调节器,所述电压调节器根据所述网侧目标电压以及网侧电压反馈值得到所述网侧目标无功电流。
5.如权利要求2所述的方法,其特征在于:所述控制器包括无功电流加法器,将网侧目标无功电流减去定子侧目标无功电流得到线路侧无功电流。
6.如权利要求5所述的方法,其特征在于:所述控制器包括转子侧无功电流调节器,根据定子侧目标无功电流得到转子侧的控制电压信号,控制转子侧电压;和线路侧无功电流调节器,根据线路侧的目标无功电流得到线路侧的控制电压信号,控制线路侧电压。
7.一种控制风力发电系统的方法,其中,所述风力发电系统包括用于产生机械能的风力涡轮机、用于将所述机械能转换成电能的发电机、连接在所述发电机和电网间的变换器、其中所述发电机的转子连接至所述变换器,所述发电机的定子的输出和所述变换器的输出都连接到所述电网,其特征在于,包括:
当转子转速小于预定值时,控制所述变换器在转子侧吸收无功功率,并增加线路侧的无功功率送出,以满足电网的无功功率需求。
8.如权利要求7所述的方法,其特征在于:控制所述变换器在转子侧吸收无功功率,并增加线路侧的无功功率送出包括:
当转子转速小于预定值时,根据转子侧电压的最大承受电压值,转子侧电压采样值,以及网侧目标无功电流,得到定子侧目标无功电流;和
通过所述定子侧目标无功电流以及所述网侧目标无功电流得到线路侧的无功电流。
9.如权利要求8所述的方法,其特征在于:控制所述变换器在转子侧吸收无功功率,并增加线路侧的无功功率送出包括,根据所述定子侧目标无功电流生成转子侧电压控制信号,以及根据线路侧的目标无功电流生成线路侧的电压控制信号。
10.如权利要求8所述的方法,其特征在于:控制所述变换器在转子侧吸收无功功率,并增加线路侧的无功功率送出包括,通过网侧无功功率预设值和网侧无功功率反馈值得到网侧目标电压,以及通过网侧目标电压和网侧电压反馈值得到网侧目标无功电流。
CN201810076827.9A 2018-01-26 2018-01-26 风力发电系统及其控制方法 Pending CN110080944A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810076827.9A CN110080944A (zh) 2018-01-26 2018-01-26 风力发电系统及其控制方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810076827.9A CN110080944A (zh) 2018-01-26 2018-01-26 风力发电系统及其控制方法
EP19150962.9A EP3518368A1 (en) 2018-01-26 2019-01-09 Wind power generation system and controlling method thereof
US16/256,189 US10731631B2 (en) 2018-01-26 2019-01-24 Wind power generation system and controlling method thereof

Publications (1)

Publication Number Publication Date
CN110080944A true CN110080944A (zh) 2019-08-02

Family

ID=65010675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810076827.9A Pending CN110080944A (zh) 2018-01-26 2018-01-26 风力发电系统及其控制方法

Country Status (3)

Country Link
US (1) US10731631B2 (zh)
EP (1) EP3518368A1 (zh)
CN (1) CN110080944A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113006A1 (de) * 2017-06-13 2018-12-13 Wobben Properties Gmbh Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz mittels einer umrichtergeführten Einspeisevorrichtung
CN110080944A (zh) * 2018-01-26 2019-08-02 通用电气公司 风力发电系统及其控制方法
US10826297B2 (en) * 2018-11-06 2020-11-03 General Electric Company System and method for wind power generation and transmission in electrical power systems

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092941A (zh) * 2006-06-19 2007-12-26 通用电气公司 用于供应和/或吸收无功功率的方法和设备
US20110156389A1 (en) * 2008-06-06 2011-06-30 Teresa Arlaban Gabeiras Wind turbine control method
CN102214931A (zh) * 2011-05-24 2011-10-12 浙江大学 双馈感应风力发电机系统低电压穿越的装置及方法
CN103545820A (zh) * 2013-09-24 2014-01-29 南车株洲电力机车研究所有限公司 提高双馈风电变流器功率器件在微风工况下可靠性的方法
CN104242759A (zh) * 2014-08-29 2014-12-24 国家电网公司 一种基于矢量电力系统稳定器的双馈风力发电系统
US20150337808A1 (en) * 2014-05-22 2015-11-26 Industrial Cooperation Foundation Chonbuk National University System and method for controlling voltage at point of common coupling of wind farm
CN105715452A (zh) * 2014-12-18 2016-06-29 通用电气公司 用于增加风力涡轮机功率输出的系统和方法
CN106907295A (zh) * 2015-12-22 2017-06-30 通用电气公司 风力发电系统及其控制方法
CN107069797A (zh) * 2016-12-30 2017-08-18 西安理工大学 一种含双馈型风力发电机的分散式风电场并网方法
CN107069799A (zh) * 2017-01-25 2017-08-18 华北电力大学 双馈式风力发电机组的控制方法和系统

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137187A (en) * 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
US6420795B1 (en) * 1998-08-08 2002-07-16 Zond Energy Systems, Inc. Variable speed wind turbine generator
EP1284045A1 (en) * 2000-05-23 2003-02-19 Vestas Wind System A/S Variable speed wind turbine having a matrix converter
US7015595B2 (en) * 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control
WO2004025823A1 (de) * 2002-09-10 2004-03-25 Dewind Gmbh Betriebsverfahren für windenergieanlage mit übersynchroner kaskade
AT377286T (de) * 2003-07-15 2007-11-15 Gamesa Innovation & Tech Sl Steuer- und schutzgerät für ein doppelgespeistes induktionsgeneratorsystem
ES2296483B1 (es) * 2005-11-21 2009-03-01 Ingeteam Technology, S.A. Un sistema de control y proteccion ante faltas simetricas y asimetricas, para generadores de tipo asincrono.
US7253537B2 (en) * 2005-12-08 2007-08-07 General Electric Company System and method of operating double fed induction generators
US7423412B2 (en) * 2006-01-31 2008-09-09 General Electric Company Method, apparatus and computer program product for injecting current
DE102006027465A1 (de) * 2006-06-12 2007-12-13 Woodward Seg Gmbh & Co. Kg Strombegrenzung für eine doppeltgespeiste Asynchronmaschine
EP2123908A4 (en) * 2006-12-22 2012-03-14 Wind To Power System S L ASYNCHRONOUS GENERATOR WITH DOUBLE SUPPLY
EP2166226B1 (en) * 2007-06-01 2016-02-10 Acciona Windpower S.A. Wind turbine control system and method
CA2697236C (en) * 2007-12-14 2013-06-25 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
US8198742B2 (en) * 2007-12-28 2012-06-12 Vestas Wind Systems A/S Variable speed wind turbine with a doubly-fed induction generator and rotor and grid inverters that use scalar controls
DE102008034531A1 (de) * 2008-02-20 2009-08-27 Repower Systems Ag Windenergieanlage mit doppelt gespeistem Asynchrongenerator und Umrichterregelung
DE102008017715A1 (de) * 2008-04-02 2009-10-15 Nordex Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine sowie Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine
US7977925B2 (en) * 2008-04-04 2011-07-12 General Electric Company Systems and methods involving starting variable speed generators
JP4834691B2 (ja) * 2008-05-09 2011-12-14 株式会社日立製作所 風力発電システム
US8039979B2 (en) * 2009-01-07 2011-10-18 Mitsubishi Heavy Industries, Ltd. Wind turbine generator system and method of controlling output of the same
WO2010085987A2 (en) * 2009-01-30 2010-08-05 Dewind, Inc. Adaptive voltage control for wind turbines
AU2009340732A1 (en) * 2009-02-20 2010-08-26 Mitsubishi Heavy Industries, Ltd. Wind driven generator and method of controlling the same
CA2707921C (en) * 2009-05-20 2013-10-29 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and method of controlling the same
US8022565B2 (en) * 2009-11-13 2011-09-20 General Electric Company Method and apparatus for controlling a wind turbine
US8736091B2 (en) * 2010-06-18 2014-05-27 Rockwell Automation Technologies, Inc. Converter lifetime improvement method for doubly fed induction generator
US9391554B2 (en) * 2010-08-25 2016-07-12 University Of Alabama Control of a permanent magnet synchronous generator wind turbine
US8093741B2 (en) * 2010-10-29 2012-01-10 General Electric Company Method and system for providing increased turbine output for doubly fed induction generator
KR101243181B1 (ko) * 2010-11-04 2013-03-14 한국전기연구원 궤환선형화 방법을 이용한 권선형유도발전기 제어장치
DE102011008615A1 (de) * 2011-01-14 2012-07-19 Repower Systems Ag Ansteuerschaltung und -verfahren für Umrichter von Windenergieanlagen
FR2973960B1 (fr) * 2011-04-05 2013-05-24 Converteam Technology Ltd Chaine d'entrainement comprenant une machine electrique doublement alimentee et un convertisseur continu-alternatif commande suivant une loi limitant la puissance active delivree
US20130057227A1 (en) * 2011-09-01 2013-03-07 Ingeteam Technology, S.A. Method and apparatus for controlling a converter
US8536722B1 (en) * 2012-02-29 2013-09-17 Mitsubishi Heavy Industries, Ltd. Wind-turbine-generator control system, wind turbine generator, wind farm, and wind-turbine-generator control method
US8907510B2 (en) * 2012-03-09 2014-12-09 General Electric Company Method and systems for operating a wind turbine
CA2883369A1 (en) * 2012-08-30 2014-03-06 General Electric Company System and method for protecting electrical machines
US8664788B1 (en) * 2012-09-07 2014-03-04 General Electric Company Method and systems for operating a wind turbine using dynamic braking in response to a grid event
EP2904684A2 (en) * 2012-10-08 2015-08-12 Vestas Wind Systems A/S Line impedance compensation system
US9537437B2 (en) * 2013-03-04 2017-01-03 General Electric Company Method and system for controlling switching frequency of a doubly-fed induction generator (DFIG)
US9157415B1 (en) * 2014-03-21 2015-10-13 General Electric Company System and method of controlling an electronic component of a wind turbine using contingency communications
EP2955808B1 (de) * 2014-06-13 2018-08-08 Nordex Energy GmbH Verfahren zur Regelung einer Windenergieanlage während eines asymmetrischen Netzfehlers
CN105790298B (zh) * 2014-12-23 2019-03-12 台达电子工业股份有限公司 风力发电控制装置及风力发电系统
CN105826917B (zh) * 2015-01-04 2019-10-08 通用电气公司 功率转换系统及其控制方法以及风力涡轮机发电系统
CN106160606B (zh) * 2015-03-24 2019-09-17 台达电子工业股份有限公司 风力发电系统及其控制方法
US20190280640A1 (en) * 2016-11-17 2019-09-12 General Electric Company Method and System for Operating a Hybrid Power Generation System
WO2018103800A1 (en) * 2016-12-09 2018-06-14 Vestas Wind Systems A/S Improvements relating to reactive power support in wind power plants
US10352298B2 (en) * 2016-12-21 2019-07-16 General Electric Company Wind generation system and controlling method thereof
CN110080944A (zh) * 2018-01-26 2019-08-02 通用电气公司 风力发电系统及其控制方法
US10581247B1 (en) * 2019-05-06 2020-03-03 General Electric Company System and method for reactive power control of wind turbines in a wind farm supported with auxiliary reactive power compensation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092941A (zh) * 2006-06-19 2007-12-26 通用电气公司 用于供应和/或吸收无功功率的方法和设备
US20110156389A1 (en) * 2008-06-06 2011-06-30 Teresa Arlaban Gabeiras Wind turbine control method
CN102214931A (zh) * 2011-05-24 2011-10-12 浙江大学 双馈感应风力发电机系统低电压穿越的装置及方法
CN103545820A (zh) * 2013-09-24 2014-01-29 南车株洲电力机车研究所有限公司 提高双馈风电变流器功率器件在微风工况下可靠性的方法
US20150337808A1 (en) * 2014-05-22 2015-11-26 Industrial Cooperation Foundation Chonbuk National University System and method for controlling voltage at point of common coupling of wind farm
CN104242759A (zh) * 2014-08-29 2014-12-24 国家电网公司 一种基于矢量电力系统稳定器的双馈风力发电系统
CN105715452A (zh) * 2014-12-18 2016-06-29 通用电气公司 用于增加风力涡轮机功率输出的系统和方法
CN106907295A (zh) * 2015-12-22 2017-06-30 通用电气公司 风力发电系统及其控制方法
CN107069797A (zh) * 2016-12-30 2017-08-18 西安理工大学 一种含双馈型风力发电机的分散式风电场并网方法
CN107069799A (zh) * 2017-01-25 2017-08-18 华北电力大学 双馈式风力发电机组的控制方法和系统

Also Published As

Publication number Publication date
US10731631B2 (en) 2020-08-04
EP3518368A1 (en) 2019-07-31
US20190234378A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
Liu et al. Contribution of VSC-HVDC to frequency regulation of power systems with offshore wind generation
Wang et al. Virtual synchronous control for grid-connected DFIG-based wind turbines
Mendis et al. Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems
Xie et al. A comprehensive LVRT control strategy for DFIG wind turbines with enhanced reactive power support
Kim et al. LVRT scheme of PMSG wind power systems based on feedback linearization
Hasanien A set-membership affine projection algorithm-based adaptive-controlled SMES units for wind farms output power smoothing
CN105830303B (zh) 风力发电站的无功功率回路的重新配置
Blasco-Gimenez et al. Distributed voltage and frequency control of offshore wind farms connected with a diode-based HVdc link
Mendis et al. Standalone operation of wind turbine-based variable speed generators with maximum power extraction capability
Flannery et al. A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter
EP2801139B1 (en) Method and apparatus for controlling a frequency converter
Rodriguez-Amenedo et al. Automatic generation control of a wind farm with variable speed wind turbines
Gautam et al. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems
Anita et al. Modelling, simulation and analysis of doubly fed induction generator for wind turbines
Alaboudy et al. Converter controls and flicker study of PMSG-based grid connected wind turbines
Errouissi et al. Offset-free direct power control of DFIG under continuous-time model predictive control
Xu et al. Multi-terminal DC transmission systems for connecting large offshore wind farms
Suul et al. STATCOM-based indirect torque control of induction machines during voltage recovery after grid faults
Singh et al. Power electronics in hydro electric energy systems–A review
Torres et al. Virtual synchronous generator control in autonomous wind-diesel power systems
Peña et al. A topology for multiple generation system with doubly fed induction machines and indirect matrix converter
Slootweg et al. General model for representing variable speed wind turbines in power system dynamics simulations
Neris et al. A variable speed wind energy conversion scheme for connection to weak AC systems
Sun et al. Flicker study on variable speed wind turbines with doubly fed induction generators
Paquette et al. Sharing transient loads: Causes of unequal transient load sharing in islanded microgrid operation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination