CN109891047A - 控制碳氢化合物产出 - Google Patents

控制碳氢化合物产出 Download PDF

Info

Publication number
CN109891047A
CN109891047A CN201780066429.2A CN201780066429A CN109891047A CN 109891047 A CN109891047 A CN 109891047A CN 201780066429 A CN201780066429 A CN 201780066429A CN 109891047 A CN109891047 A CN 109891047A
Authority
CN
China
Prior art keywords
wellbore
reservoir
output
injection
icd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780066429.2A
Other languages
English (en)
Inventor
阿里·哈蒂布
阿达尔贝托·F·马尔萨拉
侯赛因·奥努尔·巴兰
阿努杰·古普塔
丹尼尔·T·格奥尔基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201662383240P priority Critical
Priority to US62/383,240 priority
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Priority to PCT/US2017/049310 priority patent/WO2018044997A1/en
Publication of CN109891047A publication Critical patent/CN109891047A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/162Injecting fluid from longitudinally spaced locations in injection well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V99/00Subject matter not provided for in other groups of this subclass
    • G01V99/005Geomodels or geomodelling, not related to particular measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/30Analysis
    • G01V1/308Time lapse or 4D effects, e.g. production related effects to the formation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • G01V7/02Details
    • G01V7/06Analysis or interpretation of gravimetric records

Abstract

用于控制碳氢化合物产出的技术,包括(i)识别位于至少一个注入井眼和至少一个产出井眼之间的地下碳氢化合物储层的多个储层测量值;(ii)处理所识别的多个储层测量值以生成地下碳氢化合物储层的岩石物理模型;(iii)基于岩石物理模型确定从注入井眼到产出井眼的注入剂流量;以及(iv)基于所确定的注入剂流量调节位于产出井眼周围的流入控制设备(ICD)。

Description

控制碳氢化合物产出
相关申请的交叉引用
本申请要求于2016年9月2日递交的美国临时申请No.62/383,240的优先权,其全部内容通过引用并入本文。
技术领域
该文档涉及控制碳氢化合物产出,更具体地,涉及用一个或多个流入控制设备来控制碳氢化合物产出。
背景技术
流入控制设备(ICD)和流入控制阀(ICV)可以用于碳氢化合物产出井中,以控制完井过程中的石油、天然气或两者的产出。它们可以用于隔离特定的井段,同时允许其他井段继续促进产出。当发生注入剂突破时,例如由于可能是由储层的面积异质性和垂直异质性而导致的高渗透性条纹,这种设备可能是有用的。ICD、ICV或两者可以用于隔离与高电导率、通过储层的早期注入剂到达路径接触的井段,并保持没遇到这种情况的其他井段的产出。注入剂突破可能突然发生,并且在其发生之前可能存在有限的方法来检测它。早期注入剂突破可以导致注入剂产出过量以及相关的提升和加工成本过高。它还可以导致由天然含水层、气顶驱动或注入剂提供的有价值的储层驱动能量的损失,因此与储层的真实潜力相比可能导致较低的石油采收率。
发明内容
在示例性实现方式中,用于控制碳氢化合物产出的计算机实现的方法包括(i)识别位于至少一个注入井眼和至少一个产出井眼之间的地下碳氢化合物储层的多个储层测量值;(ii)处理所识别的多个储层测量值以生成地下碳氢化合物储层的岩石物理模型;(iii)基于岩石物理模型确定从注入井眼到产出井眼的注入剂流量;以及(iv)基于所确定的注入剂流量调节位于产出井眼周围的流入控制设备(ICD)。
可与一般实现方式结合的方面还包括从位于地表面或储层中的一个或多个传感器接收多个储层测量值。
在可与任何前述方面组合的另一方面中,一个或多个传感器位于注入井眼和产出井眼之间的储层中。
在可与任何前述方面组合的另一方面中,储层测量值包括井间电磁(EM)、炮眼EM、表面电磁、重力测量值或4D地震中的至少一个。
在可与任何前述方面组合的另一方面中,注入井眼或产出井眼中的至少一个包括水平井眼。
在可与任何前述方面组合的另一方面中,处理所识别的多个储层测量值包括反演储层测量值以确定岩石物理模型。
在可与任何前述方面组合的另一方面中,岩石物理模型包括在注入井眼和产出井眼之间的储层中的多个位置处的水饱和度值。
在可与任何前述方面组合的另一方面中,反演储层测量值包括对储层测量值执行Archie算法。
在可与任何前述方面组合的另一方面中,确定注入剂流量包括确定注入井眼和产出井眼之间的洪泛前沿。
在可与任何前述方面组合的另一方面中,洪泛前沿包括多个位置处的水饱和度和碳氢化合物饱和度值的和。
在可与任何前述方面组合的另一方面中,确定注入剂流量包括更新岩石物理模型。
在可与任何前述方面组合的另一方面中,更新岩石物理模型包括利用多个储层测量值使用贝叶斯(Bayesian)推断。
可与任何前述方面组合的另一方面还包括确定注入井眼和产出井眼之间的阈值位置。
在可与任何前述方面组合的另一方面中,确定注入剂流量包括确定阈值位置处的注入剂流量。
在可与任何前述方面组合的另一方面中,调节ICD包括基于阈值位置处的注入剂流量超过预定值来调节ICD。
在可与任何前述方面组合的另一方面中,调节ICD包括关闭ICD。
可与任何前述方面组合的另一方面还包括执行步骤(i)至步骤(iv)的迭代过程。
在可与任何前述方面组合的另一方面中,迭代过程包括将先前的多个储层测量值与当前的多个储层测量值进行比较。
可与任何前述方面组合的另一方面还包括在当前多个储层测量值与先前多个储层测量值之间的差小于阈值时停止迭代过程。
根据本公开的一个、一些或所有实现方式可以包括以下特征中的一个或多个。例如,结合例如深度储层测量值(例如,井间电磁(EM)、炮眼、表面电磁、重力测量值、4D地震或其组合)的注入剂洪泛检测系统的实现方式可以早于传统技术检测到向着产出井的二级/三级洪泛前沿的移动。注入剂洪泛检测系统的实现方式可以响应于接近的注入剂洪泛前沿,通过控制或调节可以用于通过节流、限制或隔离最可能在洪泛事件之前遇到突破的井段来减轻早期注入剂突破的ICD或ICV。注入剂洪泛检测系统的实现方式可以激活所选择的ICD以减慢到达的注入剂前沿的移动并将其转移到储层的未波及部分。注入剂洪泛检测系统的实现方式可以基于二级/三级洪泛前沿的高级检测来执行ICD的动态操作,用于优化石油产出。在一些方面,相对于传统的洪泛检测技术,根据本公开的注入剂洪泛检测系统可以提供增强的波及系数和增加的石油采收率。注入剂洪泛检测系统的实现方式还可以提供远离注入井的储层中的注入剂前沿移动的早期检测、ICD和ICV的最佳操作、延长井寿命以及降低所产生的注入剂处理成本。
本公开中描述的实施例的实现方式可以包括系统和计算机可读介质。例如,一个或多个计算机的系统可以被配置为通过在系统上安装的软件、固件、硬件或它们的组合来执行特定动作,所述软件、固件、硬件或它们的组合在操作中导致或使系统执行动作。一个或多个计算机程序可以被配置为通过包括指令来执行特定动作,所述指令在由数据处理装置执行时使得装置执行动作。
表1包括可以在本公开中使用的命名和缩写:
缩写 术语和单位
B<sub>o</sub> 成油体积因子(以储层桶/库存罐桶计)(rb/stb)
BHP<sub>max</sub> 最大井底压力约束(以磅/平方英寸计)(psi)
BHP<sub>min</sub> 最小井底压力约束(以磅/平方英寸计)(psi)
k 渗透性(以毫达西计)(mD)
L<sub>d</sub> 注入井和产出井之间的无量纲距离
(L<sub>d</sub>)<sub>opt</sub> 注入井和产出井之间的无量纲最佳位置
P<sub>bp</sub> 泡点压力(以磅/平方英寸计)(psi)
P<sub>i</sub> 初始储层压力(以磅/平方英寸计)(psi)
q<sub>o</sub> 恒定石油生产率约束(以库存罐桶/天计)(stb/d)
q<sub>w</sub> 恒定注水率约束(以库存罐桶/天计)(stb/d)
S<sub>w</sub> 水饱和度(以分数计)
S<sub>wi</sub> 初始水饱和度(以分数计)
表1
在附图和描述中阐述了一个或多个实施例的细节。其他特征、目的和优点将通过描述和附图以及权利要求而显而易见。
附图说明
图1A示出了注入井眼和产出井眼的示意图。
图1B示出了示出注入井眼和产出井眼和位于产出井眼上的多个ICD/ICV以及注入井眼和产出井眼之间的洪泛前沿检测位置的示意图。
图1C示出了用于控制碳氢化合物产出的示例方法。
图2示出了模拟模型中渗透性场中具有不同异质性的几种合成地质模型。
图3A至图3B示出了模拟模型中不包括ICD或ICV的异质和同质情况的水饱和度图。
图4A至图4B示出了模拟模型中不包括ICD或ICV的异质和同质情况下随时间累积的油和水产出图。
图5A至图5B示出了模拟模型中包括ICD或ICV的异质和同质情况的水饱和度图。
图6A至图6B示出了模拟模型中包括具有对注入剂洪泛前沿进行早期检测的ICD或ICV的情况下随时间累积的油和水产出图。
图7示出了在模拟模型中由于早起检测到注入剂洪泛前沿而引起的ICD或ICV对产出井眼的操作的影响。
图8示出了用于模拟模型中的几个不同地质模型的早期注入剂前沿检测的最佳位置。
图9描绘了可以应用于本公开中描述的任何计算机实现的方法和其他技术的控制系统的示意图。
具体实施方式
该文档讨论了用于控制一个或多个产出井眼的碳氢化合物产出的系统、方法和计算机可读介质,其基于检测到来自一个或多个注入井眼的二次或三次注入洪泛的移动来通过控制位于产出井眼上的一个或多个ICD或ICV来控制一个或多个产出井眼的碳氢化合物产出。例如,在一些方面,本公开中描述的注入剂检测系统和工作流程的实现方式可以利用深度储层测量,来在系统且稳健的方法中管理和优化储层的二级/三级洪泛。此外,注入剂检测系统和工作流程可以确定注入井和产出井之间的体积中的(全部或部分)储层可传输性。注入剂检测系统和工作流程还可以主动优化产出并最终增加储层的采收率。
图1A示出了示出包括注入井眼102(“注入口”)和产出井眼104(“产出口”)的系统100的示意图。图1A示出了将井眼102和104示出为单个水平井眼的示意性平面图,在该示例中,井眼102和104隔开10,000英尺。在该示例中,每个井眼102和104水平延伸通过含碳氢化合物地层或储层达42,000英尺。本公开涵盖井眼102和104的其他示例尺寸以及它们的距离。
井眼102和104被示出为单程水平井眼。本公开还涵盖其他类型的井眼。例如,注入井眼102和产出井眼104中的一个或两个可以是垂直井眼。注入井眼102和产出井眼104中的一个或两个可具有从相应井眼延伸的多个侧井。注入井眼102和产出井眼104中的一个或两个可以是有套管的或无套管的。在一些方面,尽管图1A示出了井眼102和104具有相同或类似的垂直深度(例如,在储层中的公共水平面内),但井眼102和104可以在不同垂直深度处的储层内形成。在一些情况下,在特定储层中可能存在多个井眼102和单个井眼104、多个井眼104和单个井眼102或多个井眼102和多个井眼104。
通常,注入井眼102用于将流体通过其注入,并注入到二次或三次采收过程中的储层。例如,诸如水或气体之类的流体可以通过井眼102泵送进入储层以维持储层压力,使得可以从产出井眼104产生碳氢化合物。例如,在一些实例中,可以将产出井眼104(或其他产出口)的分离气体从井眼102再注入到储层中。在一些情况下(例如海上井),水可以从井眼102注入到储层中。
例如,波及系数(sweep efficiency)是衡量注入过程有效性以帮助提升碳氢化合物采收率的指标。例如,波及系数取决于注入流体所接触的储层体积,并且可能取决于许多因素,例如注入模式、非模式井、地层中的裂缝、储层厚度、渗透性以及面积异质性和垂直异质性、流动比、注入剂(注入流体)和置换流体(待产出的碳氢化合物和流速)之间的密度差。
图1B示出了示出注入井眼102和产出井眼104和位于产出井眼上的多个ICD/ICV106以及注入井眼102和产出井眼104之间的洪泛前沿检测位置的示意图。通常,ICD是作为完井的一部分安装的组件,以通过均衡沿井眼长度的储层流入来帮助优化产出。在一些实例中,如该图所示,可以沿井眼104的储层部分安装多个ICD。每个ICD 106可以被配置为特定设置,以部分地阻塞碳氢化合物流入产出井眼104。因此,ICD 106可以用于通过降低穿过井眼104的选定间隔的环形速度来将碳氢化合物延迟或引导到产出井眼104的特定区段中。
通常,ICV是有源组件(而在一些方面,ICD是无源组件),可以从地表面对其进行控制以保持进入产出井眼104中的流量一致性。还可以控制ICV以阻止不想要的流体(例如,注入剂流体)进入井眼104。在一些方面,出于控制目的,可以将ICV连接到延伸到提供电导管、液压导管或两者的表面的电缆,以将命令从表面传递到ICV。备选地或附加地,可以从位于例如注入井眼102或产出井眼104中的井下控制器控制ICV。在本公开中,术语ICD和ICV通常是可互换的,因为两者都可以指代可以从表面控制的流量控制装置。
图1B示出了根据本公开的注入剂检测系统和过程的模拟中的注入井眼102和产出井眼104。注入剂检测系统和过程还可以控制ICD 106,以控制从储层进入产出井眼104的碳氢化合物产出(例如,控制流速和流入位置)。图1B示出了示例模拟的注入和产出约束,其模拟了从井眼102移动通过储层到井眼104的注水。
可以在表面处或储层自身内获取深度储层测量值。例如,在一些方面,可以通过位于表面的传感器获取诸如地震、电磁和重力测量值之类的深度储层测量值。在备选方面,或者除了这种表面测量值之外,可以通过储层的地下区域中的传感器获取深度储层测量值,例如井间EM传感器或炮眼到位于井眼102和104中的一个或两个中的表面EM传感器。此外,平行于井眼102和104的虚线示出了这些井眼之间的示例位置,在这些井眼处可以获取储层(例如,在附加方向的井眼或垂直井眼中)内的深度储层测量值。深度储层测量值可以包括例如井间EM、孔眼、表面电磁、重力测量值或4D地震勘测,或其组合。如在本公开中更详细地解释的,这种测量可以用于更准确地预测例如注水,以及更早地预测这样的事件。
通常,井间电磁(EM)涉及应用电感物理和垂直井2D反演来探寻井间电阻率分布。井间EM测量物理参数,例如通过储层传输的电磁场的垂直磁分量。井间EM可以应用于成对的垂直井和成对的水平井两者。当井水平取向时,传感器可以对垂直变化和水平变化均敏感,将反演转换为3D问题。可以将EM数据组装成数字地质模型,然后在反演之前构建3D电阻率体积(稍后描述)。
图2和其他随后的附图中描绘的模拟模仿使用黑油储层模拟器建立的合成水平井对(换句话说,井眼102和104)模型,以研究单层异质石油储层中的注水性能,以说明本公开中描述的注入剂检测系统和过程,其包括使用从深度读取技术获得的信息来控制ICV/ICD,以用于优化注水。模拟结果表明,根据注入剂检测系统和过程在水平产出井104中使用ICV/ICD可以显著提高波及系数并减少水的产生。此外,利用深度读取技术的早期水前沿检测提供了递增的石油采收率。模拟还示出了在注入口102和产出口104之间可以存在用于水前沿检测的最佳位置,以提高具有指定的注入和产出约束石油产出(例如,如图1B所示)。深度读取技术还可以提供关于井对之间的流动场的有价值信息,以降低异质性的不确定性,这可以用于更新地质模型以用于更好的历史匹配和预测产出。
通常,ICV或ICD可以在产出井处的注入剂突破之后作出反应。然而,基于该模拟,在本公开的注入剂检测系统和过程中,基于早期前沿检测的对ICV或ICD 106的控制提高了波及系数并降低了水平注水中的水油比。
如上所述,建立了具有两个水平井(井眼102和104,如图1B所示)的单层模拟模型(140x80网格),以使用任何可用的黑油储层模拟器(例如,加拿大阿尔伯塔省卡尔加里的计算机建模组的CMG-IMEX,或任何其他可用的储层模拟器)来模拟注水。井眼102和104的长度和井间距分别为30,000英尺和10,000英尺。由于这是单层模型,所以忽略重力偏析,并使用面积波及系数作为增加的采收率的指示符。初始储层压力设定为4400psi。原生水饱和度等于束缚水饱和度,为0.2。以5500bbl/天,最大井底压力为5500psi的恒定速率注入水。以5000bbl/天的恒定速率产出油(成油体积因子=1.1rb/stb),这确保了空隙替换。泡点压力设定为2000psi。为产出口104分配的最小井底压力为2200psi,以防止在产出口104周围生成自由气体。为水平产出口104上的每个小孔分配独立作用的ICD 106。如果在产出井104处检测到水前沿,则当对应的小孔处的含水率大于10%时,关闭特定ICD 106。如果在距产出井104一定距离处检测到水前沿,则当所分配的远程网格中的水饱和度大于0.2时,关闭特定的ICD 106。
图1C示出了用于控制碳氢化合物产出的示例方法150。可以至少部分地通过可通信地耦接以控制ICD和ICV 106的控制系统或控制器(例如,基于微处理器的控制器、PLC、机电的、电子的、气动的或适当的其他形式)执行方法150。控制系统可以包括如参考图9描述的组件。
方法150可以在步骤152处开始,其包括识别位于至少一个注入井眼(102)和至少一个产出井眼(104)之间的地下碳氢化合物储层的多个储层测量值。例如,如所描述的,可以从表面或储层中获取深度储层测量值,例如井间EM、重力、地震、4D地震或其组合。在一些方面,可以在形成井眼102和104中的一个或两个之前获取测量值,并存储测量值以供稍后识别(例如,存储在计算机可读数据库中)。在一些方面,可以实时执行这种测量,例如,在注入剂通过井眼102循环进入储层之后或之后不久。
方法150可以在步骤154处继续,其包括处理所识别的多个储层测量值以生成地下碳氢化合物储层的岩石物理模型。该步骤可以包括例如反演多个储层测量值,例如,反演井间EM数据。这种数据的反演可以包括例如获得与磁场的测量数据集兼容的储层中电阻率的可能分布。因此,反演可以是与测量数据兼容的电阻率分布(例如,在3D立方体体积中)的推断。也可以将其他处理技术应用于其他形式的测量的深储层数据,例如,压力瞬变、温度梯度、重力和其他数据。
由反演产生的岩石物理模型可以是在特定时间分布在储层中的物理参数,例如水或碳氢化合物饱和度。例如,可以使用Archie等式(等式1)将反演的井间EM数据转换为岩石物理模型:
其中,Sw=水饱和度,n=饱和度指数~2,φ=孔隙度,m=指数,Rw=孔隙空间中水的电阻率,Rt=地层电阻率。可以使用Archie等式将深度读取电阻率(假设为Rt)转换为含水饱和度Sw。当在空间上映射Sw时,可以推断出水洪泛前沿的位置。也可以使用其他等式。例如,可以在步骤154中使用可以根据储层测量值计算水饱和度的除了Archie等式之外的算法。此外,在一些示例中,储层可能包括与Archie等式不相容的岩层,例如页岩砂。在这种地层中,可以使用另一模型,用于计算那些类型的储层的水饱和度。
可以使用适当的岩石物理关系(例如等式1)将从井间EM勘测解释的每个网格块(图1A中所示)的电阻率转换为水饱和度,并与通过储层模拟预测的饱和度进行比较。该步骤允许从储层深处的井眼102和104获得数百米的流体分布(饱和度)图。在一些方面,可以在迭代过程中重复方法150,从而提供饱和度和注入剂前沿位置随时间的变化的视图(时间推移监测)。
在一些方面,方法150可以通过使用相同的井间EM响应来生成许多不同的储层性质的实现。除了井间EM响应,其他深储层数据源(例如,重力测量、地震响应、声波和电阻率记录)与储层属性建模的集成可以减少不确定性。例如,可以识别(相对)对井间EM响应更敏感的储层参数,并且可以利用可以用于辅助历史匹配的多个实现来更新这些储层参数。
作为另一示例,可以利用深度读取重力测量值生成岩石物理模型,并因此生成洪泛前沿的位置。例如,深储层重力测量值可以对应于地层体积密度ρb。该变量由等式2规定:
ρb=ρm(1-φ)+φ(Swρw,+Soρo+Sgρg),
等式2
其中,ρb=体积密度(根据重力计数据),ρm=基质密度(根据矿物学),ρw=水密度(根据储层条件处的水的盐度计算的),ρo=石油密度(储层条件处的已知的相行为数据),ρg=气体密度(储层条件处的已知的相行为数据),φ=孔隙度(根据测井记录),Sw=水饱和度,So=石油饱和度,Sg=气体饱和度。通常,石油、水和气体饱和度的和等于1,并且石油饱和度和气体饱和度参数可以组合为具有单个平均密度ρ碳氢化合物的单个S碳氢化合物
作为又一示例,可以使用先前描述的特定深度储层测量值(例如,井间EM)或深度储层测量值的组合来检测洪泛前沿的位置和移动,通过计算和绘制或映射一阶和/或二阶导数(变化率),如图表1所示。可以使用这些导数的变化来检测和映射洪泛前沿位置。远离前沿的倒数的意外变化可能表明需要更新一个或多个储层性质并更新岩石物理模型。
方法150可以在步骤156处继续,其包括基于岩石物理模型来确定从注入井眼到产出井眼的注入剂流量。例如,如先前所描述的,岩石物理模型可以包括确定洪泛前沿或饱和度(S+S碳氢化合物=1)。饱和度表明洪泛位置,其示出了注入剂从注入井眼102流向产出井眼104的位置。
步骤156还可以包括利用深度储层测量值使用贝叶斯推断(例如,全套卡尔曼滤波器)来更新岩石物理模型。将根据任何深度储层测量值中解释的前沿传播速度的差异与根据模拟结果评估的差异进行比较。可以使用该差异修改储层网格块岩石物理性质,并因此修改在步骤154中生成的岩石物理模型。例如,可以基于例如地震地平线、测井记录和核心数据来准备初始地质模型。井眼102和104之间的岩石物理性质(例如,孔隙度和渗透率)可以基于具有多个实现的高斯模拟来分布。从稳态/非稳态核心洪泛获得的代表性相对渗透率曲线用于模拟洪泛期间的多相流量。在处理深度储层数据之后,可以开发特定时间处的饱和度图的快照。洪泛模拟可以运行至获得深度读取测量值的时间。可以将根据模拟获得的饱和度图与根据深度读取测量值计算的饱和度图进行比较。如果没有一致,则将修改渗透率场,直到获得合理的历史匹配(例如,使用历史匹配工具,例如,加拿大阿尔伯塔省卡尔加里的计算机建模组(Computer Modeling Group of Calgary)的CMG-CMOST,或任何其他比较优化工具)。随着洪泛期间注入剂前沿移动,每个连续的深度读取测量值可以提供关于岩石物理性质分布的更多信息(例如,孔隙度和渗透率)。因此,可以在每次深度储层测量值之后更新模拟模型。
方法150可以在步骤158处继续,其包括基于所确定的注入剂流量来调节位于产出井眼周围的流入控制设备(ICD)。例如,可以关闭某些ICD 106以防止洪泛前沿到达某个间隔处(例如,井眼104的小孔区域)的产出井眼104。此外,可以打开某些ICD 106以允许由洪泛前沿推动的碳氢化合物到达某个间隔处(例如,井眼104的小孔区域)的产出井眼104。
可以在岩石物理模型上运行一个或多个优化算法以优化ICD 106的一个或多个控制设置。例如,可以使用校准的(例如,历史匹配的)模型进行多次模拟,并进行比较以选择将导致最佳采收率的ICD控制设置。在一些实例中,最佳采收率可以包括减轻早期注入剂突破进入产出井眼104。在一些实例中,最佳采收率可以包括通过控制ICD 106引导通过井眼104中的特定间隔的碳氢化合物流量,以便推动洪泛前沿远离这种间隔。在一些方面,可以打开或闭合ICD,而ICV在一些方面可以在0%打开和100%打开之间可控地调整。当深度储层测量值并非实时的时候,对ICV/ICD 106的调节可以取决于这些测量值以怎样的频率进行的测量。
可以迭代地执行方法150(例如,在步骤158之后循环回到步骤152)。例如,在调节ICD/ICV 106之后,可以在步骤152中获取或识别附加的深度储层测量值。在一些实例中,可以在每次连续的ICD激活之后获取或识别附加的测量值,并将附加的测量值用于评估正在进行的成功的ICD调度以及进一步修改储层性质分布。可以将先前的深度储层测量值(来自先前的迭代或先前的多次迭代)与最近的或当前的深度储层测量值进行比较,以校准模拟模型并改变ICD/ICV 106的设置。在设置改变之后,所导致的测量值的改变可以提供对ICD改变的系统储层液压响应的反馈。
例如,一旦已经确定已实现了不随时间改变的岩石物理模型的稳健版本,则可以结束迭代过程。作为另一示例,当确定深度储层测量值不随ICD/ICV控制设置的改变而改变时,迭代过程可以停止。作为另一示例,当碳氢化合物采收停止时,可以结束迭代过程。
图2示出了在先前描述的注入剂检测系统和过程的模拟模型(图1A和图1B)中的渗透率场中具有不同异质性的几种合成地质模型。图2示出了在注入井眼102和产出井眼104(图1A至1B中所示)的模拟过程中可以建立的不同合成地质模型,以研究渗透率场中的异质性对石油采收率、水产出和突破的影响。例如,储层(岩层)越不均匀,该储层中的岩石性质可能变化越多。例如,页岩气储层是异质地层,其矿物学、有机物含量、天然裂缝和其他性质可能因地而异。性质不随位置而变化的其他岩层可能更均匀。如模型200中所示,井眼102和104之间的渗透率(以毫达西计)的量度可以变化。通过在模拟过程中使用这些地顾模型(可以包括使用不同地质模型的多达50,000个模拟),可以解释储层的异质性。
图3A和图3B示出了注入剂检测系统和过程的模拟模型中不包括ICD或ICV的异质和同质情况的水饱和度图。例如,水在同质储层中比在异质储层中更均匀地取代油。水相优选地流过从注入口102到产出口104的最小阻力路径。因此,异质情况(例如,用于该模拟的图2中的GeoModel#1)的水突破比同质情况更早发生。图3A示出了曲线图300,其示出了在异质模型(GeoModel#1)中的历时50,000天模拟的水饱和度图(换句话说,从井眼102到井眼104的水注入剂的流量)。图3B示出了曲线图350,其示出了在同质模型中的历时50,000天模拟的水饱和度图(换句话说,从井眼102到井眼104的水注入剂的流量)。如图所示,对于与同质情况相比的异质情况来说,水饱和度前沿是非常不同的,例如,在某些产出间隔处更集中。
图4A和图4B示出了注入剂检测系统和过程的模拟模型中不包括ICD或ICV的异质和同质情况下随时间累积的油和水产出图。曲线图400和曲线图450分别示出了水饱和度模型300和350的同质情况(虚线)和异质情况(实线)下产出井104的累积石油产出和累积水产出。如图所示,可渗透场中的异质性导致较低的石油采收率和较高的水产出以及注入剂的早期突破。在该模拟中,这导致较低的面积波及系数和在异质情况下的40%更低的石油采收率。
图5A和图5B示出了传统的注入剂检测系统和过程的模拟模型中包括ICD或ICV的异质和同质情况的水饱和度图。例如,在根据图1C中描述的注入剂检测过程使用ICD/ICV控制的模拟中,根据模拟,面积波及系数的改进可能是显著的。在模拟中,当在产出井眼104处检测到水前沿时,如果流动的注入剂流超过10%含水率,则控制(例如,关闭)一个或多个ICV/ICD。换句话说,在图5A中所示的模拟水饱和度模型中,在注水检测之后控制ICD/ICV,如常规所做的那样。模拟中的这种动作可以示出注入剂从邻近产出井眼104的储层的高渗透性区域向低渗透性区域的转移。改进的波及系数导致更高的石油产出和更低的水产出以及注入剂的延迟突破。
图5A示出了当如前所述控制ICD/ICV时的水饱和度模型500。图5B示出了不包括ICD/ICV并因此与水饱和度模型300相同的水饱和度模型550。如在模型500中所示,控制产出井眼104处的ICV/ICD显著地改进了面积波及系数,有助于将水从高渗透性区域转移到低渗透性区域。
图6A和图6B示出了在根据例如方法150和本公开的注入剂检测系统和过程的模拟模型中包括具有注入剂洪泛前沿早期检测的ICD或ICV的情况下随时间累积的油和水产出图。例如,图5A示出了ICD/ICV控制方案,其中在突破后检测到水之后控制(例如,关闭)这些装置。然而,图6A和图6B分别示出了模拟的累积石油产出和累积水产出的曲线图600和650,在模拟中,使用深度储层测量值(根据方法150)用于水前沿的突破前检测。在该模拟中,Ld用作注入口102和产出口104之间的无量纲距离,其范围从产出口104处的0至注入口102处的1。因此,如果Ld=0,则在产出井处检测到水前沿。如果Ld=1/3,则在距离产出口104的三分之一井间距的距离处检测到水前沿。如在图6的曲线图600中所示,累积石油产出基于早期水前检测的ICD/ICV的控制(例如,关闭)增加(这里,Ld为1/3对比Ld为0或无ICD/ICV控制)。但是,如图6B所示,增加的石油产出也可以伴随着水产出的略微增加,如曲线图650所示。这可能是由渗透率场的异质性导致的。
图7示出了在注入剂检测系统和过程的模拟模型中由于早期检测到注入剂洪泛前沿而引起的ICD或ICV对产出井眼的操作的影响。例如,基于洪泛前沿的位置,水前沿检测可能不会在邻近或靠近(例如,在距离井眼104的选定距离Ld处)发生,在水前沿朝向井眼104移动时,产出井眼104的某些间隔处的一些ICD/ICV可以不关闭。此外,其他间隔处ICD/ICV的关闭可以将水前沿从邻近井眼104的储层的高渗透性区域引导至低渗透性区域。图7所示的曲线图700示出了这个概念,其示出了在某些ICV/ICD处(例如,在代表产出口104的线上的圆附近),即使在水前沿突破之后也继续进行水产出,因为由于转移,在距产出井104一定距离处没有检测到水前沿。结果是,不会触发那些ICV/ICD闭合。因此,不仅应该考虑远离产出井104一定距离处的饱和度的改变,而且还应考虑每个ICV/ICD处的水位改变以触发ICV/ICD。
图8示出了用于注入剂检测系统和过程的模拟模型中的几个不同地质模型的早期注入前沿检测的最佳位置。例如,由于参考图7所讨论的问题(未检测到由不受控制的ICD/ICV导致水产出的水前沿),所以可以优选确定注入口102和产出口104之间的用于早期水前沿检测的最佳位置(Ld)opt,以利用ICD/ICV最大化石油产出,同时还使水产出最小化。
曲线图800示出了利用五种不同的合成地质模型(图2中示出)运行的模拟,以示出渗透率场中的不同异质性对最佳位置的影响。基于模拟,在一些方面,(Ld)opt范围从0.25至0.35,独立于模拟中使用的地理模型。因此,根据模拟,检测(例如,获取深度储层测量值)距进样口102大约2/3距离(到产出口1041/3距离)的水前沿导致累积石油产出的最佳结果。
根据执行并在图中示出的模拟,当利用以控制产出口上的ICD/ICV时,注入剂检测系统和过程可以产生更高的累积石油产出。在一些方面,基于早期前沿检测主动控制ICD/ICV的有益效果可以改进波及系数并减少水平注水中的水产生。此外,具有深度储层测量值的水前沿的早期检测对ICD/ICV进行控制,提供了增量的石油采收率。在一些方面,在注入口和产出口之间存在用于早期水前沿检测的最佳位置,以在指定的注入和产出约束下改进石油产出。此外,深度储层测量值还可以提供关于流动场的有价值信息,其可以用于减少地质模型中的不确定性,以用于更好地进行历史匹配和产出预测。
图9是计算机系统900的示意图。根据一些实现方式,系统900可以用于执行与先前描述的任何计算机实现的方法相关联描述的操作,例如,注入剂检测系统和过程的实现方式。在一些实现方式中,在本说明书中描述的计算系统和设备以及功能性操作可以在数字电子电路中、在有形实现的计算机软件或固件中、在计算机硬件中实现,包括在本说明书中公开的结构(例如,系统900)及其结构等同物,或它们中的一个或多个的组合。系统900旨在包括各种形式的数字计算机,例如,膝上型计算机、台式机、工作站、个人数字助理、服务器、刀片服务器、主计算机和其他适当的计算机,包括安装在模块化载运工具的基本单元或吊舱单元上的载运工具。系统900还可以包括移动设备,例如,个人数字助理、蜂窝电话、智能电话和其他类似的计算设备。另外,系统可以包括便携式存储介质,例如,通用串行总线(USB)闪速驱动器。例如,USB闪速驱动器可以存储操作系统和其他应用。USB闪速驱动器可以包括输入/输出组件,例如,可以插入到另一计算设备的USB端口中的无线发送器或USB连接器。
系统900包括处理器910、存储器920、存储设备930和输入/输出设备940。组件910、920、930和940中的每一个使用系统总线950来互连。处理器910能够处理用于在系统900内执行的指令。可以使用众多架构中的任何架构来设计处理器。例如,处理器910可以是CISC(复杂指令集计算机)处理器、RISC(精简指令集计算机)处理器或MISC(最小指令集计算机)处理器。
在一个实现方式中,处理器910是单线程处理器。在另一个实现方式中,处理器910是多线程处理器。处理器910能够处理存储在存储器920中或存储设备930上的指令,以在输入/输出设备940上显示用户界面的图形信息。
存储器920存储系统900内的信息。在一个实现方式中,存储器920是计算机可读介质。在一个实现方式中,存储器920是易失性存储器单元。在另一个实现方式中,存储器920是非易失性存储器单元。
存储设备930能够为系统900提供大容量存储。在一个实现方式中,存储设备930是计算机可读介质。在各种不同的实现方式中,存储设备930可以是软盘设备、硬盘设备、光盘设备或磁带设备。
输入/输出设备940提供系统400的输入/输出操作。在一个实现方式中,输入/输出设备940包括键盘和/或指向设备。在另一个实现方式中,输入/输出设备940包括用于显示图形用户界面的显示单元。
所描述的特征可以在数字电子电路中实现,或者在计算机硬件、固件、软件或其组合中实现。该装置可以实现在有形地包含在信息载体中的计算机程序产品中,例如,在由可编程处理器执行的机器可读存储没备中;以及方法步骤可以由执行指令程序的可编程处理器执行,以通过对输入数据进行操作并生成输出来执行所描述的实现方式的功能。所描述的特征可以通过在可编程系统上可执行的一个或多个计算机程序来有利地实现,其中,所述可编程系统包括至少一个可编程处理器,该可编程处理器从数据存储系统、至少一个输入设备以及至少一个输出设备接收数据和指令,以及向其发送数据和指令。计算机程序是一组指令,可以直接或间接地用于计算机中,以执行某种动作或产生某种结果。可以以任何形式的编程语言来编写计算机程序,包括编译或解释语言,并且可以以任何形式来部署计算机程序,包括部署为独立的程序或者部署为适合于用于计算环境的模块、组件、子例程或者其它单元。
例如,用于执行指令程序的合适的处理器包括通用和专用微处理器以及任何种类的计算机的单一处理器或多个处理器之一。通常,处理器将从只读存储器或随机存取存储器或者这二者接收指令和数据。计算机的必不可少的元件是用于执行指令的处理器和用于存储指令和数据的一个或更多个存储器。通常,计算机还将包括用于存储数据文件的一个或多个大容量存储设备,或者可操作地与其耦接以与其通信;这样的设备包括磁盘(例如,内部硬盘和可移动盘);磁光盘;以及光盘。适合于有形地包含计算机程序指令和数据的存储设备包括所有形式的非易失性存储器,例如包括诸如EPROM、EEPROM的半导体存储器设备和闪存设备;磁盘(例如,内部硬盘和可移动盘);磁光盘;以及CD ROM和DVD-ROM磁盘。处理器和存储器可以由ASIC(专用集成电路)来补充或者并入到ASIC(专用集成电路)中。
为了提供与用户的交互,可以在具有显示设备和键盘以及指向设备的计算机上实现这些特征,显示设备例如是用于向用户显示信息的CRT(阴极射线管)或LCD(液晶显示器)监视器,指向设备例如是用户可以通过其向计算机提供输入的鼠标或轨迹球。另外,这些动作可以经由触摸屏平板显示器和其他适当的机制来实现。
这些特征可以在包括后端组件(例如,数据服务器)的计算机系统中实现,或在包括中间件组件(例如,应用服务器或因特网服务器)的计算机系统中实现,或在包括前端组件(例如,具有图形用户界面或因特网浏览器的客户端计算机)的计算机系统中实现,或者它们的任何组合。系统的组件可以通过数字数据通信的任何形式或介质(例如通信网络)来连接。通信网络的示例包括局域网(“LAN”)、广域网(“WAN”)、对等网络(具有ad-hoc或静态成员)、网格计算基础设施和因特网。
计算机系统可以包括客户端和服务器。客户端和服务器通常相互远离并且通常通过网络(例如上述网络)进行交互。客户端和服务器的关系通过在相应计算机上运行并且相互具有客户端-服务器关系的计算机程序来生成。
虽然本说明书包含许多特定实现方式细节,然而这些细节不应对要求保护的任何发明的范围构成限制,而是作为特定于特定发明的特定实施例的特征的描述。在本说明书中在独立实现方式的上下文中描述的某个特征也可以在单个实现中组合实现。反之,在单个实现方式的上下文中描述的不同特征也可在多个实现方式中各自实现,或以适当的子组合来实现。此外,尽管特征可以在先前描述为在某些组合中起作用并且甚至最初如此要求保护,但是来自所要求保护的组合的一个或多个特征在一些情况下可以从组合中删除,并且所要求保护的组合可以针对子组合或子组合的变体。
类似地,虽然在附图中以特定顺序描绘了操作,但是这不应被理解为要求这些操作以示出的特定顺序或以顺序次序执行,或者需要执行所有示出的操作来实现期望的结果。在某些情境下,多任务处理和并行处理可能是有利的。此外,前述实现方式中的各种系统组件的分离不应被理解为在所有实现方式中需要这样的分离,并且应当理解,所描述的程序组件和系统通常可以集成在单个软件产品中或被打包成多个软件产品。
因此,已经描述了本主题的特定实现方式。其它实现方式在所附的权利要求的范围内。在一些情况中,在权利要求书中记载的动作可以以不同顺序来执行,并且仍然实现期望结果。此外,附图中示出的过程不一定需要所示出的特定顺序或按顺序次序来实现期望结果。在某些实现方式中,多任务处理和并行处理可能是有利的。
因此,已经描述了本公开的特定实现方式。其它实现方式在所附的权利要求的范围内。例如,在权利要求书中记载的动作可以以不同顺序来执行,并且仍然实现期望结果。

Claims (29)

1.一种用于控制碳氢化合物产出的计算机实现的方法,包括:
(i)识别位于至少一个注入井眼和至少一个产出井眼之间的地下碳氢化合物储层的多个储层测量值;
(ii)处理所识别的多个储层测量值以生成地下碳氢化合物储层的岩石物理模型;
(iii)基于所述岩石物理模型确定从所述注入井眼到所述产出井眼的注入剂流量;以及
(iv)基于所确定的注入剂流量调节位于所述产出井眼周围的流入控制设备ICD。
2.根据权利要求1所述的计算机实现的方法,还包括:从位于以下至少一个位置处的一个或多个传感器接收所述多个储层测量值:
地表面;或者
所述注入井眼和所述产出井眼之间的储层中。
3.根据权利要求1所述的计算机实现的方法,其中,所述储层测量值包括井间电磁EM、井眼EM、表面电磁、重力测量值或4D地震中的至少一个。
4.根据权利要求1所述的计算机实现的方法,其中,处理所识别的多个储层测量值包括反演所述储层测量值以确定所述岩石物理模型。
5.根据权利要求4所述的计算机实现的方法,其中,所述岩石物理模型包括在所述注入井眼和所述产出井眼之间的储层中的多个位置处的水饱和度值。
6.根据权利要求4所述的计算机实现的方法,其中,反演所述储层测量值包括对所述储层测量值执行Archie算法。
7.根据权利要求6所述的计算机实现的方法,其中,确定所述注入剂流量包括确定所述注入井眼与所述产出井眼之间的洪泛前沿,所述洪泛前沿包括所述多个位置处的所述水饱和度与碳氢化合物饱和度值的和。
8.根据权利要求1所述的计算机实现的方法,其中,确定所述注入剂流量包括:利用所述多个储层测量值,使用贝叶斯推断来更新所述岩石物理模型。
9.根据权利要求1所述的计算机实现的方法,还包括:
确定所述注入井眼和所述产出井眼之间的阈值位置;以及
确定所述阈值位置处的所述注入剂流量。
10.根据权利要求9所述的计算机实现的方法,其中,调节所述ICD包括以下中的至少一个:
基于所述阈值位置处的所述注入剂流量超过预定值来调节所述ICD;或者
关闭所述ICD。
11.根据权利要求1所述的计算机实现的方法,还包括:执行步骤(i)到步骤(iv)的迭代过程,所述迭代过程包括将先前多个储层测量值与当前多个储层测量值进行比较。
12.根据权利要求11所述的计算机实现的方法,还包括:在所述当前多个储层测量值与所述先前多个储层测量值之间的差小于阈值时停止所述迭代过程。
13.一种编码在非暂时性存储介质上的计算机程序产品,所述计算机程序产品包括用于使一个或多个处理器执行操作的非暂时性计算机可读指令,所述操作包括:
(i)识别位于至少一个注入井眼和至少一个产出井眼之间的地下碳氢化合物储层的多个储层测量值;
(ii)处理所识别的多个储层测量值以生成地下碳氢化合物储层的岩石物理模型;
(iii)基于所述岩石物理模型确定从所述注入井眼到所述产出井眼的注入剂流量;以及
(iv)基于所确定的注入剂流量调节位于所述产出井眼周围的流入控制设备ICD。
14.根据权利要求13所述的计算机程序产品,其中,所述储层测量值包括井间电磁EM、井眼EM、表面电磁、重力测量值或4D地震中的至少一个。
15.根据权利要求13所述的计算机程序产品,其中,处理所识别的多个储层测量值包括反演所述储层测量值以确定所述岩石物理模型,所述岩石物理模型包括在所述注入井眼和所述产出井眼之间的储层中的多个位置处的水饱和度值。
16.根据权利要求15所述的计算机程序产品,其中,确定所述注入剂流量包括确定所述注入井眼与所述产出井眼之间的洪泛前沿,所述洪泛前沿包括所述多个位置处的所述水饱和度与碳氢化合物饱和度值的和。
17.根据权利要求13所述的计算机程序产品,其中,确定所述注入剂流量包括:利用所述多个储层测量值,使用贝叶斯推断来更新所述岩石物理模型。
18.根据权利要求13所述的计算机程序产品,还包括:
确定所述注入井眼和所述产出井眼之间的阈值位置;以及
确定所述阈值位置处的所述注入剂流量。
19.根据权利要求18所述的计算机程序产品,其中,调节所述ICD包括以下中的至少一个:
基于所述阈值位置处的所述注入剂流量超过预定值来调节所述ICD;或者
关闭所述ICD。
20.一种控制系统,可通信地耦接到一个或多个流入控制设备ICD并被配置为执行操作,所述操作包括:
(i)识别位于至少一个注入井眼和至少一个产出井眼之间的地下碳氢化合物储层的多个储层测量值;
(ii)处理所识别的多个储层测量值以生成地下碳氢化合物储层的岩石物理模型;
(iii)基于所述岩石物理模型确定从所述注入井眼到所述产出井眼的注入剂流量;以及
(iv)基于所确定的注入剂流量调节位于所述产出井眼周围的流入控制设备ICD。
21.根据权利要求20所述的控制系统,还包括:从位于以下至少一个位置处的一个或多个传感器接收所述多个储层测量值:
地表面;或者
所述注入井眼和所述产出井眼之间的储层中。
22.根据权利要求20所述的控制系统,其中,所述储层测量值包括井间电磁EM、井眼EM、表面电磁、重力测量值或4D地震中的至少一个。
23.根据权利要求20所述的控制系统,其中,处理所识别的多个储层测量值包括反演所述储层测量值以确定所述岩石物理模型,所述岩石物理模型包括在所述注入井眼和所述产出井眼之间的储层中的多个位置处的水饱和度值。
24.根据权利要求23所述的控制系统,其中,反演所述储层测量值包括对所述储层测量值执行Archie算法。
25.根据权利要求23所述的控制系统,其中,确定所述注入剂流量包括确定所述注入井眼与所述产出井眼之间的洪泛前沿,所述洪泛前沿包括所述多个位置处的所述水饱和度与碳氢化合物饱和度值的和。
26.根据权利要求20所述的控制系统,其中,确定所述注入剂流量包括,利用所述多个储层测量值,使用贝叶斯推断来更新所述岩石物理模型。
27.根据权利要求20所述的控制系统,还包括:
确定所述注入井眼和所述产出井眼之间的阈值位置;以及
确定所述阈值位置处的所述注入剂流量;以及
基于所述阈值位置处的所述注入剂流量超过预定值来调节所述ICD。
28.根据权利要求20所述的控制系统,还包括:执行步骤(i)到步骤(iv)的迭代过程,所述迭代过程包括将先前多个储层测量值与当前多个储层测量值进行比较。
29.根据权利要求28所述的控制系统,还包括:在所述当前多个储层测量值与所述先前多个储层测量值之间的差小于阈值时停止所述迭代过程。
CN201780066429.2A 2016-09-02 2017-08-30 控制碳氢化合物产出 Pending CN109891047A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US201662383240P true 2016-09-02 2016-09-02
US62/383,240 2016-09-02
PCT/US2017/049310 WO2018044997A1 (en) 2016-09-02 2017-08-30 Controlling hydrocarbon production

Publications (1)

Publication Number Publication Date
CN109891047A true CN109891047A (zh) 2019-06-14

Family

ID=59846684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780066429.2A Pending CN109891047A (zh) 2016-09-02 2017-08-30 控制碳氢化合物产出

Country Status (5)

Country Link
US (4) US10125586B2 (zh)
EP (1) EP3507448A1 (zh)
CN (1) CN109891047A (zh)
CA (1) CA3035243A1 (zh)
WO (1) WO2018044997A1 (zh)

Families Citing this family (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20090001121A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical staple having an expandable portion
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
RU2493788C2 (ru) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
RU2606493C2 (ru) 2011-04-29 2017-01-10 Этикон Эндо-Серджери, Инк. Кассета со скобками, содержащая скобки, расположенные внутри ее сжимаемой части
CN104379068B (zh) 2012-03-28 2017-09-22 伊西康内外科公司 包括组织厚度补偿件的保持器组件
CN104321024B (zh) 2012-03-28 2017-05-24 伊西康内外科公司 包括多个层的组织厚度补偿件
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9301755B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Compressible staple cartridge assembly
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
CN104334098B (zh) 2012-03-28 2017-03-22 伊西康内外科公司 包括限定低压强环境的胶囊剂的组织厚度补偿件
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US9510828B2 (en) 2013-08-23 2016-12-06 Ethicon Endo-Surgery, Llc Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
BR112017004361A2 (pt) 2014-09-05 2017-12-05 Ethicon Llc fonte de alimentação modular com proteção contra sobrecorrente para dispositivo médico
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10215002B2 (en) * 2016-05-05 2019-02-26 Saudi Arabian Oil Company Determining wellbore leak crossflow rate between formations in an injection well
WO2018044997A1 (en) * 2016-09-02 2018-03-08 Saudi Arabian Oil Company Controlling hydrocarbon production
US20180168578A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US20180368846A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Surgical end effectors and anvils
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10900344B2 (en) 2017-11-07 2021-01-26 Saudi Arabian Oil Company Determining wellbore leak crossflow rate between formations in an injection well
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11008855B2 (en) 2017-12-18 2021-05-18 Carbo Ceramics Inc. Systems and methods for imaging a proppant in a hydraulically-fractured oil reservoir
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US20190192138A1 (en) 2017-12-21 2019-06-27 Ethicon Llc Surgical instrument comprising an end effector dampener
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
WO2020122892A1 (en) * 2018-12-12 2020-06-18 Halliburton Energy Services, Inc. Borehole gravity analysis for reservoir management
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
WO2021021097A1 (en) * 2019-07-29 2021-02-04 Landmark Graphics Corporation Gas saturation distribution monitoring in hydrocarbon reservoir
US20210198981A1 (en) * 2019-12-27 2021-07-01 Saudi Arabian Oil Company Intelligent completion control in reservoir modeling

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676313A (en) * 1985-10-30 1987-06-30 Rinaldi Roger E Controlled reservoir production
US5854991A (en) * 1996-07-26 1998-12-29 Western Atlas International, Inc. Method for inversion processing of transverse electromagnetic induction well logging measurements
US20090164188A1 (en) * 2007-12-21 2009-06-25 Tarek Habashy Method for upscaling a reservoir model using deep reading measurements
WO2011020998A2 (en) * 2009-08-20 2011-02-24 Halliburton Energy Services, Inc. Method for improving waterflood performance using barrier fractures and inflow control devices
CN104246127A (zh) * 2012-02-27 2014-12-24 沙特阿拉伯石油公司 采用流入控制装置完井的油井的不稳定试井方法
CN105089582A (zh) * 2015-05-28 2015-11-25 中国石油天然气股份有限公司 基于井下流量控制设备的油藏数值模拟方法及装置
CA2866274A1 (en) * 2014-09-30 2016-03-30 Radhakrishnan Mahadevan System and method of increasing production from oil and gas reservoirs
CN105473810A (zh) * 2013-08-30 2016-04-06 兰德马克绘图国际公司 用于通过使用井下控制阀提高水气交替注入过程(wag-cv)中的油藏采收率的方法、系统和最优化技术
CN105474046A (zh) * 2013-09-09 2016-04-06 兰德马克绘图国际公司 产生虚拟生产测井工具剖面以用于改进历史拟合
CN105593460A (zh) * 2013-08-01 2016-05-18 界标制图有限公司 用于使用联接的井筒-储层模型的最佳icd配置的算法
CN105765161A (zh) * 2013-11-15 2016-07-13 兰德马克绘图国际公司 优化液体驱油体系中的注入井的流量控制装置性质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7228908B2 (en) 2004-12-02 2007-06-12 Halliburton Energy Services, Inc. Hydrocarbon sweep into horizontal transverse fractured wells
US7937222B2 (en) 2008-12-02 2011-05-03 Schlumberger Technology Corporation Method of determining saturations in a reservoir
US8700371B2 (en) 2010-07-16 2014-04-15 Schlumberger Technology Corporation System and method for controlling an advancing fluid front of a reservoir
JP5885240B2 (ja) 2011-11-21 2016-03-15 ゲイツ・ユニッタ・アジア株式会社 伝動ベルト
EP2884309B1 (en) 2011-12-08 2018-04-11 Saudi Arabian Oil Company Super-resolution formation fluid imaging
US20140180658A1 (en) * 2012-09-04 2014-06-26 Schlumberger Technology Corporation Model-driven surveillance and diagnostics
US20160040514A1 (en) 2013-03-15 2016-02-11 Board Of Regents, The University Of Texas System Reservoir Characterization and Hydraulic Fracture Evaluation
RU2016118589A (ru) * 2013-11-15 2017-12-18 Лэндмарк Графикс Корпорейшн Оптимизация характеристик устройств регулирования потока как на добывающей, так и на нагнетательной скважине в совместных системах жидкостного заводнения нагнетательной и добывающей скважин
AU2015253515B2 (en) 2014-05-01 2017-06-15 Halliburton Energy Services, Inc. Multilateral production control methods and systems employing a casing segment with at least one transmission crossover arrangement
US20150370934A1 (en) * 2014-06-24 2015-12-24 Schlumberger Technology Corporation Completion design based on logging while drilling (lwd) data
WO2018044997A1 (en) * 2016-09-02 2018-03-08 Saudi Arabian Oil Company Controlling hydrocarbon production

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676313A (en) * 1985-10-30 1987-06-30 Rinaldi Roger E Controlled reservoir production
US5854991A (en) * 1996-07-26 1998-12-29 Western Atlas International, Inc. Method for inversion processing of transverse electromagnetic induction well logging measurements
US20090164188A1 (en) * 2007-12-21 2009-06-25 Tarek Habashy Method for upscaling a reservoir model using deep reading measurements
WO2011020998A2 (en) * 2009-08-20 2011-02-24 Halliburton Energy Services, Inc. Method for improving waterflood performance using barrier fractures and inflow control devices
CN104246127A (zh) * 2012-02-27 2014-12-24 沙特阿拉伯石油公司 采用流入控制装置完井的油井的不稳定试井方法
CN105593460A (zh) * 2013-08-01 2016-05-18 界标制图有限公司 用于使用联接的井筒-储层模型的最佳icd配置的算法
CN105473810A (zh) * 2013-08-30 2016-04-06 兰德马克绘图国际公司 用于通过使用井下控制阀提高水气交替注入过程(wag-cv)中的油藏采收率的方法、系统和最优化技术
CN105474046A (zh) * 2013-09-09 2016-04-06 兰德马克绘图国际公司 产生虚拟生产测井工具剖面以用于改进历史拟合
CN105765161A (zh) * 2013-11-15 2016-07-13 兰德马克绘图国际公司 优化液体驱油体系中的注入井的流量控制装置性质
CA2866274A1 (en) * 2014-09-30 2016-03-30 Radhakrishnan Mahadevan System and method of increasing production from oil and gas reservoirs
CN105089582A (zh) * 2015-05-28 2015-11-25 中国石油天然气股份有限公司 基于井下流量控制设备的油藏数值模拟方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARZOOQI A A , HELMY H, KESHKA A: "llbore segmentation using inflow control devices design and optimization process", 《SPE INTERNATIONAL》 *
刘均荣,于伟强: "ICD/ICV井下流量控制技术", 《石油矿场机械》 *
杨青松 等: "水平井ICD完井油藏渗流与井筒流动耦合模型研究", 《长江大学学报(自科版)》 *

Also Published As

Publication number Publication date
WO2018044997A1 (en) 2018-03-08
US20190003292A1 (en) 2019-01-03
US10125586B2 (en) 2018-11-13
US20180066515A1 (en) 2018-03-08
US20180298752A1 (en) 2018-10-18
US10677035B2 (en) 2020-06-09
EP3507448A1 (en) 2019-07-10
US10677034B2 (en) 2020-06-09
US20190003291A1 (en) 2019-01-03
US10570716B2 (en) 2020-02-25
CA3035243A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
CN109891047A (zh) 控制碳氢化合物产出
Zandvliet et al. Adjoint-based well-placement optimization under production constraints
Cao et al. Development of a Fully Coupled Two-phase Flow Based Capacitance Resistance Model CRM
CN104879103A (zh) 一种分层注水效果分析方法
US10443358B2 (en) Oilfield-wide production optimization
AU2013397497B2 (en) Static earth model calibration methods and systems using permeability testing
Tavassoli et al. Well screen and optimal time of refracturing: a Barnett shale well
US20180321421A1 (en) Optimization under Uncertainty for Integrated Models
WO2017106513A1 (en) Integrated modeling and simulation of formation and well performance
Zakirov et al. Optimal control of field development in a closed loop
Reagan et al. Simulation of gas production from multilayered hydrate-bearing media with fully coupled flow, thermal, chemical and geomechanical processes using TOUGH+ Millstone. Part 3: production simulation results
Asadollahi Waterflooding optimization for improved reservoir management
US10538995B2 (en) Hydrocarbon production method comprising a productivity index of the wells subject to thermal effect
US20200103549A1 (en) System and method for generating an earth model
Ganesh et al. Reduced physics modeling of CO2 injectivity
CA2818464A1 (en) Shale gas production forecasting
US20170183963A1 (en) Formation skin evaluation
Sharma et al. Model calibration for forecasting CO2-foam enhanced oil recovery field pilot performance in a carbonate reservoir
EP3756110A1 (en) Systems and methods for generating permeability scaling functions to estimate permeability
Srinivasan et al. Examining the Impact of Hydrocarbon Drainage on Completion and In-fill Drilling Strategies in Unconventional Reservoirs
Temizel et al. Optimization of production in slanted horizontal wells in tight reservoirs
Ijioma Closed-loop feedback control of smart wells for production optimisation using self-potential measurements
Zhou et al. Comparative study of feedback control policies in water flooding production
Ebadi et al. Evaluation of added value in reservoir management by application of flow control with intelligent wells
US20200294413A1 (en) Coupling a simulator and at least one other simulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination