CN109991564B - 基于神经网络的短波单站定位结果纠偏方法 - Google Patents

基于神经网络的短波单站定位结果纠偏方法 Download PDF

Info

Publication number
CN109991564B
CN109991564B CN201910141183.1A CN201910141183A CN109991564B CN 109991564 B CN109991564 B CN 109991564B CN 201910141183 A CN201910141183 A CN 201910141183A CN 109991564 B CN109991564 B CN 109991564B
Authority
CN
China
Prior art keywords
longitude
latitude
arrival
source
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910141183.1A
Other languages
English (en)
Other versions
CN109991564A (zh
Inventor
王鼎
尹洁昕
唐涛
杨宾
杜剑平
贾昌贵
李崇
陈鑫
张莉
吴志东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Information Engineering University of PLA Strategic Support Force
Original Assignee
Information Engineering University of PLA Strategic Support Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Information Engineering University of PLA Strategic Support Force filed Critical Information Engineering University of PLA Strategic Support Force
Priority to CN201910141183.1A priority Critical patent/CN109991564B/zh
Publication of CN109991564A publication Critical patent/CN109991564A/zh
Application granted granted Critical
Publication of CN109991564B publication Critical patent/CN109991564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/022Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Software Systems (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Operations Research (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明提供一种基于神经网络的短波单站定位结果纠偏方法。该方法包括:在目标源所在区域分时放置D个经纬度真实值已知的短波校正源;利用观测站对第d个校正源发射的短波信号进行接收,并且通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角;根据第d个校正源信号的到达方位角和到达仰角,以及电离层虚高,通过牛顿迭代法对第d个校正源的经纬度进行估计;利用D个校正源的经纬度估计值和经纬度真实值训练多层前馈神经网络;利用相同方法得到目标源的经纬度估计值并输入到训练好的多层前馈神经网络中,多层前馈神经网络的输出值即为目标源的最终经纬度值。本发明可消除由电离层虚高误差引起的偏差,提高短波单站定位精度。

Description

基于神经网络的短波单站定位结果纠偏方法
技术领域
本发明涉及一种短波单站定位技术领域,特别是针对电离层虚高误差存在的定位场景,提供了一种基于神经网络的短波单站定位结果纠偏方法。
背景技术
众所周知,无线信号定位技术广泛应用于通信、雷达、目标监测、导航遥测、地震勘测、射电天文、紧急救助、安全管理等领域,其在工业生产和军事应用中都发挥着重要作用。对目标进行定位(即位置参数估计)可以使用雷达、激光、声纳等有源设备来完成,该类技术称为有源定位技术,它具有全天候、高精度等优点。然而,有源定位系统通常需要依靠发射大功率电磁信号来实现,因此极易暴露自己的位置,容易被对方发现,从而遭到对方电子干扰的影响,导致定位性能急剧恶化,甚至会危及系统自身的安全性和可靠性。
目标定位还可以利用目标(主动)辐射或者(被动)散射的无线电信号来实现,该类技术称为无源定位技术,它是指在观测站不主动发射电磁信号的情况下,通过接收目标辐射或者散射的无线电信号来估计目标位置参数。与有源定位系统相比,无源定位系统具有不主动发射电磁信号、生存能力强、侦察作用距离远等优点,从而得到国内外学者的广泛关注和深入研究。无源定位系统根据观测站数目可以划分为单站无源定位系统和多站无源定位系统两大类,其中单站定位系统具有灵活性高、机动性强、系统简洁以及无需站间通信和同步等优点。
在现有的单站无源定位体制中,短波单站定位是应用较为广泛的一类定位方法,该方法主要针对短波辐射源信号进行定位。其基本原理是利用单个观测站测得短波信号的方位角和仰角以及电离层虚高参数对短波辐射源进行定位。然而,在实际应用中电离层虚高参数是通过有源探测所获得,因此人们很难准确获得此参数,只能得到其近似估计值。不幸的是,电离层虚高误差会导致短波辐射源的定位结果产生较大偏差,要想取得较高的定位精度必须要对此偏差进行纠正,这是需要重点解决的问题。
发明内容
为解决现有技术中存在的上述问题,针对电离层虚高误差存在的应用场景下,本发明将提出一种基于神经网络的短波单站定位结果纠偏方法。
本发明提供的基于神经网络的短波单站定位结果纠偏方法,主要包括以下步骤:
步骤1、在目标源所在区域分时放置D个经纬度真实值已知的短波校正源;
步骤2、利用观测站对第d个校正源发射的短波信号进行接收,并且通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角,1≤d≤D;
步骤3、根据所述第d个校正源信号的到达方位角和到达仰角,以及预先获得的电离层虚高,通过牛顿迭代法对第d个校正源的经纬度进行估计,得到第d个校正源的经纬度估计值;
步骤4、利用D个校正源的经纬度估计值和D个校正源的经纬度真实值训练多层前馈神经网络;
步骤5、利用观测站对目标源辐射的短波信号进行接收,并且通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角;
步骤6、根据所述目标源信号的到达方位角和到达仰角,以及所述电离层虚高,通过牛顿迭代法对目标源的经纬度进行估计,得到目标源的经纬度估计值;
步骤7、将目标源的经纬度估计值输入到训练好的多层前馈神经网络中,所述多层前馈神经网络的输出值即为目标源的最终经纬度值。
进一步地,所述步骤2中,所述观测站对第d个校正源发射的短波信号的阵列接收信号模型为式(1):
Figure BDA0001978597670000021
其中,
Figure BDA0001978597670000022
为观测站针对第d个校正源的接收信号;
Figure BDA0001978597670000023
为第d个校正源信号的复包络;
Figure BDA0001978597670000024
为阵列加性噪声;
Figure BDA0001978597670000025
为第d个校正源信号的到达方位角;
Figure BDA0001978597670000026
为第d个校正源信号的到达仰角。
进一步地,所述步骤2中的通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角具体为:
步骤2.1、对接收信号
Figure BDA0001978597670000031
进行采样,采集K个信号样本点
Figure BDA0001978597670000032
并且构造协方差矩阵
Figure BDA0001978597670000033
步骤2.2、对所述协方差矩阵
Figure BDA0001978597670000034
进行特征值分解,得到最小特征值对应的单位特征向量
Figure BDA0001978597670000035
步骤2.3、根据所述单位特征向量
Figure BDA0001978597670000036
构造所述接收信号
Figure BDA0001978597670000037
的空间谱函数
Figure BDA0001978597670000038
搜索空间谱峰,所述空间谱峰对应的二维到达角度即为第d个校正源信号的到达方位角和到达仰角。
进一步地,所述步骤3具体为:
步骤3.1、将第d个校正源的经纬度坐标按照式(2)转化成以观测站为中心的地平坐标:
Figure BDA0001978597670000039
其中,
Figure BDA00019785976700000310
表示第d个校正源以观测站为中心的地平坐标;ω(r)和ρ(r)分别表示观测站的经度和纬度;r表示地球半径;
Figure BDA00019785976700000311
为第d个校正源的经度真实值;
Figure BDA00019785976700000312
为第d个校正源的纬度真实值;
步骤3.2、根据所述第d个校正源的地平坐标得到第d个校正源的到达方位角定位方程(3)和到达仰角定位方程(4):
Figure BDA00019785976700000313
Figure BDA00019785976700000314
Figure BDA0001978597670000041
Figure BDA0001978597670000042
其中,
Figure BDA0001978597670000043
为观测站与第d个校正源之间的直线距离,
Figure BDA0001978597670000044
为第d个校正源信号的到达方位角;
Figure BDA0001978597670000045
为第d个校正源信号的到达仰角;
步骤3.3、通过牛顿迭代法按照式(5)求解方程式(3)和式(4)得到第d个校正源的经纬度估计值:
Figure BDA0001978597670000046
Figure BDA0001978597670000047
其中,
Figure BDA0001978597670000048
Figure BDA0001978597670000049
分别表示在第k次迭代中的经度和纬度,
Figure BDA00019785976700000410
Figure BDA00019785976700000411
的收敛值分别记为
Figure BDA00019785976700000412
Figure BDA00019785976700000413
Figure BDA00019785976700000414
分别表示第d个校正源的经度估计值和纬度估计值。
进一步地,所述步骤4具体为:
依次将第d个校正源的经度估计值
Figure BDA00019785976700000415
和纬度估计值
Figure BDA00019785976700000416
作为多层前馈神经网络的输入值,将第d个校正源的经度真实值
Figure BDA00019785976700000417
和纬度真实值
Figure BDA00019785976700000418
作为多层前馈神经网络的输出值,对多层前馈神经网络采用BP算法进行D次训练,得到训练好的多层前馈神经网络;
其中,所述多层前馈神经网络包括一层输入层、两层隐藏层和一层输出层。
进一步地,所述步骤5中,所述观测站对目标源辐射的短波信号的阵列接收信号模型为式(6):
x(t)=a(θ,β)s(t)+n(t) (6)
其中,x(t)为观测站针对目标源的接收信号;s(t)为目标源信号的复包络;n(t)为阵列加性噪声;a(θ,β)为阵列流形向量;θ为目标源信号的到达方位角;β为目标源信号的到达仰角。
进一步地,所述步骤5中的通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角具体为:
步骤5.1、对接收信号x(t)进行采样,采集K个信号样本点{x(tk)}1≤k≤K,并且构造协方差矩阵
Figure BDA0001978597670000051
步骤5.2、对所述协方差矩阵
Figure BDA0001978597670000052
进行特征值分解,得到最小特征值对应的单位特征向量记
Figure BDA0001978597670000053
步骤5.3、根据所述单位特征向量记
Figure BDA0001978597670000054
构造所述接收信号x(t)空间谱函数
Figure BDA0001978597670000055
搜索空间谱峰,所述空间谱峰对应的二维到达角度即为目标源信号的到达方位角和到达仰角。
进一步地,所述步骤6具体为:
步骤6.1、建立目标源的方位角定位方程(7)和到达仰角定位方程(8):
Figure BDA0001978597670000056
Figure BDA0001978597670000057
Figure BDA0001978597670000061
Figure BDA0001978597670000062
其中,δ为观测站与目标源之间的直线距离,θ为目标源信号的到达方位角;β为目标源信号的到达仰角;ω为目标源的待求经度值;ρ为目标源的待求纬度值;
步骤6.2、通过牛顿迭代法按照式(9)求解方程式(7)和式(8)得到目标源的经纬度估计值:
Figure BDA0001978597670000063
Figure BDA0001978597670000064
其中,
Figure BDA0001978597670000065
Figure BDA0001978597670000066
分别表示在第k次迭代中的经度和纬度,
Figure BDA0001978597670000067
Figure BDA0001978597670000068
的收敛值分别记为
Figure BDA0001978597670000069
Figure BDA00019785976700000610
Figure BDA00019785976700000611
分别表示目标源的经度估计值和纬度估计值。
本发明的有益效果:
本发明提供的基于神经网络的短波单站定位结果纠偏方法,结合多重信号分类(Multiple Signal classification;MUSIC)算法和牛顿迭代法可以实现短波单站定位;利用目标源附近的短波校正源提供的地理坐标参数(即经度和纬度),训练多层前馈神经网络,基于该神经网络可以有效消除由电离层虚高误差所引起的定位偏差,从而进一步提高短波单站定位精度。
附图说明
图1为本发明实施例提供的基于神经网络的短波单站定位结果纠偏方法的流程示意图;
图2为本发明实施例提供的坐标系转换示意图;
图3为本发明实施例提供的确定到达仰角定位方程的三角形示意图;
图4为本发明实施例提供的多层前馈神经网络的结构示意图;
图5为本发明实施例提供的MUSIC算法的空间谱图示意图;
图6为本发明实施例提供的神经网络训练结果示意图;
图7为本发明实施例提供的定位结果散布图;
图8为本发明实施例提供的目标源定位均方根误差随着目标源信噪比的变化曲线;
图9为本发明实施例提供的目标源定位均方根误差随着圆阵半径与波长比的变化曲线;
图10为本发明实施例提供的目标源定位均方根误差随着圆阵阵元个数的变化曲线;
图11为本发明实施例提供的目标源定位均方根误差随着电离层虚高误差的变化曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的基于神经网络的短波单站定位结果纠偏方法的流程示意图。如图1所示,该方法包括以下步骤:
S101、在目标源所在区域分时放置D个经纬度真实值已知的短波校正源;
S102、利用观测站对第d个校正源发射的短波信号进行接收,并且通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角,1≤d≤D;
S103、根据所述第d个校正源信号的到达方位角和到达仰角,以及预先获得的电离层虚高,通过牛顿迭代法对第d个校正源的经纬度进行估计,得到第d个校正源的经纬度估计值;
S104、利用D个校正源的经纬度估计值和D个校正源的经纬度真实值训练多层前馈神经网络;
S105、利用观测站对目标源辐射的短波信号进行接收,并且通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角;
S106、根据所述目标源信号的到达方位角和到达仰角,以及所述电离层虚高,通过牛顿迭代法对目标源的经纬度进行估计,得到目标源的经纬度估计值;
S107、将目标源的经纬度估计值输入到训练好的多层前馈神经网络中,所述多层前馈神经网络的输出值即为目标源的最终经纬度值。
本发明实施例提供的基于神经网络的短波单站定位结果纠偏方法,首先基于单个观测站中的天线阵列,利用MUSIC算法估计每个校正源信号的到达方位角和到达仰角;接着结合电离层虚高参数,通过牛顿迭代法依次求解每个校正源的地理坐标(即经纬度估计值);然后利用校正源的经纬度估计值与其真实值训练多层前馈神经网络,该网络将校正源的经纬度估计值作为输入,将校正源的经纬度真实值作为输出,当训练结束时此神经网络就可用于纠正由电离层虚高误差引起的定位偏差;最后采用相同方法(即结合MUSIC算法和牛顿迭代法)估计目标源的经纬度,并且将估计值输入到已经训练好的多层前馈神经网络中,神经网络的输出值即为纠偏之后的目标源经纬度,从而提高了短波单站定位精度。
在上述实施例的基础上,本发明还提供另一个实施例,其流程具体如下:
S201、在目标源所在区域分时放置D个经纬度真实值已知的短波校正源;
具体地,需要在目标源附近放置若干位置精确已知的短波校正源,并且能够探测到校正源的短波信号到达观测站所经历的电离层虚高参数。
S202、利用观测站对第d个校正源发射的短波信号进行接收,观测站对第d个校正源发射的短波信号的阵列接收信号模型为式(1):
Figure BDA0001978597670000081
其中,
Figure BDA0001978597670000082
为观测站针对第d个校正源的接收信号;
Figure BDA0001978597670000083
为第d个校正源信号的复包络;
Figure BDA0001978597670000084
为阵列加性噪声;
Figure BDA0001978597670000085
为第d个校正源信号的到达方位角;
Figure BDA0001978597670000086
为第d个校正源信号的到达仰角。
S203、通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角,具体为:
S2031、对接收信号
Figure BDA0001978597670000091
进行采样,采集K个信号样本点
Figure BDA0001978597670000092
并且构造协方差矩阵
Figure BDA0001978597670000093
S2032、对所述协方差矩阵
Figure BDA0001978597670000094
进行特征值分解,得到最小特征值对应的单位特征向量
Figure BDA0001978597670000095
S2033、根据所述单位特征向量
Figure BDA0001978597670000096
构造所述接收信号
Figure BDA0001978597670000097
的空间谱函数
Figure BDA0001978597670000098
搜索空间谱峰,所述空间谱峰对应的二维到达角度即为第d个校正源信号的到达方位角和到达仰角。
S204、根据所述第d个校正源信号的到达方位角和到达仰角,以及预先获得的电离层虚高,通过牛顿迭代法对第d个校正源的经纬度进行估计,得到第d个校正源的经纬度估计值;
具体地,在实际应用中,可以采用有源探测手段获得电离层虚高参数。本步骤具体流程为:
S2041、将第d个校正源的经纬度坐标按照式(2)转化成以观测站为中心的地平坐标,如图2所示:
Figure BDA0001978597670000099
其中,
Figure BDA00019785976700000910
表示第d个校正源以观测站为中心的地平坐标;ω(r)和ρ(r)分别表示观测站的经度和纬度;r表示地球半径;
Figure BDA00019785976700000911
为第d个校正源的经度真实值;
Figure BDA00019785976700000912
为第d个校正源的纬度真实值;
S2042、根据所述第d个校正源的地平坐标得到第d个校正源的到达方位角定位方程(3)和到达仰角定位方程(4),确定到达仰角定位的三角形如图3所示:
Figure BDA0001978597670000101
Figure BDA0001978597670000102
Figure BDA0001978597670000103
Figure BDA0001978597670000104
其中,
Figure BDA0001978597670000105
为观测站与第d个校正源之间的直线距离,
Figure BDA0001978597670000106
为第d个校正源信号的到达方位角;
Figure BDA0001978597670000107
为第d个校正源信号的到达仰角;
S2043、通过牛顿迭代法按照式(5)求解方程式(3)和式(4)得到第d个校正源的经纬度估计值:
Figure BDA0001978597670000108
Figure BDA0001978597670000109
其中,
Figure BDA00019785976700001010
Figure BDA00019785976700001011
分别表示在第k次迭代中的经度和纬度,
Figure BDA00019785976700001012
Figure BDA00019785976700001013
的收敛值分别记为
Figure BDA00019785976700001014
Figure BDA00019785976700001015
Figure BDA00019785976700001016
分别表示第d个校正源的经度估计值和纬度估计值。
S205、利用D个校正源的经纬度估计值和D个校正源的经纬度真实值训练多层前馈神经网络,具体为:如图4所示,依次将第d个校正源的经度估计值
Figure BDA0001978597670000111
和纬度估计值
Figure BDA0001978597670000112
作为多层前馈神经网络的输入值,将第d个校正源的经度真实值
Figure BDA0001978597670000113
和纬度真实值
Figure BDA0001978597670000114
作为多层前馈神经网络的输出值,对多层前馈神经网络采用BP算法进行D次训练,得到训练好的多层前馈神经网络;
其中,所述多层前馈神经网络包括一层输入层、两层隐藏层和一层输出层。
S206、利用观测站对目标源辐射的短波信号进行接收,观测站对目标源辐射的短波信号的阵列接收信号模型为式(6):
x(t)=a(θ,β)s(t)+n(t) (6)
其中,x(t)为观测站针对目标源的接收信号;s(t)为目标源信号的复包络;n(t)为阵列加性噪声;a(θ,β)为阵列流形向量;θ为目标源信号的到达方位角;β为目标源信号的到达仰角。
S207、通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角,具体为:
S2071、对接收信号x(t)进行采样,采集K个信号样本点{x(tk)}1≤k≤K,并且构造协方差矩阵
Figure BDA0001978597670000115
S2072、对所述协方差矩阵
Figure BDA0001978597670000116
进行特征值分解,得到最小特征值对应的单位特征向量记
Figure BDA0001978597670000117
S2073、根据所述单位特征向量记
Figure BDA0001978597670000118
构造所述接收信号x(t)空间谱函数
Figure BDA0001978597670000119
搜索空间谱峰,所述空间谱峰对应的二维到达角度即为目标源信号的到达方位角和到达仰角。
S208、根据所述目标源信号的到达方位角和到达仰角,以及所述电离层虚高,通过牛顿迭代法对目标源的经纬度进行估计,得到目标源的经纬度估计值;
具体地,本步骤中的电离层虚高与步骤S204中计算得到的电离层虚高参数一致。本步骤具体为:
S2081、建立目标源的方位角定位方程(7)和到达仰角定位方程(8):
Figure BDA0001978597670000121
Figure BDA0001978597670000122
Figure BDA0001978597670000123
Figure BDA0001978597670000124
其中,δ为观测站与目标源之间的直线距离,θ为目标源信号的到达方位角;β为目标源信号的到达仰角;ω为目标源的待求经度值;ρ为目标源的待求纬度值;
S2082、通过牛顿迭代法按照式(9)求解方程式(7)和式(8)得到目标源的经纬度估计值:
Figure BDA0001978597670000125
Figure BDA0001978597670000126
其中,
Figure BDA0001978597670000127
Figure BDA0001978597670000128
分别表示在第k次迭代中的经度和纬度,
Figure BDA0001978597670000129
Figure BDA00019785976700001210
的收敛值分别记为
Figure BDA0001978597670000131
Figure BDA0001978597670000132
Figure BDA0001978597670000133
分别表示目标源的经度估计值和纬度估计值。
S209、将目标源的经纬度估计值输入到训练好的多层前馈神经网络中,所述多层前馈神经网络的输出值即为目标源的最终经纬度值。
具体地,将步骤S208中的
Figure BDA0001978597670000134
Figure BDA0001978597670000135
作为多层前馈神经网络的输入,所述多层前馈神经网络的输出则为纠偏后的目标源的最终经纬度值。
为了验证本发明方法的有效性,提供以下实验数据。
假设观测站的经度为东经112.73°,纬度为北纬33.25°;目标源的经度为东经124.46°,纬度为北纬28.82°。观测站安装均匀圆阵,用于估计短波信号的二维到达角度参数,短波信号到达观测站所经历的电离层虚高为240公里。
(1)短波信号的信噪比为10dB,MUSIC算法采用的样本点数为K=500,图5给出了MUSIC算法的空间谱图,图中的谱峰位置对应短波信号的二维到达角度估计值。
(2)图6给出了神经网络的训练结果,从图中可以看成其训练效果非常好。
(3)将均匀圆阵个数固定为10,半径与波长比固定为1.5,电离层虚高误差固定为50公里,信噪比固定为10dB,图7给了定位结果散布图。从图7中可以看出,本发明公开的基于神经网络的短波单站定位结果纠偏方法可以明显消除电离层虚高误差所带来的影响,从而显著提高了对辐射短波的目标源的定位精度。
(4)其余实验条件不变,图8给出了目标源定位均方根误差随着信噪比的变化曲线,图9给出了目标源定位均方根误差随着圆阵半径与波长比的变化曲线,图10给出了目标源定位均方根误差随着圆阵阵元个数的变化曲线,图11给出了目标源定位均方根误差随着电离层虚高误差的变化曲线。从图8~图11中可以进一步看出本发明公开方法的优势,并且该优势随着电离层虚高误差的增加而显著提升。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.基于神经网络的短波单站定位结果纠偏方法,其特征在于,包括:
步骤1、在目标源所在区域分时放置D个经纬度真实值已知的短波校正源;
步骤2、利用观测站对第d个校正源发射的短波信号进行接收,并且通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角,1≤d≤D;其中,所述步骤2中的通过多重信号分类算法联合估计第d个校正源信号的到达方位角和到达仰角具体为:
步骤2.1、对接收信号
Figure FDA0003919153810000011
进行采样,采集K个信号样本点
Figure FDA0003919153810000012
并且构造协方差矩阵
Figure FDA0003919153810000013
步骤2.2、对所述协方差矩阵
Figure FDA0003919153810000014
进行特征值分解,得到最小特征值对应的单位特征向量
Figure FDA0003919153810000015
步骤2.3、根据所述单位特征向量
Figure FDA0003919153810000016
构造所述接收信号
Figure FDA0003919153810000017
的空间谱函数
Figure FDA0003919153810000018
搜索空间谱峰,所述空间谱峰对应的二维到达角度即为第d个校正源信号的到达方位角和到达仰角;
步骤3、根据所述第d个校正源信号的到达方位角和到达仰角,以及预先获得的电离层虚高,通过牛顿迭代法对第d个校正源的经纬度进行估计,得到第d个校正源的经纬度估计值;
步骤4、利用D个校正源的经纬度估计值和D个校正源的经纬度真实值训练多层前馈神经网络;
步骤5、利用观测站对目标源辐射的短波信号进行接收,并且通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角;
步骤6、根据所述目标源信号的到达方位角和到达仰角,以及所述电离层虚高,通过牛顿迭代法对目标源的经纬度进行估计,得到目标源的经纬度估计值;
步骤7、将目标源的经纬度估计值输入到训练好的多层前馈神经网络中,所述多层前馈神经网络的输出值即为目标源的最终经纬度值。
2.根据权利要求1所述的方法,其特征在于,所述步骤2中,所述观测站对第d个校正源发射的短波信号的阵列接收信号模型为式(1):
Figure FDA0003919153810000021
其中,
Figure FDA0003919153810000022
为观测站针对第d个校正源的接收信号;
Figure FDA0003919153810000023
为第d个校正源信号的复包络;
Figure FDA0003919153810000024
为阵列加性噪声;
Figure FDA0003919153810000025
为第d个校正源信号的到达方位角;
Figure FDA0003919153810000026
为第d个校正源信号的到达仰角;
Figure FDA0003919153810000027
表示阵列流形向量。
3.根据权利要求1所述的方法,其特征在于,所述步骤3具体为:
步骤3.1、将第d个校正源的经纬度坐标按照式(2)转化成以观测站为中心的地平坐标:
Figure FDA0003919153810000028
其中,
Figure FDA0003919153810000029
表示第d个校正源以观测站为中心的地平坐标;ω(r)和ρ(r)分别表示观测站的经度和纬度;r表示地球半径;
Figure FDA00039191538100000210
为第d个校正源的经度真实值;
Figure FDA00039191538100000211
为第d个校正源的纬度真实值;
步骤3.2、根据所述第d个校正源的地平坐标得到第d个校正源的到达方位角定位方程(3)和到达仰角定位方程(4):
Figure FDA00039191538100000212
Figure FDA00039191538100000213
Figure FDA00039191538100000214
Figure FDA0003919153810000031
其中,
Figure FDA0003919153810000032
为观测站与第d个校正源之间的直线距离,
Figure FDA0003919153810000033
为第d个校正源信号的到达方位角;
Figure FDA0003919153810000034
为第d个校正源信号的到达仰角,
Figure FDA0003919153810000035
为∠ACB的表达式,其中,A表示电离层所在位置,B表示观测站所在位置,C表示球心点;h表示电离层虚高;
步骤3.3、通过牛顿迭代法按照式(5)求解方程式(3)和式(4)得到第d个校正源的经纬度估计值:
Figure FDA0003919153810000036
Figure FDA0003919153810000037
其中,
Figure FDA0003919153810000038
Figure FDA0003919153810000039
分别表示在第k次迭代中的经度和纬度,
Figure FDA00039191538100000310
Figure FDA00039191538100000311
的收敛值分别记为
Figure FDA00039191538100000312
Figure FDA00039191538100000313
Figure FDA00039191538100000314
Figure FDA00039191538100000315
分别表示第d个校正源的经度估计值和纬度估计值。
4.根据权利要求1所述的方法,其特征在于,所述步骤4具体为:
依次将第d个校正源的经度估计值
Figure FDA00039191538100000316
和纬度估计值
Figure FDA00039191538100000317
作为多层前馈神经网络的输入值,将第d个校正源的经度真实值
Figure FDA00039191538100000318
和纬度真实值
Figure FDA00039191538100000319
作为多层前馈神经网络的输出值,对多层前馈神经网络采用BP算法进行D次训练,得到训练好的多层前馈神经网络;
其中,所述多层前馈神经网络包括一层输入层、两层隐藏层和一层输出层。
5.根据权利要求1所述的方法,其特征在于,所述步骤5中,所述观测站对目标源辐射的短波信号的阵列接收信号模型为式(6):
x(t)=a(θ,β)s(t)+n(t) (6)
其中,x(t)为观测站针对目标源的接收信号;s(t)为目标源信号的复包络;n(t)为阵列加性噪声;a(θ,β)为阵列流形向量;θ为目标源信号的到达方位角;β为目标源信号的到达仰角。
6.根据权利要求5所述的方法,其特征在于,所述步骤5中的通过多重信号分类算法联合估计目标源信号的到达方位角和到达仰角具体为:
步骤5.1、对接收信号x(t)进行采样,采集K个信号样本点{x(tk)}1≤k≤K,并且构造协方差矩阵
Figure FDA0003919153810000041
步骤5.2、对所述协方差矩阵
Figure FDA0003919153810000042
进行特征值分解,得到最小特征值对应的单位特征向量记
Figure FDA0003919153810000043
步骤5.3、根据所述单位特征向量记
Figure FDA0003919153810000044
构造所述接收信号x(t)空间谱函数
Figure FDA0003919153810000045
搜索空间谱峰,所述空间谱峰对应的二维到达角度即为目标源信号的到达方位角和到达仰角。
7.根据权利要求1所述的方法,其特征在于,所述步骤6具体为:
步骤6.1、建立目标源的方位角定位方程(7)和到达仰角定位方程(8):
Figure FDA0003919153810000046
Figure FDA0003919153810000047
Figure FDA0003919153810000051
Figure FDA0003919153810000052
其中,δ为观测站与目标源之间的直线距离,θ为目标源信号的到达方位角;β为目标源信号的到达仰角;ω为目标源的待求经度值;ρ为目标源的待求纬度值,
Figure FDA0003919153810000053
为∠ACB的表达式,其中,A表示电离层所在位置,B表示观测站所在位置,C表示球心点;h表示电离层虚高;
步骤6.2、通过牛顿迭代法按照式(9)求解方程式(7)和式(8)得到目标源的经纬度估计值:
Figure FDA0003919153810000054
Figure FDA0003919153810000055
其中,
Figure FDA0003919153810000056
Figure FDA0003919153810000057
分别表示在第k次迭代中的经度和纬度,
Figure FDA0003919153810000058
Figure FDA0003919153810000059
的收敛值分别记为
Figure FDA00039191538100000510
Figure FDA00039191538100000511
Figure FDA00039191538100000512
Figure FDA00039191538100000513
分别表示目标源的经度估计值和纬度估计值。
CN201910141183.1A 2019-02-26 2019-02-26 基于神经网络的短波单站定位结果纠偏方法 Active CN109991564B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910141183.1A CN109991564B (zh) 2019-02-26 2019-02-26 基于神经网络的短波单站定位结果纠偏方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910141183.1A CN109991564B (zh) 2019-02-26 2019-02-26 基于神经网络的短波单站定位结果纠偏方法

Publications (2)

Publication Number Publication Date
CN109991564A CN109991564A (zh) 2019-07-09
CN109991564B true CN109991564B (zh) 2022-12-13

Family

ID=67130029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910141183.1A Active CN109991564B (zh) 2019-02-26 2019-02-26 基于神经网络的短波单站定位结果纠偏方法

Country Status (1)

Country Link
CN (1) CN109991564B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308530B (zh) * 2020-02-17 2021-12-03 中国人民解放军战略支援部队信息工程大学 一种基于二维波达方向的短波多站和单星协同直接定位方法
CN115871735B (zh) * 2023-01-11 2023-05-16 山西世恒铁路技术有限公司 一种便携式线路检查仪及线路动态检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182474A (zh) * 2017-12-27 2018-06-19 中国人民解放军战略支援部队信息工程大学 基于未校正阵列和神经网络的多目标直接定位方法
CN108414973A (zh) * 2018-05-08 2018-08-17 中国人民解放军战略支援部队信息工程大学 一种基于神经网络计算的多目标直接定位方法
CN108717184A (zh) * 2018-04-27 2018-10-30 杭州电子科技大学 基于误差校正的联合doa与toa单站无源定位方法
CN108872932A (zh) * 2018-05-03 2018-11-23 中国人民解放军战略支援部队信息工程大学 基于神经网络的超视距目标直接定位结果纠偏方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591751B1 (ko) * 2003-03-06 2006-06-22 삼성전자주식회사 신경망을 이용한 복합 항법 시스템 및 신경망 적용 방법
US20040203921A1 (en) * 2003-03-21 2004-10-14 Nicholas Bromhead Sub-sector timing advance positions determinations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182474A (zh) * 2017-12-27 2018-06-19 中国人民解放军战略支援部队信息工程大学 基于未校正阵列和神经网络的多目标直接定位方法
CN108717184A (zh) * 2018-04-27 2018-10-30 杭州电子科技大学 基于误差校正的联合doa与toa单站无源定位方法
CN108872932A (zh) * 2018-05-03 2018-11-23 中国人民解放军战略支援部队信息工程大学 基于神经网络的超视距目标直接定位结果纠偏方法
CN108414973A (zh) * 2018-05-08 2018-08-17 中国人民解放军战略支援部队信息工程大学 一种基于神经网络计算的多目标直接定位方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Analysis of large scale ionospheric tilts effects on the error of single site location;Yuan Xiaohua;《2012 IEEE International Conference on Information and Automation》;20120731;第745-748页 *
Multiple emitter location and signal parameter estimation;R.Schmidt;《IEEE Transactions on Antennas and Propagation 》;19860331;第34卷(第3期);第276-280页 *
Single-step localization using multiple moving arrays in the presence of observer location errors;Yin Jiexin Et al.;《Signal Processing》;20180930;第152卷;第392-410页 *
抑制校正源方位估计偏差的阵元位置误差鲁棒估计算法;王鼎等;《电子学报》;20130915(第09期);第1694-1702页 *
被动定位中的单站多测度信息融合;王楠楠;《万方学位论文》;20160531;正文第1-70页 *
高频单站定位误差特性分析及精度优化构想;王健等;《电波科学学报》;20101031;第25卷(第5期);第925-933页 *

Also Published As

Publication number Publication date
CN109991564A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
CN109975749B (zh) 一种校正源存在条件下的短波单站直接定位方法
CN111308530B (zh) 一种基于二维波达方向的短波多站和单星协同直接定位方法
CN108872932B (zh) 基于神经网络的超视距目标直接定位结果纠偏方法
CN109975755B (zh) 一种校正源存在条件下的短波多站直接定位方法
CN108562902B (zh) 基于模拟退火算法的高低轨双基地sar构型设计方法
CN111199280B (zh) 短波信道模型误差存在下联合信号复包络和载波相位信息的多站目标源地理坐标估计方法
CN104077498B (zh) 一种结合目标角度的外辐射源雷达多目标跟踪方法
CN111199281B (zh) 基于地理坐标空域位置谱的短波单站直接定位偏差补偿方法
CN113281701B (zh) 协同短波多站角度与三星时差的超视距目标直接定位方法
CN110954865A (zh) 一种基于电离层信息的短波时差定位方法
CN105487072A (zh) 一种基于t2/r的时差与多普勒频移联合定位方法及系统
CN109991564B (zh) 基于神经网络的短波单站定位结果纠偏方法
Jeong et al. RSS-based LTE base station localization using single receiver in environment with unknown path-loss exponent
CN112511976A (zh) 定位无人机控制端的处理方法、装置、设备与介质
CN113281702B (zh) 协同短波多站角度与卫星时频的超视距目标直接定位方法
CN104765039A (zh) 利用浅海声场空域特性提高被动声纳作用距离的方法
CN110208741B (zh) 一种基于多圆阵测相的超视距单目标直接定位方法
CN108414973B (zh) 一种基于神经网络计算的多目标直接定位方法
CN117176281A (zh) 一种联合时间同步与被动目标协同定位方法
CN111079929B (zh) 基于神经计算的短波单站多目标地理坐标快速估计方法
CN113203985B (zh) 一种短波同频信号直接定位方法
Xia et al. A direct localization method for HF source geolocation and experimental results
CN114035182A (zh) 一种基于电离层反射的多站时差多变量短波目标定位方法
Ismail et al. Comparison of wireless sensor node localisation between trilateration and multi-lateration methods using rssi
CN115267760B (zh) 一种地心地固坐标系下协同被动测向与主动雷达的运动目标定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant