CN109769223A - 一种噪声信号无线同步的采集方法和数据采集系统 - Google Patents

一种噪声信号无线同步的采集方法和数据采集系统 Download PDF

Info

Publication number
CN109769223A
CN109769223A CN201910152536.8A CN201910152536A CN109769223A CN 109769223 A CN109769223 A CN 109769223A CN 201910152536 A CN201910152536 A CN 201910152536A CN 109769223 A CN109769223 A CN 109769223A
Authority
CN
China
Prior art keywords
data
equipment
data acquisition
acquisition
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910152536.8A
Other languages
English (en)
Other versions
CN109769223B (zh
Inventor
喻文广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electric Group Corp
Original Assignee
Shanghai Electric Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Group Corp filed Critical Shanghai Electric Group Corp
Priority to CN201910152536.8A priority Critical patent/CN109769223B/zh
Publication of CN109769223A publication Critical patent/CN109769223A/zh
Application granted granted Critical
Publication of CN109769223B publication Critical patent/CN109769223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供一种噪声信号无线同步的采集方法和数据采集系统,采集方法包括:形成无线传感器网络;数据总控设备向各个数据采集设备输出时钟同步信号,以对各个数据采集设备上的时钟进行同步校准;数据总控设备在进行同步校准的过程中获取各个数据采集设备的时钟偏移量,根据时钟偏移量分别向各个数据采集设备下发采集启动指令,使各个数据采集设备同时开始数据采集;数据总控设备根据各个数据采集设备反馈的节点数据处理得到采集间隔的时间偏移量,根据时间偏移量分别向各个数据采集设备下发采集调整指令,使各个数据采集设备具有相同的采集间隔。本发明的有益效果在于:减小通信传输间的时间延迟并提高同步采集的精度。

Description

一种噪声信号无线同步的采集方法和数据采集系统
技术领域
本发明涉及时间校准技术领域,尤其涉及一种噪声信号无线同步的采集方法和数据采集系统。
背景技术
目前,需要对电梯井道顶部的曳引机的电磁噪声和电梯轿厢的噪声进行采集以实现对整个升降电梯的噪声进行采集,由于升降电梯需要设置多个异地采集设备,同时现有技术中一般采用有线连接的方式对整个升降电梯的噪声进行采集,然而由于电梯轿箱为移动封闭体,并且曳引机设置在电梯井道顶部,较难实现布线工作,并且整个升降电梯中的各个采集设备之间的距离不等,因此采用有线测量方式难以实现同步采集。
为了实现同步采集,现有技术中采用基于无线传感器网络的监测系统,然而现有的无线传感器网络采集的数据一般为温度或低频信号等参数,即现有技术中的无线传感器网络的监测系统较难采集升降电梯中的噪声信号参数;并且现有技术中的无线传感器网络的监测系统中的各个不同采集点的分布具体分散性,因此各个不同采集点之间存在传输数据的时间差和传输数据之间的频率差,因此,现有技术中的无线传感器网络无法实现较高精度的同步采集。
发明内容
针对现有技术中存在的上述问题,现提供一种旨在提高无线同步采集精度的噪声信号无线同步的采集方法和数据采集系统。
具体技术方案如下:
一种噪声信号无线同步的采集方法,应用于电梯设备中,电梯设备包括电梯井道和电梯轿厢,其中,于电梯设备的各个数据采集节点均设置有数据采集设备,以及设置数据总控设备;
采集方法具体包括以下步骤:
步骤S1,各个数据采集设备均通过路由设备与数据总控设备通信连接,以形成无线传感器网络;
步骤S2,数据总控设备周期性地向各个数据采集设备输出时钟同步信号,以对各个数据采集设备上的时钟进行同步校准;
步骤S3,数据总控设备在进行同步校准的过程中获取各个数据采集设备的时钟偏移量,并根据时钟偏移量分别向各个数据采集设备下发采集启动指令,以保证各个数据采集设备同时开始数据采集;
步骤S4,在各个数据采集设备进行数据采集的过程中,数据总控设备根据各个数据采集设备反馈的节点数据处理得到采集间隔的时间偏移量,并根据时间偏移量分别向各个数据采集设备下发采集调整指令,以保证各个数据采集设备具有相同的采集间隔。
优选的,采集方法,其中,数据总控设备下发的采集启动指令包括数据采集设备的采集启动时间以及采集间隔。
优选的,采集方法,其中,步骤S1具体包括:
步骤S11,数据总控设备接入总控节点,并对总控节点进行网络配置;
步骤S12,总控节点根据网络配置接入相应的路由节点,并通过路由节点接入相应的数据采集节点,从而形成无线传感器网络。
优选的,采集方法,其中,步骤S12中,接入无线传感器网络的数据采集节点为网络配置中包括的数据采集节点。
优选的,采集方法,其中,每个数据采集设备将采集到的节点数据进行数据压缩处理后上传至数据总控设备进行存储。
优选的,采集方法,其中,步骤S3中,在进行同步校准的过程中,总控节点周期性向各个数据采集设备发送节点信标帧,并将各个数据采集设备根据节点信标帧反馈的反馈帧上传至数据总控设备,以供数据总控设备估计各个数据采集设备的时钟偏移量。
还包括一种数据采集系统,应用于电梯设备中,电梯设备包括电梯井道和电梯轿厢,其中,于电梯设备的多个数据采集节点分别设置有数据采集设备,以及设置数据总控设备;
数据采集系统包括:
建立模块,用于通过多个数据采集设备分别通过路由设备与数据总控设备通信连接,以建立无线传感器网络;
时钟信号校准模块,与建立模块连接,用于通过数据总控设备向各个数据采集设备输出时钟同步信号,以对各个数据采集设备上的时钟信号进行同步校准;
空间抖动抑制模块,与时钟信号校准模块连接,用于在进行同步校准的过程中通过数据总控设备获取各个数据采集设备的时钟偏移量,并根据时钟偏移量分别向各个数据采集设备下发采集启动指令,以保证各个数据采集设备同时开始数据采集;
时间抖动抑制模块,与空间抖动抑制模块连接,用于在各个数据采集设备进行数据采集的过程中通过数据总控设备根据各个数据采集设备反馈的节点数据处理得到采集间隔的时间偏移量,并根据时间偏移量分别向各个数据采集设备下发采集调整指令,以保证各个数据采集设备具有相同的采集间隔。
优选的,数据采集系统,其中,建立模块包括:
第一接入单元,用于接入总控节点,并对总控节点进行网络配置;
第二接入单元,与第一接入单元连接,用于根据网络配置在总控节点上接入相应的路由节点,并通过路由节点接入相应的数据采集节点。
优选的,数据采集系统,其中,空间抖动抑制模块包括:
估计单元,用于在进行同步校准的过程中,通过总控节点周期性向各个数据采集设备发送节点信标帧,并将各个数据采集设备根据节点信标帧反馈的反馈帧上传至数据总控设备,以供数据总控设备估计各个数据采集设备的时钟偏移量。
优选的,数据采集系统,其中,数据采集设备包括数据采集模块、传感器和无线通信模块。
上述技术方案具有如下优点或有益效果:通过多个数据采集设备和数据总控设备构建无线传感器网络,来实现同步校准,并且通过计算每个数据采集设备对应的时钟偏移量来进行调整数据采集的启动时间,以及通过计算每个数据采集设备对应采集间隔的时间偏移量,并通过采集间隔的时间偏移量来调整采集间隔,从而减小通信传输间的时间延迟,进而提高同步采集的精度。
附图说明
参考所附附图,以更加充分的描述本发明的实施例。然而,所附附图仅用于说明和阐述,并不构成对本发明范围的限制。
图1为本发明噪声信号无线同步的采集方法实施例的流程图;
图2为本发明噪声信号无线同步的采集方法的实施例的步骤S1的流程图;
图3为本发明数据采集系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
本发明包括一种噪声信号无线同步的采集方法,应用于电梯设备中,电梯设备包括电梯井道和电梯轿厢,其中,于电梯设备的各个数据采集节点均设置有数据采集设备,以及设置数据总控设备;
如图1所示,采集方法具体包括以下步骤:
步骤S1,各个数据采集设备均通过路由设备与数据总控设备通信连接,以形成无线传感器网络;
步骤S2,数据总控设备周期性地向各个数据采集设备输出时钟同步信号,以对各个数据采集设备上的时钟进行同步校准;
步骤S3,数据总控设备在进行同步校准的过程中获取各个数据采集设备的时钟偏移量,并根据时钟偏移量分别向各个数据采集设备下发采集启动指令,以保证各个数据采集设备同时开始数据采集;
步骤S4,在各个数据采集设备进行数据采集的过程中,数据总控设备根据各个数据采集设备反馈的节点数据处理得到采集间隔的时间偏移量,并根据时间偏移量分别向各个数据采集设备下发采集调整指令,以保证各个数据采集设备具有相同的采集间隔。
在上述实施例中,通过多个数据采集设备和数据总控设备构建无线传感器网络,来实现同步校准,并且通过计算每个数据采集设备对应的时钟偏移量来进行调整数据采集的启动时间,以及通过计算每个数据采集设备对应采集间隔的时间偏移量,并通过采集间隔的时间偏移量来调整采集间隔,从而减小通信传输间的时间延迟,进而提高同步采集的精度。
进一步地,作为优选的实施方式,上述数据采集节点的晶振频率可以为32MHz,在现有技术中的没有通过计算每个数据采集设备对应的时钟偏移量来进行调整数据采集的启动时间的无线传感器网络的单个采集节点的同步时间精度为10-7秒以下级别,然而在进行同步校准的过程中通过数据总控设备获取各个数据采集设备的时钟偏移量,并根据时钟偏移分别向各个数据采集设备下发采集启动指令,从而来进行调整数据采集的启动时间,进而实现各个数据采集节点的同步触发精度可降低至200ns以内,进而提高了各个数据采集节点的同步采集的精度。
其中,由于各个数据采集设备所处的位置不同和各个数据采集设备本身的不同,导致每个数据采集设备的当地时钟会不同,因此需要数据总控设备先向各个数据采集设备发送时钟同步信号,各个数据采集设备根据时钟同步信号调整对应的当地时钟。
进一步地,在上述实施例中,数据总控设备下发的采集启动指令包括数据采集设备的采集启动时间以及采集间隔。
进一步地,在上述实施例中,如图2所示,步骤S1具体包括:
步骤S11,数据总控设备接入总控节点,并对总控节点进行网络配置;
步骤S12,总控节点根据网络配置接入相应的路由节点,并通过路由节点接入相应的数据采集节点,从而形成无线传感器网络。
进一步地,作为优选的实施方式,在数据总控设备启动一次数据采集之前,就主动创建无线传感器网络,即数据总控设备接入总控节点并对总控节点进行网络配置。从而实现数据总控设备选择需要的数据采集节点接入无线传感器网络中,即在本实施方式中,数据总控设备可以不用接入全部的数据采集节点。
进一步地,在上述实施例中,步骤S12中,接入无线传感器网络的数据采集节点为网络配置中包括的数据采集节点。以实现数据总控设备可以给需要的数据采集节点进行网络配置,即将需要的数据采集节点接入无线传感器网络中,从而实现数据总控设备可以不用接入全部的数据采集节点,提高无线传感器网络的采集灵活性。
进一步地,在上述实施例中,每个数据采集设备将采集到的节点数据进行数据压缩处理后上传至数据总控设备进行存储。从而更快地进行数据存储。
进一步地,作为优选的实施方式,步骤S2可以包括以下步骤:
步骤S21,数据总控设备先向各个数据采集设备发送时钟同步信号,其中时钟同步信号包括时间同步指令和数据总控设备给各个数据采集设备的校准时钟;
步骤S22,各个数据采集设备根据时间同步指令将当地时钟调整到对应的校准时钟。
进一步地,作为优选的实施方式,在各个数据采集设备进行数据采集的过程中,数据总控设备根据各个数据采集设备的相邻的两次反馈的节点数据处理得到采集间隔,并将各个数据采集设备的相邻的两次反馈的节点数据处理得到采集间隔和下发的采集间隔比较,以得到时间偏移量。
进一步地,在上述实施例中,步骤S3中,在进行同步校准的过程中,总控节点周期性向各个数据采集设备发送节点信标帧,并将各个数据采集设备根据节点信标帧反馈的反馈帧上传至数据总控设备,以供数据总控设备估计各个数据采集设备的时钟偏移量。
进一步地,作为优选的实施方式,数据总控设备根据反馈帧计算得到各个数据采集设备和数据总控设备之间对应的距离,并且上述数据总控设备根据每个数据采集设备和数据总控设备之间对应的距离的大小调整对应的采集启动指令的下发时间,从而使采集启动指令同时到达各个数据采集设备,进而实现各个数据采集设备同时开始数据采集。
还包括一种数据采集系统,应用于电梯设备中,电梯设备包括电梯井道和电梯轿厢,其中,于电梯设备的多个数据采集节点分别设置有数据采集设备,以及设置数据总控设备,多个数据采集设备分别通过路由设备与数据总控设备通信连接,以形成无线传感器网络;
如图3所示,数据采集系统包括:
建立模块4,用于通过多个数据采集设备分别通过路由设备与数据总控设备通信连接,以建立无线传感器网络;
时钟信号校准模块1,与建立模块4连接,用于通过数据总控设备向各个数据采集设备输出时钟同步信号,以对各个数据采集设备上的时钟信号进行同步校准;
空间抖动抑制模块2,与时钟信号校准模块1连接,用于在进行同步校准的过程中通过数据总控设备获取各个数据采集设备的时钟偏移量,并根据时钟偏移量分别向各个数据采集设备下发采集启动指令,以保证各个数据采集设备同时开始数据采集;
时间抖动抑制模块3,与空间抖动抑制模块2连接,用于在各个数据采集设备进行数据采集的过程中通过数据总控设备根据各个数据采集设备反馈的节点数据处理得到采集间隔的时间偏移量,并根据时间偏移量分别向各个数据采集设备下发采集调整指令,以保证各个数据采集设备具有相同的采集间隔。
在上述实施例中,时钟信号校准模块1通过多个数据采集设备和数据总控设备构建无线传感器网络,来实现同步校准;
空间抖动抑制模块2通过计算每个数据采集设备对应的时钟偏移量来进行调整数据采集的启动时间;
时间抖动抑制模块3通过计算每个数据采集设备对应采集间隔的时间偏移量,并通过采集间隔的时间偏移量来调整采集间隔;
通过时间抖动抑制模块3、空间抖动抑制模块2和时间抖动抑制模块3的共同作用以减小通信传输间的时间延迟,从而提高同步采集的精度。
进一步地,在上述实施例中,建立模块4包括:
第一接入单元41,用于接入总控节点,并对总控节点进行网络配置;
第二接入单元42,与第一接入单元41连接,用于根据网络配置在总控节点上接入相应的路由节点,并通过路由节点接入相应的数据采集节点。
在上述实施例中,通过多个数据采集设备在无线传感器网络中构成一个分布式的实时采集系统,由于各个数据采集设备所处的位置不同和各个数据采集设备本身的不同,因此每个数据采集设备采集到的节点数据在时间上或事件的先后顺序上具有对比性,由此需要数据总控设备先向各个数据采集设备发送时钟同步信号,各个数据采集设备根据时钟同步信号调整对应的当地时钟,从而提高数据总控设备的处理速度和提高同步采集的精度。
进一步地,在上述实施例中,空间抖动抑制模块2包括:
估计单元,用于在进行同步校准的过程中,通过总控节点周期性向各个数据采集设备发送节点信标帧,并将各个数据采集设备根据节点信标帧反馈的反馈帧上传至数据总控设备,以供数据总控设备估计各个数据采集设备的时钟偏移量。
进一步地,作为优选的实施方式,估计单元通过数据总控设备根据反馈帧计算得到各个数据采集设备和数据总控设备之间对应的距离,并且上述数据总控设备根据每个数据采集设备和数据总控设备之间对应的距离的大小调整对应的采集启动指令的下发时间,从而使采集启动指令同时到达各个数据采集设备,进而实现各个数据采集设备同时开始数据采集。
进一步地,在上述实施例中,数据采集设备可以包括数据采集模块、传感器和无线通信模块;
其中传感器可以为噪声传感器、振动传感器、频率传感器中的至少一种。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (10)

1.一种噪声信号无线同步的采集方法,应用于电梯设备中,所述电梯设备包括电梯井道和电梯轿厢,其特征在于,于所述电梯设备的各个数据采集节点均设置有数据采集设备,以及设置一数据总控设备;
所述采集方法具体包括以下步骤:
步骤S1,各个所述数据采集设备均通过路由设备与所述数据总控设备通信连接,以形成一无线传感器网络;
步骤S2,所述数据总控设备周期性地向各个所述数据采集设备输出时钟同步信号,以对各个所述数据采集设备上的时钟进行同步校准;
步骤S3,所述数据总控设备在进行所述同步校准的过程中获取各个所述数据采集设备的时钟偏移量,并根据所述时钟偏移量分别向各个所述数据采集设备下发采集启动指令,以保证各个所述数据采集设备同时开始数据采集;
步骤S4,在各个所述数据采集设备进行数据采集的过程中,所述数据总控设备根据各个所述数据采集设备反馈的节点数据处理得到采集间隔的时间偏移量,并根据所述时间偏移量分别向各个所述数据采集设备下发采集调整指令,以保证各个所述数据采集设备具有相同的采集间隔。
2.如权利要求1所述的采集方法,其特征在于,所述数据总控设备下发的所述采集启动指令包括所述数据采集设备的采集启动时间以及采集间隔。
3.如权利要求1所述的采集方法,其特征在于,所述步骤S1具体包括:
步骤S11,所述数据总控设备接入一总控节点,并对所述总控节点进行网络配置;
步骤S12,所述总控节点根据网络配置接入相应的路由节点,并通过所述路由节点接入相应的所述数据采集节点,从而形成所述无线传感器网络。
4.如权利要求3所述的采集方法,其特征在于,所述步骤S12中,接入所述无线传感器网络的所述数据采集节点为网络配置中包括的所述数据采集节点。
5.如权利要求1所述的采集方法,其特征在于,每个所述数据采集设备将采集到的所述节点数据进行数据压缩处理后上传至所述数据总控设备进行存储。
6.如权利要求3所述的采集方法,其特征在于,所述步骤S3中,在进行同步校准的过程中,所述总控节点周期性向各个所述数据采集设备发送节点信标帧,并将各个所述数据采集设备根据所述节点信标帧反馈的反馈帧上传至所述数据总控设备,以供所述数据总控设备估计各个所述数据采集设备的所述时钟偏移量。
7.一种数据采集系统,应用于电梯设备中,所述电梯设备包括电梯井道和电梯轿厢,其特征在于,于所述电梯设备的多个数据采集节点分别设置有数据采集设备,以及设置一数据总控设备;
所述数据采集系统包括:
建立模块,用于通过多个所述数据采集设备分别通过路由设备与所述数据总控设备通信连接,以建立一无线传感器网络;
时钟信号校准模块,与所述建立模块连接,用于通过所述数据总控设备向各个所述数据采集设备输出时钟同步信号,以对各个所述数据采集设备上的时钟信号进行同步校准;
空间抖动抑制模块,与所述时钟信号校准模块连接,用于在进行所述同步校准的过程中通过所述数据总控设备获取各个所述数据采集设备的时钟偏移量,并根据所述时钟偏移量分别向各个所述数据采集设备下发采集启动指令,以保证各个所述数据采集设备同时开始数据采集;
时间抖动抑制模块,与所述空间抖动抑制模块连接,用于在各个所述数据采集设备进行数据采集的过程中通过所述数据总控设备根据各个所述数据采集设备反馈的节点数据处理得到采集间隔的时间偏移量,并根据所述时间偏移量分别向各个所述数据采集设备下发采集调整指令,以保证各个所述数据采集设备具有相同的采集间隔。
8.如权利要求7所述的数据采集系统,其特征在于,所述建立模块包括:
第一接入单元,用于接入总控节点,并对所述总控节点进行网络配置;
第二接入单元,与所述第一接入单元连接,用于根据网络配置在所述总控节点上接入相应的路由节点,并通过所述路由节点接入相应的所述数据采集节点。
9.如权利要求7所述的数据采集系统,其特征在于,所述空间抖动抑制模块包括:
估计单元,用于在进行同步校准的过程中,通过所述总控节点周期性向各个所述数据采集设备发送节点信标帧,并将各个所述数据采集设备根据所述节点信标帧反馈的反馈帧上传至所述数据总控设备,以供所述数据总控设备估计各个所述数据采集设备的所述时钟偏移量。
10.如权利要求7所述的数据采集系统,其特征在于,所述数据采集设备包括数据采集模块、传感器和无线通信模块。
CN201910152536.8A 2019-02-28 2019-02-28 一种噪声信号无线同步的采集方法和数据采集系统 Active CN109769223B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910152536.8A CN109769223B (zh) 2019-02-28 2019-02-28 一种噪声信号无线同步的采集方法和数据采集系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910152536.8A CN109769223B (zh) 2019-02-28 2019-02-28 一种噪声信号无线同步的采集方法和数据采集系统

Publications (2)

Publication Number Publication Date
CN109769223A true CN109769223A (zh) 2019-05-17
CN109769223B CN109769223B (zh) 2022-06-10

Family

ID=66457567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910152536.8A Active CN109769223B (zh) 2019-02-28 2019-02-28 一种噪声信号无线同步的采集方法和数据采集系统

Country Status (1)

Country Link
CN (1) CN109769223B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111049637A (zh) * 2019-12-30 2020-04-21 北京润科通用技术有限公司 时钟同步偏差测量方法及装置
CN111102689A (zh) * 2019-12-11 2020-05-05 珠海格力电器股份有限公司 时钟同步的调整方法及装置
CN111273538A (zh) * 2020-01-13 2020-06-12 广东大普通信技术有限公司 一种动态适配时钟噪声方法、装置及可读存储介质
CN111510876A (zh) * 2020-04-01 2020-08-07 北京未来感知科技有限公司 基于uwb技术的无线传感系统时钟同步方法、接收端系统及发射端系统
WO2022100110A1 (zh) * 2020-11-16 2022-05-19 华为技术有限公司 网络同步的方法、装置、设备、系统及可读存储介质
CN114739445A (zh) * 2022-01-27 2022-07-12 厦门万宾科技有限公司 一种城市级排水管网增强扫描方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778405A (zh) * 2010-01-05 2010-07-14 武汉理工大学 结构健康监测的无线传感器网络同步采集方法及系统
CN102355319A (zh) * 2011-08-17 2012-02-15 中国科学院深圳先进技术研究院 无线传感器网络中的时间同步方法及系统
US20120263165A1 (en) * 2010-04-16 2012-10-18 Radoslaw Romuald Zakrzewski Synchronization within wireless devices
CN103209473A (zh) * 2013-03-29 2013-07-17 北京硕人时代科技有限公司 一种低功耗无线传感器网络信息采集方法
US20140240688A1 (en) * 2013-02-26 2014-08-28 Hexagon Technology Center Gmbh Sensor synchronization method and sensor measuring system appertaining thereto
CN104158647A (zh) * 2014-08-26 2014-11-19 太原理工大学 一种无线传感网络时钟同步方法
CN107835962A (zh) * 2015-05-13 2018-03-23 科诺科菲利浦公司 钻探数据的时间校正

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778405A (zh) * 2010-01-05 2010-07-14 武汉理工大学 结构健康监测的无线传感器网络同步采集方法及系统
US20120263165A1 (en) * 2010-04-16 2012-10-18 Radoslaw Romuald Zakrzewski Synchronization within wireless devices
CN102355319A (zh) * 2011-08-17 2012-02-15 中国科学院深圳先进技术研究院 无线传感器网络中的时间同步方法及系统
US20140240688A1 (en) * 2013-02-26 2014-08-28 Hexagon Technology Center Gmbh Sensor synchronization method and sensor measuring system appertaining thereto
CN103209473A (zh) * 2013-03-29 2013-07-17 北京硕人时代科技有限公司 一种低功耗无线传感器网络信息采集方法
CN104158647A (zh) * 2014-08-26 2014-11-19 太原理工大学 一种无线传感网络时钟同步方法
CN107835962A (zh) * 2015-05-13 2018-03-23 科诺科菲利浦公司 钻探数据的时间校正

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
裴勇: "基于信标时序补偿的机械振动无线传感器网络同步触发方法", 《振动与冲击》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111102689A (zh) * 2019-12-11 2020-05-05 珠海格力电器股份有限公司 时钟同步的调整方法及装置
CN111049637A (zh) * 2019-12-30 2020-04-21 北京润科通用技术有限公司 时钟同步偏差测量方法及装置
CN111273538A (zh) * 2020-01-13 2020-06-12 广东大普通信技术有限公司 一种动态适配时钟噪声方法、装置及可读存储介质
CN111510876A (zh) * 2020-04-01 2020-08-07 北京未来感知科技有限公司 基于uwb技术的无线传感系统时钟同步方法、接收端系统及发射端系统
CN111510876B (zh) * 2020-04-01 2022-04-22 北京未来感知科技有限公司 基于uwb技术的无线传感系统时钟同步方法、接收端系统及发射端系统
WO2022100110A1 (zh) * 2020-11-16 2022-05-19 华为技术有限公司 网络同步的方法、装置、设备、系统及可读存储介质
CN114739445A (zh) * 2022-01-27 2022-07-12 厦门万宾科技有限公司 一种城市级排水管网增强扫描方法及系统
CN114739445B (zh) * 2022-01-27 2023-12-15 厦门万宾科技有限公司 一种城市级排水管网增强扫描方法及系统

Also Published As

Publication number Publication date
CN109769223B (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
CN109769223A (zh) 一种噪声信号无线同步的采集方法和数据采集系统
CN107182123B (zh) 一种uwb 定位系统的同步方法及同步系统
CN101252429B (zh) 一种提高分布式网络系统中时钟同步精度的方法
CN105743598B (zh) 一种工业以太网时钟同步方法及系统
CN101466142B (zh) 无线传感器网络中分层时间比较时钟同步方法
CN103812592B (zh) 基于链状工业以太网的时间同步协议系统及同步方法
CN104836630B (zh) Ieee1588时钟同步系统及其实现方法
CN101227246A (zh) 一种主从时钟同步的方法及装置
CN105049309B (zh) 基于powerlink实时以太网的伺服驱动器同步方法
CN102801517B (zh) Cdr电路及终端
CN110798276B (zh) 一种智能变电站sdn网络的时间同步方法与系统
CN107222360A (zh) 一种基于分布式集群的数据采集系统及方法
CN109150357A (zh) 基于rs485和以太网的混合总线的时间同步方法
CN104683088B (zh) 多基准同步方法、装置及系统
CN105188126A (zh) 基于平均场的分布式多跳无线网络时钟同步方法
CN106656397A (zh) 时钟同步方法及装置
CN110300450A (zh) 一种利用自适应滤波器校正ieee 1588协议的时钟伺服方法
CN108134644B (zh) 同步方法、装置、同步设备及系统
CN106656385A (zh) 中继系统的空口时间同步方法、设备
DE602004005991T2 (de) Verfahren zur taktsynchronisation drahtloser 1394-busse für über ieee 802.11-lan netzwerk verbundene knoten
CN106302244A (zh) 一种消除网络传输抖动的设备及其方法
CN114205045A (zh) 一种tte网络时钟校准方法及系统
CN106656395B (zh) 基于自学习改进的电网时间同步测量系统和方法
CN103441832B (zh) 基于ptp的时钟同步方法、系统和设备
CN111954242B (zh) 一种基于5g信号的ofdm室内定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant