CN109576594B - 一种热轧磁轭钢及其制造方法 - Google Patents

一种热轧磁轭钢及其制造方法 Download PDF

Info

Publication number
CN109576594B
CN109576594B CN201710908140.2A CN201710908140A CN109576594B CN 109576594 B CN109576594 B CN 109576594B CN 201710908140 A CN201710908140 A CN 201710908140A CN 109576594 B CN109576594 B CN 109576594B
Authority
CN
China
Prior art keywords
equal
steel
less
hot
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710908140.2A
Other languages
English (en)
Other versions
CN109576594A (zh
Inventor
张晨
胡晓萍
陆敏
王焕荣
王巍
杨阿娜
杨征
杜毅铭
华骏山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN201710908140.2A priority Critical patent/CN109576594B/zh
Publication of CN109576594A publication Critical patent/CN109576594A/zh
Application granted granted Critical
Publication of CN109576594B publication Critical patent/CN109576594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

本发明公开了一种热轧磁轭钢,其化学元素质量百分比为:C:0.03~0.15%,Si:0.20~1.20%,Mn:1.70~2.50%,Ti:0.08~0.18%,Nb≤0.10%,Mo:0.10~0.60%,V≤0.10%,Als:0.02~0.10%,N≤0.005%,余量为Fe以及其它不可避免的杂质。此外,本发明还公开了一种上述的热轧磁轭钢的制造方法,包括步骤:(1)冶炼、精炼和铸造;(2)再加热:加热温度≥1230℃,保温时间为1~2h;(3)热轧;(4)层流冷却;(5)卷取:卷取温度550~650℃,然后缓慢冷却至室温。本发明所述的热轧磁轭钢强度高、韧性好,磁感性能佳。

Description

一种热轧磁轭钢及其制造方法
技术领域
本发明涉及一种磁轭钢及其制造方法,尤其涉及一种热轧磁轭钢及其制造方法。
背景技术
水电资源是一种可再生的清洁能源,大力发展水电开发具有重要的意义。然而,这些大型水电项目均需单机容量百万千瓦级别的大型水轮发电机组,这对于水轮发电机转子磁轭部分用钢的综合性能提出了更加严格的要求。
目前,已有专利文献公开了热轧高强度磁轭钢及其制造方法。例如:公开号为CN101016600,公开日为2007年8月15日,名称为“C-Mn-Ti-Nb系热轧高强度高磁感性能钢及其制造方法”的中国专利文献公开了一种C-Mn-Ti-Nb系热轧高强度磁轭钢,其组分及含量为:C:0.03~0.15%,Si:≤0.15%,Mn:1.00~1.80%,P:≤0.025%,S:≤0.015%,Ti:0.08~0.18%,Nb:0.02~0.07%,Als:0.02~0.10%,N:≤0.010%。在该专利文献所公开的生产工艺为:先将所浇注的板坯加热至1230~1280℃;然后粗轧,粗轧结束温度为≥1100℃;然后精轧,终轧温度为850~930℃;钢板轧后采用层流冷却后卷取,卷取温度为550~620℃,制得热轧板卷。然而,该专利文献所公开的热轧高强度磁轭钢屈服强度偏低,仅为700MPa级别,磁感性能B50≥1.5T。
另有公开号为:CN103451532A,公开日为2013年12月18日,名称为“屈服强度≥750MPa的热轧磁轭钢及其生产方法”的中国专利文献公开了一种热轧磁轭钢,其组分及含量为:C:0.03~0.15%,Si:≤0.15%,Mn:1.10~1.90%,P:≤0.020%,S:≤0.010%,Ti:0.08~0.18%,Nb:0.075~0.120%,Als:0.02~0.10%,N:≤0.010%。该专利文献所公开的热轧磁轭钢通过提高Nb含量来进一步提高钢板的强度,采用控轧控冷热连轧工艺,加热温度为1280~1350℃,粗轧结束温度为≥1100℃,精轧终轧温度为850~930℃,卷取温度为640~700℃。其屈服强度≥750MPa,抗拉强度≥800MPa,延伸率≥11%,磁感性能B50≥1.5T。
此外,公开号为CN103451533A,公开日为2013年12月18日,名称为“屈服强度≥800MPa的热轧磁轭钢及其生产方法”的中国专利文献公开了一种屈服强度≥800MPa的热轧磁轭钢。在该专利文献所公开的技术方案中,通过进一步添加Mo(wt%,0.10~0.50%)元素将钢的强度提高至800MPa级别。生产工艺为:板坯加热至1280~1350℃;然后粗轧,粗轧结束温度为≥1100℃;精轧终轧温度为850~930℃;钢板轧后层流冷却后卷取,卷取温度为640~700℃,制得热轧板卷。其屈服强度≥800MPa,抗拉强度≥850MPa,延伸率≥11%,磁感性能B50≥1.5T。
为了进一步加强电机的安全性设计,在特大型水电项目中,已经有行业领先的大型水轮发电厂提出增加磁轭钢高韧性的要求。
发明内容
本发明的目的之一在于提供一种热轧磁轭钢,该热轧磁轭钢强度高、韧性好,具有高磁感性能。
为了达到上述发明的目的,本发明提供了一种热轧磁轭钢,其化学元素质量百分比为:
C:0.03~0.15%,Si:0.20~1.20%,Mn:1.70~2.50%,Ti:0.08~0.18%,Nb≤0.10%,Mo:0.10~0.60%,V≤0.10%,Als:0.02~0.10%,N≤0.005%,余量为Fe以及其它不可避免的杂质。
在本技术方案中,其他不可避免的杂质主要包括S和P,其中可以控制P≤0.015%,S≤0.005%。
在成分设计上,本案发明人通过理论分析和试验,通过高Ti含量的添加从而在带钢卷取过程中析出弥散细小的纳米级碳化物,起到强烈的析出强化效果;同时加入适量的Mo元素是为了在卷取后的缓慢冷却过程中保持Ti的碳化物的高温热稳定性,强化纳米碳化物的析出强化效果的持续时间;而通过加入Nb元素,起到细化晶粒,从而提高强度和冲击韧性的作用;通过加入V元素,起到细化晶粒,从而提高强度的作用;而Si元素的设计是为了提高强度和磁感性能;而C含量的设计一方面要保证强度,同时也要与Ti、Nb、Mo、V、N含量相配合,最终使得所述的热轧磁轭钢达到所需要的微观组织,具有较好的钢种性能。
本发明所述的热轧磁轭钢的各化学元素设计原理如下所述:
C:碳(C)是钢中不可或缺的基本元素之一,作为钢中的间隙原子,对提高钢的强度起着非常重要的作用。在本发明专利中,为了获得抗拉强度达750MPa级的高强钢,必须保证C的质量百分比在0.03%以上,以使钢中形成足够的贝氏体组织和较多的碳化物析出物;同时C的质量百分比也不能太高,否则在热轧高温卷取过程中将使铁素体相变抑制,不利于形成铁素体+贝氏体以及纳米级析出物的微观组织,对磁感性能和冲击韧性产生不利影响。本案中C的加入量与Ti、Nb、Mo、V和N的加入量密切相关。在本发明所述的技术方案的成分设计中,一个重要原则是保证加入的C应全部与Ti、Nb、Mo、V和N原子相结合并形成大量弥散细小的且具有高热稳定性的纳米级析出物。这些纳米级析出物在后续工艺过程中例如高温卷取后的缓慢冷却过程中可有效的抑制铁素体晶粒长大,同时起到析出强化效果。综上考虑,本发明所述的热轧磁轭钢将碳的质量百分比应控制在0.03~0.15%。
Si:硅(Si)是钢中的基本元素之一,也是本案的一个关键元素。Si在炼钢过程起到部分脱氧的作用。Si在钢中可扩大铁素体形成范围,有利于扩大轧制工艺窗口;同时Si还有较强的固溶强化效果。此外,Si可以减少晶体各向异性,使磁化容易,磁阻减少,同时,Si还能减轻钢中其它杂质的危害,降低对磁性的有害影响,显著提高本发明所述的热轧磁轭钢的磁感应性能;但是,Si的质量百分比太高,会降低钢的导热性,例如在钢带加热和冷却过程中,引起内裂。因此,本发明所述的热轧磁轭钢将硅的质量百分比控制在0.20~1.20%。
Mn:锰(Mn)是钢中最基本的元素之一,也是扩大奥氏体相区的重要元素,可以降低钢的临界淬火速度,稳定奥氏体,细化晶粒,提高钢的强度和韧性。在本发明所述的热轧磁轭钢中,为保证钢板的强度和韧性,Mn的质量百分比应控制在1.7%以上;同时,Mn的质量百分比过高,炼钢时容易发生Mn偏析,同时在制造过程例如板坯连铸时易发生热裂。因此,本发明所述的热轧磁轭钢中将Mn的质量百分比控制在1.70~2.50%。
Ti:钛(Ti)是本案中的重要元素之一。加入较高质量百分比的Ti是为了在奥氏体向铁素体转变过程中,在铁素体基体中形成更多的纳米级碳化物,同时需要添加一定量Mo元素以保证纳米级碳化物在高温时仍具有较强的抗粗化能力,即具有高的热稳定性。此外,控制Ti与Mo之间的元素质量百分比,以使得Ti与Mo可以充分发挥钢中微合金元素的纳米析出强化作用,从而使本发明所述的热轧磁轭钢具有高强度和高磁感应性能。经理论计算和试验证实,本案发明人发现为了Ti发挥最佳析出强化效果,Ti质量百分比应控制在0.08~0.18%之间。
Nb:铌(Nb)在控制轧制过程中,可以提高钢的再结晶温度,同时通过抑制再结晶和阻止晶粒长大,可细化奥氏体晶粒尺寸,有效提高钢的冲击韧性;并在轧后冷却过程中,NbC和NbN纳米级析出物析出,可以起到很好的沉淀强化作用。因此,在本发明所述的热轧磁轭钢的质量百分比控制在Nb≤0.10%。
Mo:钼(Mo)也是本案中的关键元素之一。Mo与C之间也有较强的结合力,与Ti相比,MoC通常大部分在铁素体中析出。经试验证实,单纯添加Ti的高强钢中,TiC在600-700℃的高温卷取过程中粗化现象比较严重,钢卷缓慢冷却至室温后TiC的弥散强化效果会大大减弱。而本案通过添加一定量的Mo元素之后,由于形成(Ti,Mo)C不仅需要Ti原子的扩散,同时还需要Mo元素的扩散,而Mo的扩散过程是非常缓慢的。因此使得(Ti,Mo)C的粗化过程比单一的TiC的粗化过程缓慢得多,从而使(Ti,Mo)C具有更高的热稳定性。同时,Ti和Mo的含量也必须控制在一定的范围内才能达到最佳效果。根据试验结果,Mo的质量百分比控制在0.10~0.60%之间时,其与Ti形成的(Ti,Mo)C具有最强的高温热稳定性。
V:钒(V)是本案中的关键元素之一。V与Ti类似,由于其碳氮化物在奥氏体中的的固溶度较大而通常在铁素体中析出。V也是强碳化物形成元素,加入适量的V可固定多余的C,进一步起到析出强化效果。根据理论分析和试验研究结果,本发明所述的热轧磁轭钢中的V的质量百分比控制在V≤0.10%。
Als:Al在本发明专利中的基本作用主要是在炼钢过程中脱氧。钢中Al的质量百分比一般不低于0.02%;同时,若Al的质量百分比过高,其细化晶粒的作用反而减弱。根据实际生产过程中铝含量的控制水平,将钢中Als的质量百分比控制在0.02~0.10%即可,优选地,控制Als的质量百分比在0.02~0.06%。
N:氮(N)在本案中属于有害元素,其质量百分比越低越好。然而,N是钢中不可避免的元素,通常情况下,若在炼钢过程中不进行特殊控制,钢中N的残余质量百分比通常≤0.005%。这些固溶或游离的N元素必须通过形成某种氮化物加以固定,否则游离的氮原子对钢的冲击韧性非常不利,而且在带钢轧制的过程中很容易形成全长性的“锯齿裂”缺陷。本案中通过添加强碳化物或氮化物形成元素Ti,形成稳定的TiN从而固定N原子。因此,在本发明所述的热轧磁轭钢中,N的质量百分比控制在0.005%以内且越低越好。
P:磷(P)是钢中有害的杂质元素。P极易偏聚到晶界上,钢中P的含量较高时,形成Fe2P在晶粒周围析出,降低钢的韧性和磁感性能,故其含量越低越好,在本发明所述的热轧磁轭钢中,控制磷的质量百分比P≤0.015%。
S:硫(S)是钢中有害的杂质元素。钢中的S通常与Mn结合形成MnS夹杂,尤其是当S和Mn的质量百分比均较高时,钢中将形成较多的MnS,而MnS本身具有一定的塑性,在后续轧制过程中MnS沿轧向发生变形,降低钢板的横向拉伸性能。因此,钢中S的质量百分比越低越好,本发明专所述的热轧磁轭钢的S的质量百分比控制在S≤0.005%。
进一步地,在本发明所述的热轧磁轭钢中,还满足:0.2≤Ti/Mo≤1.8,其中Ti和Mo均表示其质量百分比。为了更进一步发挥钢中微合金元素的纳米析出强化作用,将Ti和Mo的质量百分比控制在满足关系式:0.2≤Ti/Mo≤1.8。
在该限定公式中,Ti和Mo均表示其对应的元素的质量百分比,例如当Ti的质量百分比为0.14%,Mo的质量百分比为0.30%,代入公式时Ti的值为0.14%,代入公式时Mo的值为0.30%。
进一步地,在本发明所述的热轧磁轭钢中,还满足:0.03%≤(Ti-3.42N)/4+Nb/7.67+Mo/8+V/4.17≤0.15%,其中Ti、Nb、Mo、V和N均表示其质量百分比。
在上述限定公式中,Ti、Nb、Mo、V和N均均表示其质量百分比,例如当Ti的质量百分比为0.14%,Nb的质量百分比为0.05%,Mo的质量百分比为0.30%,V的质量百分比为0.055%,N的质量百分比0.005%,代入公式时Ti的值为0.14%,Nb的值为0.05%,Mo的值为0.30%,V的值为0.055%。
进一步地,在本发明所述的热轧磁轭钢中,其微观组织为铁素体+贝氏体基体以及纳米级析出物,所述析出物包括Ti的析出物。
进一步地,在本发明所述的热轧磁轭钢中,所述析出物还包括Nb的析出物和/或V的析出物。
进一步地,在本发明所述的热轧磁轭钢中,其中贝氏体的相比例≥70%。
进一步地,在本发明所述的热轧磁轭钢中,其中贝氏体的相比例≥80%。
进一步地,在本发明所述的热轧磁轭钢中,其屈服强度≥750MPa,抗拉强度≥800MPa,延伸率≥14%,-20℃纵向冲击功KV2≥54J,磁感性能B50≥1.58T,B100≥1.73T,B200≥1.90T,B300≥1.93T。
相应地,本发明的另一目的在于提供一种上述的热轧磁轭钢的制造方法,通过配合上述热轧磁轭钢的成分设计例如高含量Ti的成分设计,采用较高的加热温度以保证尽可能多的Ti原子固溶在板坯中,从而获得性能好的热轧磁轭钢。
为了达到上述发明的目的,本发明提供了上述的热轧磁轭钢的制造方法,包括步骤:
(1)冶炼、精炼和铸造;
(2)再加热:加热温度≥1230℃,保温时间为1~2h;
(3)热轧;
(4)层流冷却;
(5)卷取:卷取温度550~650℃,然后缓慢冷却至室温。
在本发明所述的技术方案中,钢坯的加热温度控制在≥1230℃,以保证有尽可能多的Ti原子固溶在板坯中,这是由于Ti的碳氮化物固溶温度通常很高(例如≥1300℃),在炼钢或连铸以及轧制过程的不同阶段均会析出,这就使得最终可用来起到析出强化作用的Ti的质量百分比变低,因此,必须保证高的加热温度才有可能在最终的卷取过程中获得更多的纳米析出物。
此外,在热轧阶段,轧制过程应以7~8m/s的速度快速完成,避免在热轧阶段过多Ti的碳氮化物析出,这是因为在热轧阶段尤其是精轧处于奥氏体区,在此温度区间析出的Ti的碳化物或碳氮化物尺寸大多在几十微米,对最终的析出强化效果不大。因此,热轧阶段应尽快完成以保留更多的Ti原子在卷取过程中析出。
另外,加入Ti、V和Nb后,微合金元素在板坯加热过程中重新溶解,以固溶状态存在于钢中;钢中纳米析出物例如包括Nb的析出物、包括V的析出物和包括Ti的析出物析出发生在热轧的精轧阶段结束至卷取缓冷过程中,当钢冷却至550~700℃时,Nb、Ti将析出形成(Nb,Ti)(C,N)类纳米级析出物;当钢冷却至500650℃时,V将析出形成V(C,N)类纳米级析出物。当钢中不添加V元素时,在钢中需要形成更多的Ti(C,N)类纳米级析出物,从而保证钢板具有较高的拉伸性能。
同时,为了进一步保证钢的低温冲击韧性以及良好的磁性能,钢中不能出现马氏体组织以及下贝氏体组织,且钢中的各类非金属夹杂物级别均应≤1.5级,且四类夹杂物级别总和应≤5.0。
进一步地,在本发明所述的制造方法中,在步骤(3)中,控制开轧温度为1080~1200℃,在1000℃以上多道次大压下量轧制且累计变形量≥50%,随后中间坯待温至900~950℃,再进行多道次轧制且累计变形量≥70%;终轧温度控制在860~920℃之间。
在本发明所述的制造方法,钢坯的加热温度设定为≥1230℃以保证有尽可能多的微合金原子固溶在板坯中,而最终的卷取过程中获得更多的纳米级碳化物。由于钢含有较多的Nb、Ti和V元素,能使钢的再结晶温度提高至950℃以上,而本发明所述的制造方法将终轧温度控制为860~920℃,因而,能够获得细小的铁素体+贝氏体组织。通过上述成分工艺的配合,使得钢板的组织为铁素体、贝氏体和纳米级析出物。
进一步地,在本发明所述的制造方法中,在步骤(5)中,卷取温度为550~580℃。
当卷取温度为550~580℃时,热轧后的变形奥氏体将在冷却过程中(卷取之前)发生部分铁素体转变,其铁素体量≤20%,其余,奥氏体将在卷取成卷之后发生贝氏体转变,即贝氏体比例≥80%。
进一步地,在本发明所述的制造方法中,在步骤(5)中,卷取温度>580℃。
当卷取温度高于580~650℃时,精轧后的变形奥氏体在冷却过程中(卷取之前)的铁素体转变量较少(≤10%),卷取之后再发生部分铁素体转变(≤20%),随后剩余变形奥氏体将发生贝氏体转变,即贝氏体比例≥70%。
进一步地,在本发明所述的制造方法中,还包括步骤(6)回火:回火温度≤600℃。
根据对钢板板形质量的不同要求,可选择是否进行回火热处理。回火热处理能够消除钢中残余内应力,有利于提高钢板的磁性能和板形质量。但是,回火热处理将对钢的组织产生一定影响,同时,也对钢中纳米级析出物的长大粗化产生影响,从而对钢板的拉伸性能以及低温韧性产生一定的影响。本发明所述的热轧磁轭钢通过合适的成分设计和工艺设计,能够有效阻止纳米级析出物在回火热处理过程中的长大,从而使得本发明所述的热轧磁轭钢可进行回火热处理等热加工工艺,在所述的制造方法中,回火温度≤600℃。
本发明所述的热轧磁轭钢,其屈服强度≥750MPa,抗拉强度≥800MPa,延伸率≥14%,-20℃纵向冲击功KV2≥54J,磁感性能B50≥1.58T,B100≥1.73T,B200≥1.90T,B300≥1.93T,能够满足生产需要,尤其是高单机容量的特大型水轮发电机转子磁轭用高强度高韧性高磁感性能的需求。
附图说明
图1为实施例1的热轧磁轭钢的微观组织图。
图2示意了实施例3的热轧磁轭钢的纳米级析出物。
具体实施方式
下面将根据具体实施例及说明书附图对本发明所述的热轧磁轭钢作进一步说明,但是该说明并不构成对本发明技术方案的不当限定。
实施例1-5
表1列出了实施例1-5的热轧磁轭钢中的各化学元素的质量百分比。
表1.(wt%,余量为Fe和除了P、S以外的其他不可避免的杂质元素)
表1中公式1是指(Ti-3.42N)/4+Nb/7.67+Mo/8+V,其中Ti、Nb、Mo、V和N均表示其质量百分比。
实施例1-5的热轧磁轭钢的制造方法包括如下步骤:
(1)按照表1所列的化学元素组分进行冶炼、精炼和铸造;
(2)再加热:加热温度≥1230℃,保温时间为1~2h;
(3)热轧:控制开轧温度为1080~1200℃,在1000℃以上多道次大压下量轧制且累计变形量≥50%,随后中间坯待温至900~950℃,再进行多道次轧制且该多道次轧制的累计变形量≥70%;终轧温度控制在860~920℃之间。
(4)层流冷却;
(5)卷取:卷取温度550~650℃,然后缓慢冷却至室温;
需要说明的是,在其他的实施例中,在步骤(5)之后还可以进行步骤(6)回火:回火温度≤600℃。
表2列出了实施例1-5的热轧磁轭钢的制造方法中的具体工艺参数。
表2.
实施例1-5的热轧磁轭钢的微观组织进行了金相观察,发现各实施例的微观组织均为铁素体+贝氏体基体以及纳米级析出物。
另外,对本案各实施例的热轧磁轭钢进行了性能测定,并将其结果列于表3和表4中。
表3列出了各实施例的热轧磁轭钢的力学性能。
表3.
由表3可以看出,本案各实施例的热轧磁轭钢,其屈服强度≥750MPa,抗拉强度≥800MPa,延伸率≥14%,-20℃纵向冲击功KV2≥54J。
表4列出了各实施例的热轧磁轭钢的磁感性能。
表4.
实施例 B<sub>50</sub>(T) B<sub>100</sub>(T) B<sub>200</sub>(T) B<sub>300</sub>(T)
1 1.620 1.860 1.918 1.982
2 1.624 1.877 1.935 2.000
3 1.627 1.802 1.951 2.020
4 1.622 1.786 1.928 1.993
5 1.611 1.854 1.909 1.973
由表4可以看出,各实施例的热轧磁轭钢的磁感性能表现为:B50≥1.58T,B100≥1.73T,B200≥1.90T,B300≥1.93T。
图1为实施例1的热轧磁轭钢的微观组织图。
如图1所示,实施例1的热轧磁轭钢的微观组织为铁素体+贝氏体,其中贝氏体的含量为76%。
图2示意了实施例3的热轧磁轭钢的纳米级析出物。
如图2所示,实施例3的热轧磁轭钢的微观组织还包括纳米级析出物,该纳米级析出物保证了本案实施例钢的良好的拉伸性能、韧塑性以及磁感应性能。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
还需要注意的是,以上所列举的实施例仅为本发明的具体实施例。显然本发明不局限于以上实施例,随之做出的类似变化或变形是本领域技术人员能从本发明公开的内容直接得出或者很容易便联想到的,均应属于本发明的保护范围。

Claims (9)

1.一种热轧磁轭钢,其特征在于,其化学元素质量百分比为:
C:0.03~0.15%,Si:0.50~1.20%,Mn:1.70~2.50%,Ti:0.08~0.18%,Nb≤0.10%,Mo:0.10~0.60%,V≤0.10%,Als:0.02~0.10%,N≤0.005%,余量为Fe以及其它不可避免的杂质;
其微观组织为铁素体+贝氏体基体以及纳米级析出物,钢中无马氏体组织以及下贝氏体组织,所述析出物包括Ti的析出物,其中贝氏体的相比例≥70%;钢中的各类非金属夹杂物级别均应≤1.5级,且四类夹杂物级别总和应≤5.0;
其中各化学元素含量还满足:0.2≤Ti/Mo≤1.8,其中Ti和Mo均表示其质量百分比;0.03%≤(Ti-3.42N)/4+Nb/7.67+Mo/8+V/4.17≤0.15%,其中Ti、Nb、Mo、V和N均表示其质量百分比。
2.如权利要求1所述的热轧磁轭钢,其特征在于,所述析出物还包括Nb的析出物和/或V的析出物。
3.如权利要求1所述的热轧磁轭钢,其特征在于,其中贝氏体的相比例≥80%。
4.如权利要求1-3中任意一项所述的热轧磁轭钢,其特征在于,其屈服强度≥750MPa,抗拉强度≥800MPa,延伸率≥14%,-20℃纵向冲击功KV2≥54J,磁感性能B50≥1.58T,B100≥1.73T,B200≥1.90T,B300≥1.93T。
5.如权利要求1-4中任意一项所述的热轧磁轭钢的制造方法,其特征在于,包括步骤:
(1)冶炼、精炼和铸造;
(2)再加热:加热温度≥1230℃,保温时间为1~2h;
(3)热轧;
(4)层流冷却;
(5)卷取:卷取温度550~650℃,然后缓慢冷却至室温。
6.如权利要求5所述的制造方法,其特征在于,在步骤(3)中,控制开轧温度为1080~1200℃,在1000℃以上多道次大压下量轧制且累计变形量≥50%,随后中间坯待温至900~950℃,再进行多道次轧制且累计变形量≥70%;终轧温度控制在860~920℃之间。
7.如权利要求5所述的制造方法,其特征在于,在步骤(5)中,卷取温度为550~580℃。
8.如权利要求5所述的制造方法,其特征在于,在步骤(5)中,卷取温度>580℃。
9.如权利要求5所述的制造方法,其特征在于,还包括步骤(6)回火:回火温度≤600℃。
CN201710908140.2A 2017-09-29 2017-09-29 一种热轧磁轭钢及其制造方法 Active CN109576594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710908140.2A CN109576594B (zh) 2017-09-29 2017-09-29 一种热轧磁轭钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710908140.2A CN109576594B (zh) 2017-09-29 2017-09-29 一种热轧磁轭钢及其制造方法

Publications (2)

Publication Number Publication Date
CN109576594A CN109576594A (zh) 2019-04-05
CN109576594B true CN109576594B (zh) 2021-03-12

Family

ID=65914321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710908140.2A Active CN109576594B (zh) 2017-09-29 2017-09-29 一种热轧磁轭钢及其制造方法

Country Status (1)

Country Link
CN (1) CN109576594B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126857A (zh) * 2020-09-17 2020-12-25 湖北工业大学 680MPa级高强度磁轭钢板的不平度评价方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871076A (zh) * 2009-04-22 2010-10-27 宝山钢铁股份有限公司 一种500Mpa级冷轧磁极钢的制造方法
CN104878292A (zh) * 2015-06-16 2015-09-02 武汉钢铁(集团)公司 一种屈服强度≥400MPa的冷轧磁极钢及生产方法
CN105624556A (zh) * 2016-01-23 2016-06-01 山西太钢不锈钢股份有限公司 一种热轧磁极钢板及其制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100557060C (zh) * 2007-01-12 2009-11-04 武汉钢铁(集团)公司 C-Mn-Ti系热轧高强度高磁感性能钢的制造方法
CN100491574C (zh) * 2007-01-12 2009-05-27 武汉钢铁(集团)公司 C-Mn-Ti-Nb系热轧高强度高磁感性能钢及其制造方法
CN101492791B (zh) * 2008-01-24 2012-05-30 宝山钢铁股份有限公司 可大线能量焊接的电磁钢板及其制造方法
CN101597723A (zh) * 2009-06-18 2009-12-09 武汉钢铁(集团)公司 一种低内应力高强度高磁感性能钢及其制造方法
CN103451532A (zh) * 2013-09-12 2013-12-18 武汉钢铁(集团)公司 屈服强度≥750MPa的热轧磁轭钢及其生产方法
CN103451533A (zh) * 2013-09-12 2013-12-18 武汉钢铁(集团)公司 屈服强度≥800MPa的热轧磁轭钢及其生产方法
CN105200329A (zh) * 2015-09-11 2015-12-30 武汉钢铁(集团)公司 抗拉强度700MPa级易焊接低内应力结构钢板及其制造方法
CN105506465B (zh) * 2015-12-14 2017-12-08 武汉钢铁有限公司 屈服强度≥750MPa级高强度高韧性热轧磁轭钢及生产方法
CN105506466B (zh) * 2015-12-14 2017-12-05 武汉钢铁有限公司 屈服强度≥650MPa级高强度高韧性热轧磁轭钢
CN105734423B (zh) * 2016-04-27 2018-08-10 宝山钢铁股份有限公司 一种1180MPa级析出强化型热轧超高强钢及其制造方法
CN106119699A (zh) * 2016-06-21 2016-11-16 宝山钢铁股份有限公司 一种590MPa级热轧高强度高扩孔钢及其制造方法
CN106119702B (zh) * 2016-06-21 2018-10-02 宝山钢铁股份有限公司 一种980MPa级热轧高强度高扩孔钢及其制造方法
CN106119700B (zh) * 2016-06-21 2018-06-01 宝山钢铁股份有限公司 一种1180MPa级析出强化型高强度高塑性钢及其制造方法
CN108018498A (zh) * 2016-10-31 2018-05-11 宝山钢铁股份有限公司 一种1180MPa级热轧铁素体贝氏体双相钢及其制造方法
CN106521339B (zh) * 2016-12-05 2018-04-27 武汉钢铁有限公司 一种水轮发电机磁轭用高强度高精度热轧钢板及生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871076A (zh) * 2009-04-22 2010-10-27 宝山钢铁股份有限公司 一种500Mpa级冷轧磁极钢的制造方法
CN104878292A (zh) * 2015-06-16 2015-09-02 武汉钢铁(集团)公司 一种屈服强度≥400MPa的冷轧磁极钢及生产方法
CN105624556A (zh) * 2016-01-23 2016-06-01 山西太钢不锈钢股份有限公司 一种热轧磁极钢板及其制造方法

Also Published As

Publication number Publication date
CN109576594A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN103710622A (zh) 屈服强度690MPa级低屈强比抗震钢及其制造方法
JP4808828B2 (ja) 高周波焼入れ用鋼及び高周波焼入れ鋼部品の製造方法
JP6574307B2 (ja) 高強靭性継目無鋼管及びその製造方法
JP3738004B2 (ja) 冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材とその製造方法
KR20020088425A (ko) 어닐링 생략 가능한 기계 구조용 열간압연 선재·봉강 및그 제조 방법
CN108220774B (zh) 韧性优异的线材、钢丝及其制造方法
WO2015060223A1 (ja) 冷間加工性と浸炭熱処理後の表面硬さに優れる熱延鋼板
CN110453146B (zh) 一种无屈服平台的Cr合金化钢及其制备方法
CN109576569A (zh) 一种汽车扭力梁用钢材及其制备方法
CN109576594B (zh) 一种热轧磁轭钢及其制造方法
CN102549174B (zh) 无需软化处理的高含碳量软线材及其制造方法
JP2010270346A (ja) 曲げ疲労強度が高く、繰り返し応力による変形量の小さい熱間鍛造用非調質鋼およびその部品の製造方法
CN104087824A (zh) 一种具有trip效应的超细结构贝氏体钢及其制备方法
CN106929756B (zh) 轴承钢及其制备方法
JP6566168B1 (ja) 高強度冷延鋼板およびその製造方法
CN110172636A (zh) 一种低碳热成形钢及其制备方法
CN108004475B (zh) 一种900MPa级热轧纳米析出强化型高强高韧钢及其制造方法
CN109576592B (zh) 一种热轧磁轭钢及其制造方法
JP5688742B2 (ja) 靭性、耐磨耗性に優れる鋼の製造方法
JP2000204414A (ja) 中炭素鋼の製造方法
JP6100676B2 (ja) 合金鋼の球状化熱処理方法
JP2017071859A (ja) 非調質鋼およびその製造方法
KR20190077842A (ko) 충격특성이 우수한 고내식성 고인(p)선재, 성형품 및 그 제조방법
JP2018178228A (ja) 高周波焼入れ部品用素材
CN109576593A (zh) 一种热轧磁轭钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant